mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
In types1 and for the export format, we were using type param subscripts coming from types2 (originally for debugging) to provide unique names. We need unique full-names for type params in types1 to ensure consistent references to type params in function/method bodies and type params derived from translation from types2. We also currently need unique names for type params in importer/iimport.go and gcimporter/iimport.go, because there are no levels of scoping in the package symbol lookup and pkgIndex table. As a step to eliminate the typeparam subscripts (which have no relation to the source code), we change so that the typeparams' unique name is just prefixing the type param name with the name of the enclosing generic function, type, or method. We now no longer use types2.TypeString in types2-to-types1 translation, so Typestring can be changed to eliminate the subscript, as needed. Also, types2.TypeParam.SetId() is no longer needed and is eliminated. We can decide later if we want to do the further step of adding scoping to the importer/iimport.go and gcimporter/iimport.go, which could be used to eliminate the type param "path" prefix from the export format. Change-Id: I0e37795664be2c2e1869b8f9e93393b83fc56409 Reviewed-on: https://go-review.googlesource.com/c/go/+/353135 Trust: Dan Scales <danscales@google.com> Run-TryBot: Dan Scales <danscales@google.com> Reviewed-by: Robert Findley <rfindley@google.com>
328 lines
9.2 KiB
Go
328 lines
9.2 KiB
Go
// Copyright 2021 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package noder
|
|
|
|
import (
|
|
"go/constant"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/syntax"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/compile/internal/types2"
|
|
)
|
|
|
|
// TODO(mdempsky): Skip blank declarations? Probably only safe
|
|
// for declarations without pragmas.
|
|
|
|
func (g *irgen) decls(res *ir.Nodes, decls []syntax.Decl) {
|
|
for _, decl := range decls {
|
|
switch decl := decl.(type) {
|
|
case *syntax.ConstDecl:
|
|
g.constDecl(res, decl)
|
|
case *syntax.FuncDecl:
|
|
g.funcDecl(res, decl)
|
|
case *syntax.TypeDecl:
|
|
if ir.CurFunc == nil {
|
|
continue // already handled in irgen.generate
|
|
}
|
|
g.typeDecl(res, decl)
|
|
case *syntax.VarDecl:
|
|
g.varDecl(res, decl)
|
|
default:
|
|
g.unhandled("declaration", decl)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (g *irgen) importDecl(p *noder, decl *syntax.ImportDecl) {
|
|
g.pragmaFlags(decl.Pragma, 0)
|
|
|
|
// Get the imported package's path, as resolved already by types2
|
|
// and gcimporter. This is the same path as would be computed by
|
|
// parseImportPath.
|
|
switch pkgNameOf(g.info, decl).Imported().Path() {
|
|
case "unsafe":
|
|
p.importedUnsafe = true
|
|
case "embed":
|
|
p.importedEmbed = true
|
|
}
|
|
}
|
|
|
|
// pkgNameOf returns the PkgName associated with the given ImportDecl.
|
|
func pkgNameOf(info *types2.Info, decl *syntax.ImportDecl) *types2.PkgName {
|
|
if name := decl.LocalPkgName; name != nil {
|
|
return info.Defs[name].(*types2.PkgName)
|
|
}
|
|
return info.Implicits[decl].(*types2.PkgName)
|
|
}
|
|
|
|
func (g *irgen) constDecl(out *ir.Nodes, decl *syntax.ConstDecl) {
|
|
g.pragmaFlags(decl.Pragma, 0)
|
|
|
|
for _, name := range decl.NameList {
|
|
name, obj := g.def(name)
|
|
|
|
// For untyped numeric constants, make sure the value
|
|
// representation matches what the rest of the
|
|
// compiler (really just iexport) expects.
|
|
// TODO(mdempsky): Revisit after #43891 is resolved.
|
|
val := obj.(*types2.Const).Val()
|
|
switch name.Type() {
|
|
case types.UntypedInt, types.UntypedRune:
|
|
val = constant.ToInt(val)
|
|
case types.UntypedFloat:
|
|
val = constant.ToFloat(val)
|
|
case types.UntypedComplex:
|
|
val = constant.ToComplex(val)
|
|
}
|
|
name.SetVal(val)
|
|
|
|
out.Append(ir.NewDecl(g.pos(decl), ir.ODCLCONST, name))
|
|
}
|
|
}
|
|
|
|
func (g *irgen) funcDecl(out *ir.Nodes, decl *syntax.FuncDecl) {
|
|
// Set g.curDecl to the function name, as context for the type params declared
|
|
// during types2-to-types1 translation if this is a generic function.
|
|
g.curDecl = decl.Name.Value
|
|
obj2 := g.info.Defs[decl.Name]
|
|
recv := types2.AsSignature(obj2.Type()).Recv()
|
|
if recv != nil {
|
|
t2 := deref2(recv.Type())
|
|
// This is a method, so set g.curDecl to recvTypeName.methName instead.
|
|
g.curDecl = types2.AsNamed(t2).Obj().Name() + "." + g.curDecl
|
|
}
|
|
|
|
fn := ir.NewFunc(g.pos(decl))
|
|
fn.Nname, _ = g.def(decl.Name)
|
|
fn.Nname.Func = fn
|
|
fn.Nname.Defn = fn
|
|
|
|
fn.Pragma = g.pragmaFlags(decl.Pragma, funcPragmas)
|
|
if fn.Pragma&ir.Systemstack != 0 && fn.Pragma&ir.Nosplit != 0 {
|
|
base.ErrorfAt(fn.Pos(), "go:nosplit and go:systemstack cannot be combined")
|
|
}
|
|
if fn.Pragma&ir.Nointerface != 0 {
|
|
// Propagate //go:nointerface from Func.Pragma to Field.Nointerface.
|
|
// This is a bit roundabout, but this is the earliest point where we've
|
|
// processed the function's pragma flags, and we've also already created
|
|
// the Fields to represent the receiver's method set.
|
|
if recv := fn.Type().Recv(); recv != nil {
|
|
typ := types.ReceiverBaseType(recv.Type)
|
|
if typ.OrigSym() != nil {
|
|
// For a generic method, we mark the methods on the
|
|
// base generic type, since those are the methods
|
|
// that will be stenciled.
|
|
typ = typ.OrigSym().Def.Type()
|
|
}
|
|
meth := typecheck.Lookdot1(fn, typecheck.Lookup(decl.Name.Value), typ, typ.Methods(), 0)
|
|
meth.SetNointerface(true)
|
|
}
|
|
}
|
|
|
|
if decl.Body != nil && fn.Pragma&ir.Noescape != 0 {
|
|
base.ErrorfAt(fn.Pos(), "can only use //go:noescape with external func implementations")
|
|
}
|
|
|
|
if decl.Name.Value == "init" && decl.Recv == nil {
|
|
g.target.Inits = append(g.target.Inits, fn)
|
|
}
|
|
|
|
g.later(func() {
|
|
if fn.Type().HasTParam() {
|
|
g.topFuncIsGeneric = true
|
|
}
|
|
g.funcBody(fn, decl.Recv, decl.Type, decl.Body)
|
|
g.topFuncIsGeneric = false
|
|
if fn.Type().HasTParam() && fn.Body != nil {
|
|
// Set pointers to the dcls/body of a generic function/method in
|
|
// the Inl struct, so it is marked for export, is available for
|
|
// stenciling, and works with Inline_Flood().
|
|
fn.Inl = &ir.Inline{
|
|
Cost: 1,
|
|
Dcl: fn.Dcl,
|
|
Body: fn.Body,
|
|
}
|
|
}
|
|
|
|
out.Append(fn)
|
|
})
|
|
}
|
|
|
|
func (g *irgen) typeDecl(out *ir.Nodes, decl *syntax.TypeDecl) {
|
|
// Set g.curDecl to the type name, as context for the type params declared
|
|
// during types2-to-types1 translation if this is a generic type.
|
|
g.curDecl = decl.Name.Value
|
|
if decl.Alias {
|
|
name, _ := g.def(decl.Name)
|
|
g.pragmaFlags(decl.Pragma, 0)
|
|
assert(name.Alias()) // should be set by irgen.obj
|
|
|
|
out.Append(ir.NewDecl(g.pos(decl), ir.ODCLTYPE, name))
|
|
return
|
|
}
|
|
|
|
// Prevent size calculations until we set the underlying type.
|
|
types.DeferCheckSize()
|
|
|
|
name, obj := g.def(decl.Name)
|
|
ntyp, otyp := name.Type(), obj.Type()
|
|
if ir.CurFunc != nil {
|
|
ntyp.SetVargen()
|
|
}
|
|
|
|
pragmas := g.pragmaFlags(decl.Pragma, typePragmas)
|
|
name.SetPragma(pragmas) // TODO(mdempsky): Is this still needed?
|
|
|
|
if pragmas&ir.NotInHeap != 0 {
|
|
ntyp.SetNotInHeap(true)
|
|
}
|
|
|
|
// We need to use g.typeExpr(decl.Type) here to ensure that for
|
|
// chained, defined-type declarations like:
|
|
//
|
|
// type T U
|
|
//
|
|
// //go:notinheap
|
|
// type U struct { … }
|
|
//
|
|
// we mark both T and U as NotInHeap. If we instead used just
|
|
// g.typ(otyp.Underlying()), then we'd instead set T's underlying
|
|
// type directly to the struct type (which is not marked NotInHeap)
|
|
// and fail to mark T as NotInHeap.
|
|
//
|
|
// Also, we rely here on Type.SetUnderlying allowing passing a
|
|
// defined type and handling forward references like from T to U
|
|
// above. Contrast with go/types's Named.SetUnderlying, which
|
|
// disallows this.
|
|
//
|
|
// [mdempsky: Subtleties like these are why I always vehemently
|
|
// object to new type pragmas.]
|
|
ntyp.SetUnderlying(g.typeExpr(decl.Type))
|
|
|
|
tparams := otyp.(*types2.Named).TypeParams()
|
|
if n := tparams.Len(); n > 0 {
|
|
rparams := make([]*types.Type, n)
|
|
for i := range rparams {
|
|
rparams[i] = g.typ(tparams.At(i))
|
|
}
|
|
// This will set hasTParam flag if any rparams are not concrete types.
|
|
ntyp.SetRParams(rparams)
|
|
}
|
|
types.ResumeCheckSize()
|
|
|
|
if otyp, ok := otyp.(*types2.Named); ok && otyp.NumMethods() != 0 {
|
|
methods := make([]*types.Field, otyp.NumMethods())
|
|
for i := range methods {
|
|
m := otyp.Method(i)
|
|
// Set g.curDecl to recvTypeName.methName, as context for the
|
|
// method-specific type params in the receiver.
|
|
g.curDecl = decl.Name.Value + "." + m.Name()
|
|
meth := g.obj(m)
|
|
methods[i] = types.NewField(meth.Pos(), g.selector(m), meth.Type())
|
|
methods[i].Nname = meth
|
|
}
|
|
ntyp.Methods().Set(methods)
|
|
}
|
|
|
|
out.Append(ir.NewDecl(g.pos(decl), ir.ODCLTYPE, name))
|
|
}
|
|
|
|
func (g *irgen) varDecl(out *ir.Nodes, decl *syntax.VarDecl) {
|
|
pos := g.pos(decl)
|
|
names := make([]*ir.Name, len(decl.NameList))
|
|
for i, name := range decl.NameList {
|
|
names[i], _ = g.def(name)
|
|
}
|
|
|
|
if decl.Pragma != nil {
|
|
pragma := decl.Pragma.(*pragmas)
|
|
// TODO(mdempsky): Plumb noder.importedEmbed through to here.
|
|
varEmbed(g.makeXPos, names[0], decl, pragma, true)
|
|
g.reportUnused(pragma)
|
|
}
|
|
|
|
do := func() {
|
|
values := g.exprList(decl.Values)
|
|
|
|
var as2 *ir.AssignListStmt
|
|
if len(values) != 0 && len(names) != len(values) {
|
|
as2 = ir.NewAssignListStmt(pos, ir.OAS2, make([]ir.Node, len(names)), values)
|
|
}
|
|
|
|
for i, name := range names {
|
|
if ir.CurFunc != nil {
|
|
out.Append(ir.NewDecl(pos, ir.ODCL, name))
|
|
}
|
|
if as2 != nil {
|
|
as2.Lhs[i] = name
|
|
name.Defn = as2
|
|
} else {
|
|
as := ir.NewAssignStmt(pos, name, nil)
|
|
if len(values) != 0 {
|
|
as.Y = values[i]
|
|
name.Defn = as
|
|
} else if ir.CurFunc == nil {
|
|
name.Defn = as
|
|
}
|
|
lhs := []ir.Node{as.X}
|
|
rhs := []ir.Node{}
|
|
if as.Y != nil {
|
|
rhs = []ir.Node{as.Y}
|
|
}
|
|
transformAssign(as, lhs, rhs)
|
|
as.X = lhs[0]
|
|
if as.Y != nil {
|
|
as.Y = rhs[0]
|
|
}
|
|
as.SetTypecheck(1)
|
|
out.Append(as)
|
|
}
|
|
}
|
|
if as2 != nil {
|
|
transformAssign(as2, as2.Lhs, as2.Rhs)
|
|
as2.SetTypecheck(1)
|
|
out.Append(as2)
|
|
}
|
|
}
|
|
|
|
// If we're within a function, we need to process the assignment
|
|
// part of the variable declaration right away. Otherwise, we leave
|
|
// it to be handled after all top-level declarations are processed.
|
|
if ir.CurFunc != nil {
|
|
do()
|
|
} else {
|
|
g.later(do)
|
|
}
|
|
}
|
|
|
|
// pragmaFlags returns any specified pragma flags included in allowed,
|
|
// and reports errors about any other, unexpected pragmas.
|
|
func (g *irgen) pragmaFlags(pragma syntax.Pragma, allowed ir.PragmaFlag) ir.PragmaFlag {
|
|
if pragma == nil {
|
|
return 0
|
|
}
|
|
p := pragma.(*pragmas)
|
|
present := p.Flag & allowed
|
|
p.Flag &^= allowed
|
|
g.reportUnused(p)
|
|
return present
|
|
}
|
|
|
|
// reportUnused reports errors about any unused pragmas.
|
|
func (g *irgen) reportUnused(pragma *pragmas) {
|
|
for _, pos := range pragma.Pos {
|
|
if pos.Flag&pragma.Flag != 0 {
|
|
base.ErrorfAt(g.makeXPos(pos.Pos), "misplaced compiler directive")
|
|
}
|
|
}
|
|
if len(pragma.Embeds) > 0 {
|
|
for _, e := range pragma.Embeds {
|
|
base.ErrorfAt(g.makeXPos(e.Pos), "misplaced go:embed directive")
|
|
}
|
|
}
|
|
}
|