mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
We were handling the case where an OFUNCINST node was used as a function value, but not the case when an OFUNCINST node was used as a method value. In the case of a method value, we need to create a new selector expression that references the newly stenciled method. To make this work, also needed small fix to noder2 code to properly set the Sel of a method SelectorExpr (should be just the base method name, not the full method name including the type string). This has to be correct, so that the function created by MethodValueWrapper() can be typechecked successfully. Fixes #45817 Change-Id: I7343e8a0d35fc46b44dfe4d45b77997ba6c8733e Reviewed-on: https://go-review.googlesource.com/c/go/+/319589 Reviewed-by: Keith Randall <khr@golang.org> Trust: Dan Scales <danscales@google.com>
400 lines
12 KiB
Go
400 lines
12 KiB
Go
// Copyright 2021 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package noder
|
|
|
|
import (
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/syntax"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/compile/internal/types2"
|
|
"cmd/internal/src"
|
|
)
|
|
|
|
func (g *irgen) expr(expr syntax.Expr) ir.Node {
|
|
if expr == nil {
|
|
return nil
|
|
}
|
|
|
|
if expr, ok := expr.(*syntax.Name); ok && expr.Value == "_" {
|
|
return ir.BlankNode
|
|
}
|
|
|
|
tv, ok := g.info.Types[expr]
|
|
if !ok {
|
|
base.FatalfAt(g.pos(expr), "missing type for %v (%T)", expr, expr)
|
|
}
|
|
switch {
|
|
case tv.IsBuiltin():
|
|
// Qualified builtins, such as unsafe.Add and unsafe.Slice.
|
|
if expr, ok := expr.(*syntax.SelectorExpr); ok {
|
|
if name, ok := expr.X.(*syntax.Name); ok {
|
|
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
|
|
return g.use(expr.Sel)
|
|
}
|
|
}
|
|
}
|
|
return g.use(expr.(*syntax.Name))
|
|
case tv.IsType():
|
|
return ir.TypeNode(g.typ(tv.Type))
|
|
case tv.IsValue(), tv.IsVoid():
|
|
// ok
|
|
default:
|
|
base.FatalfAt(g.pos(expr), "unrecognized type-checker result")
|
|
}
|
|
|
|
// The gc backend expects all expressions to have a concrete type, and
|
|
// types2 mostly satisfies this expectation already. But there are a few
|
|
// cases where the Go spec doesn't require converting to concrete type,
|
|
// and so types2 leaves them untyped. So we need to fix those up here.
|
|
typ := tv.Type
|
|
if basic, ok := typ.(*types2.Basic); ok && basic.Info()&types2.IsUntyped != 0 {
|
|
switch basic.Kind() {
|
|
case types2.UntypedNil:
|
|
// ok; can appear in type switch case clauses
|
|
// TODO(mdempsky): Handle as part of type switches instead?
|
|
case types2.UntypedBool:
|
|
typ = types2.Typ[types2.Bool] // expression in "if" or "for" condition
|
|
case types2.UntypedString:
|
|
typ = types2.Typ[types2.String] // argument to "append" or "copy" calls
|
|
default:
|
|
base.FatalfAt(g.pos(expr), "unexpected untyped type: %v", basic)
|
|
}
|
|
}
|
|
|
|
// Constant expression.
|
|
if tv.Value != nil {
|
|
return Const(g.pos(expr), g.typ(typ), tv.Value)
|
|
}
|
|
|
|
n := g.expr0(typ, expr)
|
|
if n.Typecheck() != 1 && n.Typecheck() != 3 {
|
|
base.FatalfAt(g.pos(expr), "missed typecheck: %+v", n)
|
|
}
|
|
if !g.match(n.Type(), typ, tv.HasOk()) {
|
|
base.FatalfAt(g.pos(expr), "expected %L to have type %v", n, typ)
|
|
}
|
|
return n
|
|
}
|
|
|
|
func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
|
|
pos := g.pos(expr)
|
|
|
|
switch expr := expr.(type) {
|
|
case *syntax.Name:
|
|
if _, isNil := g.info.Uses[expr].(*types2.Nil); isNil {
|
|
return Nil(pos, g.typ(typ))
|
|
}
|
|
return g.use(expr)
|
|
|
|
case *syntax.CompositeLit:
|
|
return g.compLit(typ, expr)
|
|
|
|
case *syntax.FuncLit:
|
|
return g.funcLit(typ, expr)
|
|
|
|
case *syntax.AssertExpr:
|
|
return Assert(pos, g.expr(expr.X), g.typeExpr(expr.Type))
|
|
|
|
case *syntax.CallExpr:
|
|
fun := g.expr(expr.Fun)
|
|
|
|
// The key for the Inferred map is the CallExpr (if inferring
|
|
// types required the function arguments) or the IndexExpr below
|
|
// (if types could be inferred without the function arguments).
|
|
if inferred, ok := g.info.Inferred[expr]; ok && len(inferred.Targs) > 0 {
|
|
// This is the case where inferring types required the
|
|
// types of the function arguments.
|
|
targs := make([]ir.Node, len(inferred.Targs))
|
|
for i, targ := range inferred.Targs {
|
|
targs[i] = ir.TypeNode(g.typ(targ))
|
|
}
|
|
if fun.Op() == ir.OFUNCINST {
|
|
// Replace explicit type args with the full list that
|
|
// includes the additional inferred type args
|
|
fun.(*ir.InstExpr).Targs = targs
|
|
} else {
|
|
// Create a function instantiation here, given
|
|
// there are only inferred type args (e.g.
|
|
// min(5,6), where min is a generic function)
|
|
inst := ir.NewInstExpr(pos, ir.OFUNCINST, fun, targs)
|
|
typed(fun.Type(), inst)
|
|
fun = inst
|
|
}
|
|
|
|
}
|
|
return Call(pos, g.typ(typ), fun, g.exprs(expr.ArgList), expr.HasDots)
|
|
|
|
case *syntax.IndexExpr:
|
|
var targs []ir.Node
|
|
|
|
if inferred, ok := g.info.Inferred[expr]; ok && len(inferred.Targs) > 0 {
|
|
// This is the partial type inference case where the types
|
|
// can be inferred from other type arguments without using
|
|
// the types of the function arguments.
|
|
targs = make([]ir.Node, len(inferred.Targs))
|
|
for i, targ := range inferred.Targs {
|
|
targs[i] = ir.TypeNode(g.typ(targ))
|
|
}
|
|
} else if _, ok := expr.Index.(*syntax.ListExpr); ok {
|
|
targs = g.exprList(expr.Index)
|
|
} else {
|
|
index := g.expr(expr.Index)
|
|
if index.Op() != ir.OTYPE {
|
|
// This is just a normal index expression
|
|
return Index(pos, g.typ(typ), g.expr(expr.X), index)
|
|
}
|
|
// This is generic function instantiation with a single type
|
|
targs = []ir.Node{index}
|
|
}
|
|
// This is a generic function instantiation (e.g. min[int]).
|
|
// Generic type instantiation is handled in the type
|
|
// section of expr() above (using g.typ).
|
|
x := g.expr(expr.X)
|
|
if x.Op() != ir.ONAME || x.Type().Kind() != types.TFUNC {
|
|
panic("Incorrect argument for generic func instantiation")
|
|
}
|
|
n := ir.NewInstExpr(pos, ir.OFUNCINST, x, targs)
|
|
typed(g.typ(typ), n)
|
|
return n
|
|
|
|
case *syntax.ParenExpr:
|
|
return g.expr(expr.X) // skip parens; unneeded after parse+typecheck
|
|
|
|
case *syntax.SelectorExpr:
|
|
// Qualified identifier.
|
|
if name, ok := expr.X.(*syntax.Name); ok {
|
|
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
|
|
return g.use(expr.Sel)
|
|
}
|
|
}
|
|
return g.selectorExpr(pos, typ, expr)
|
|
|
|
case *syntax.SliceExpr:
|
|
return Slice(pos, g.typ(typ), g.expr(expr.X), g.expr(expr.Index[0]), g.expr(expr.Index[1]), g.expr(expr.Index[2]))
|
|
|
|
case *syntax.Operation:
|
|
if expr.Y == nil {
|
|
return Unary(pos, g.typ(typ), g.op(expr.Op, unOps[:]), g.expr(expr.X))
|
|
}
|
|
switch op := g.op(expr.Op, binOps[:]); op {
|
|
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
|
|
return Compare(pos, g.typ(typ), op, g.expr(expr.X), g.expr(expr.Y))
|
|
default:
|
|
return Binary(pos, op, g.typ(typ), g.expr(expr.X), g.expr(expr.Y))
|
|
}
|
|
|
|
default:
|
|
g.unhandled("expression", expr)
|
|
panic("unreachable")
|
|
}
|
|
}
|
|
|
|
// selectorExpr resolves the choice of ODOT, ODOTPTR, OCALLPART (eventually
|
|
// ODOTMETH & ODOTINTER), and OMETHEXPR and deals with embedded fields here rather
|
|
// than in typecheck.go.
|
|
func (g *irgen) selectorExpr(pos src.XPos, typ types2.Type, expr *syntax.SelectorExpr) ir.Node {
|
|
x := g.expr(expr.X)
|
|
if x.Type().HasTParam() {
|
|
// Leave a method call on a type param as an OXDOT, since it can
|
|
// only be fully transformed once it has an instantiated type.
|
|
n := ir.NewSelectorExpr(pos, ir.OXDOT, x, typecheck.Lookup(expr.Sel.Value))
|
|
typed(g.typ(typ), n)
|
|
return n
|
|
}
|
|
|
|
selinfo := g.info.Selections[expr]
|
|
// Everything up to the last selection is an implicit embedded field access,
|
|
// and the last selection is determined by selinfo.Kind().
|
|
index := selinfo.Index()
|
|
embeds, last := index[:len(index)-1], index[len(index)-1]
|
|
|
|
origx := x
|
|
for _, ix := range embeds {
|
|
x = Implicit(DotField(pos, x, ix))
|
|
}
|
|
|
|
kind := selinfo.Kind()
|
|
if kind == types2.FieldVal {
|
|
return DotField(pos, x, last)
|
|
}
|
|
|
|
// TODO(danscales,mdempsky): Interface method sets are not sorted the
|
|
// same between types and types2. In particular, using "last" here
|
|
// without conversion will likely fail if an interface contains
|
|
// unexported methods from two different packages (due to cross-package
|
|
// interface embedding).
|
|
|
|
var n ir.Node
|
|
method2 := selinfo.Obj().(*types2.Func)
|
|
|
|
if kind == types2.MethodExpr {
|
|
// OMETHEXPR is unusual in using directly the node and type of the
|
|
// original OTYPE node (origx) before passing through embedded
|
|
// fields, even though the method is selected from the type
|
|
// (x.Type()) reached after following the embedded fields. We will
|
|
// actually drop any ODOT nodes we created due to the embedded
|
|
// fields.
|
|
n = MethodExpr(pos, origx, x.Type(), last)
|
|
} else {
|
|
// Add implicit addr/deref for method values, if needed.
|
|
if x.Type().IsInterface() {
|
|
n = DotMethod(pos, x, last)
|
|
} else {
|
|
recvType2 := method2.Type().(*types2.Signature).Recv().Type()
|
|
_, wantPtr := recvType2.(*types2.Pointer)
|
|
havePtr := x.Type().IsPtr()
|
|
|
|
if havePtr != wantPtr {
|
|
if havePtr {
|
|
x = Implicit(Deref(pos, x.Type().Elem(), x))
|
|
} else {
|
|
x = Implicit(Addr(pos, x))
|
|
}
|
|
}
|
|
recvType2Base := recvType2
|
|
if wantPtr {
|
|
recvType2Base = types2.AsPointer(recvType2).Elem()
|
|
}
|
|
if len(types2.AsNamed(recvType2Base).TParams()) > 0 {
|
|
// recvType2 is the original generic type that is
|
|
// instantiated for this method call.
|
|
// selinfo.Recv() is the instantiated type
|
|
recvType2 = recvType2Base
|
|
// method is the generic method associated with the gen type
|
|
method := g.obj(types2.AsNamed(recvType2).Method(last))
|
|
n = ir.NewSelectorExpr(pos, ir.OCALLPART, x, typecheck.Lookup(expr.Sel.Value))
|
|
n.(*ir.SelectorExpr).Selection = types.NewField(pos, method.Sym(), method.Type())
|
|
n.(*ir.SelectorExpr).Selection.Nname = method
|
|
typed(method.Type(), n)
|
|
|
|
// selinfo.Targs() are the types used to
|
|
// instantiate the type of receiver
|
|
targs2 := getTargs(selinfo)
|
|
targs := make([]ir.Node, len(targs2))
|
|
for i, targ2 := range targs2 {
|
|
targs[i] = ir.TypeNode(g.typ(targ2))
|
|
}
|
|
|
|
// Create function instantiation with the type
|
|
// args for the receiver type for the method call.
|
|
n = ir.NewInstExpr(pos, ir.OFUNCINST, n, targs)
|
|
typed(g.typ(typ), n)
|
|
return n
|
|
}
|
|
|
|
if !g.match(x.Type(), recvType2, false) {
|
|
base.FatalfAt(pos, "expected %L to have type %v", x, recvType2)
|
|
} else {
|
|
n = DotMethod(pos, x, last)
|
|
}
|
|
}
|
|
}
|
|
if have, want := n.Sym(), g.selector(method2); have != want {
|
|
base.FatalfAt(pos, "bad Sym: have %v, want %v", have, want)
|
|
}
|
|
return n
|
|
}
|
|
|
|
// getTargs gets the targs associated with the receiver of a selected method
|
|
func getTargs(selinfo *types2.Selection) []types2.Type {
|
|
r := selinfo.Recv()
|
|
if p := types2.AsPointer(r); p != nil {
|
|
r = p.Elem()
|
|
}
|
|
n := types2.AsNamed(r)
|
|
if n == nil {
|
|
base.Fatalf("Incorrect type for selinfo %v", selinfo)
|
|
}
|
|
return n.TArgs()
|
|
}
|
|
|
|
func (g *irgen) exprList(expr syntax.Expr) []ir.Node {
|
|
switch expr := expr.(type) {
|
|
case nil:
|
|
return nil
|
|
case *syntax.ListExpr:
|
|
return g.exprs(expr.ElemList)
|
|
default:
|
|
return []ir.Node{g.expr(expr)}
|
|
}
|
|
}
|
|
|
|
func (g *irgen) exprs(exprs []syntax.Expr) []ir.Node {
|
|
nodes := make([]ir.Node, len(exprs))
|
|
for i, expr := range exprs {
|
|
nodes[i] = g.expr(expr)
|
|
}
|
|
return nodes
|
|
}
|
|
|
|
func (g *irgen) compLit(typ types2.Type, lit *syntax.CompositeLit) ir.Node {
|
|
if ptr, ok := typ.Underlying().(*types2.Pointer); ok {
|
|
n := ir.NewAddrExpr(g.pos(lit), g.compLit(ptr.Elem(), lit))
|
|
n.SetOp(ir.OPTRLIT)
|
|
return typed(g.typ(typ), n)
|
|
}
|
|
|
|
_, isStruct := typ.Underlying().(*types2.Struct)
|
|
|
|
exprs := make([]ir.Node, len(lit.ElemList))
|
|
for i, elem := range lit.ElemList {
|
|
switch elem := elem.(type) {
|
|
case *syntax.KeyValueExpr:
|
|
if isStruct {
|
|
exprs[i] = ir.NewStructKeyExpr(g.pos(elem), g.name(elem.Key.(*syntax.Name)), g.expr(elem.Value))
|
|
} else {
|
|
exprs[i] = ir.NewKeyExpr(g.pos(elem), g.expr(elem.Key), g.expr(elem.Value))
|
|
}
|
|
default:
|
|
exprs[i] = g.expr(elem)
|
|
}
|
|
}
|
|
|
|
n := ir.NewCompLitExpr(g.pos(lit), ir.OCOMPLIT, nil, exprs)
|
|
typed(g.typ(typ), n)
|
|
return transformCompLit(n)
|
|
}
|
|
|
|
func (g *irgen) funcLit(typ2 types2.Type, expr *syntax.FuncLit) ir.Node {
|
|
fn := ir.NewFunc(g.pos(expr))
|
|
fn.SetIsHiddenClosure(ir.CurFunc != nil)
|
|
|
|
fn.Nname = ir.NewNameAt(g.pos(expr), typecheck.ClosureName(ir.CurFunc))
|
|
ir.MarkFunc(fn.Nname)
|
|
typ := g.typ(typ2)
|
|
fn.Nname.Func = fn
|
|
fn.Nname.Defn = fn
|
|
typed(typ, fn.Nname)
|
|
fn.SetTypecheck(1)
|
|
|
|
fn.OClosure = ir.NewClosureExpr(g.pos(expr), fn)
|
|
typed(typ, fn.OClosure)
|
|
|
|
g.funcBody(fn, nil, expr.Type, expr.Body)
|
|
|
|
ir.FinishCaptureNames(fn.Pos(), ir.CurFunc, fn)
|
|
|
|
// TODO(mdempsky): ir.CaptureName should probably handle
|
|
// copying these fields from the canonical variable.
|
|
for _, cv := range fn.ClosureVars {
|
|
cv.SetType(cv.Canonical().Type())
|
|
cv.SetTypecheck(1)
|
|
cv.SetWalkdef(1)
|
|
}
|
|
|
|
g.target.Decls = append(g.target.Decls, fn)
|
|
|
|
return fn.OClosure
|
|
}
|
|
|
|
func (g *irgen) typeExpr(typ syntax.Expr) *types.Type {
|
|
n := g.expr(typ)
|
|
if n.Op() != ir.OTYPE {
|
|
base.FatalfAt(g.pos(typ), "expected type: %L", n)
|
|
}
|
|
return n.Type()
|
|
}
|