go/src/cmd/compile/internal/syntax/parser.go
Matthew Dempsky 117793624b cmd/compile/internal/syntax: expose additional information for gc
gc needs access to line offsets for Nodes. It also needs access to the
end line offset for function bodies so it knows what line number to
use for things like implicit returns and defer executions.

Lastly, include an extra bool to distinguish between simple and full
slice expressions. This is redundant in valid parse trees, but needed
by gc for producing complete warnings in invalid inputs.

Change-Id: I64baf334a35c72336d26fa6755c67eb9d6f4e93c
Reviewed-on: https://go-review.googlesource.com/27196
Reviewed-by: Robert Griesemer <gri@golang.org>
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-08-19 01:09:52 +00:00

2066 lines
40 KiB
Go

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import (
"fmt"
"io"
"strings"
)
const debug = false
const trace = false
type parser struct {
scanner
fnest int // function nesting level (for error handling)
xnest int // expression nesting level (for complit ambiguity resolution)
indent []byte // tracing support
nerrors int // error count
}
func (p *parser) init(src io.Reader, errh ErrorHandler) {
p.scanner.init(src, func(pos, line int, msg string) {
p.nerrors++
if !debug && errh != nil {
errh(pos, line, msg)
return
}
panic(fmt.Sprintf("%d: %s\n", line, msg))
})
p.fnest = 0
p.xnest = 0
p.indent = nil
p.nerrors = 0
}
func (p *parser) got(tok token) bool {
if p.tok == tok {
p.next()
return true
}
return false
}
func (p *parser) want(tok token) {
if !p.got(tok) {
p.syntax_error("expecting " + tok.String())
p.advance()
}
}
// ----------------------------------------------------------------------------
// Error handling
// syntax_error reports a syntax error at the current line.
func (p *parser) syntax_error(msg string) {
if trace {
defer p.trace("syntax_error (" + msg + ")")()
}
if p.tok == _EOF && p.nerrors > 0 {
return // avoid meaningless follow-up errors
}
// add punctuation etc. as needed to msg
switch {
case msg == "":
// nothing to do
case strings.HasPrefix(msg, "in"), strings.HasPrefix(msg, "at"), strings.HasPrefix(msg, "after"):
msg = " " + msg
case strings.HasPrefix(msg, "expecting"):
msg = ", " + msg
default:
// plain error - we don't care about current token
p.error("syntax error: " + msg)
return
}
// determine token string
var tok string
switch p.tok {
case _Name, _Literal:
tok = p.lit
case _Operator:
tok = p.op.String()
case _AssignOp:
tok = p.op.String() + "="
case _IncOp:
tok = p.op.String()
tok += tok
default:
tok = tokstring(p.tok)
}
p.error("syntax error: unexpected " + tok + msg)
}
// Like syntax_error, but reports error at given line rather than current lexer line.
func (p *parser) syntax_error_at(lineno uint32, msg string) {
// TODO(gri) fix this
// defer func(lineno int32) {
// lexlineno = lineno
// }(lexlineno)
// lexlineno = lineno
p.syntax_error(msg)
}
// The stopset contains keywords that start a statement.
// They are good synchronization points in case of syntax
// errors and (usually) shouldn't be skipped over.
const stopset uint64 = 1<<_Break |
1<<_Const |
1<<_Continue |
1<<_Defer |
1<<_Fallthrough |
1<<_For |
1<<_Func |
1<<_Go |
1<<_Goto |
1<<_If |
1<<_Return |
1<<_Select |
1<<_Switch |
1<<_Type |
1<<_Var
// Advance consumes tokens until it finds a token of the stopset or followlist.
// The stopset is only considered if we are inside a function (p.fnest > 0).
// The followlist is the list of valid tokens that can follow a production;
// if it is empty, exactly one token is consumed to ensure progress.
func (p *parser) advance(followlist ...token) {
if len(followlist) == 0 {
p.next()
return
}
// compute follow set
// TODO(gri) the args are constants - do as constant expressions?
var followset uint64 = 1 << _EOF // never skip over EOF
for _, tok := range followlist {
followset |= 1 << tok
}
for !(contains(followset, p.tok) || p.fnest > 0 && contains(stopset, p.tok)) {
p.next()
}
}
func tokstring(tok token) string {
switch tok {
case _EOF:
return "EOF"
case _Comma:
return "comma"
case _Semi:
return "semicolon or newline"
}
return tok.String()
}
// usage: defer p.trace(msg)()
func (p *parser) trace(msg string) func() {
fmt.Printf("%5d: %s%s (\n", p.line, p.indent, msg)
const tab = ". "
p.indent = append(p.indent, tab...)
return func() {
p.indent = p.indent[:len(p.indent)-len(tab)]
if x := recover(); x != nil {
panic(x) // skip print_trace
}
fmt.Printf("%5d: %s)\n", p.line, p.indent)
}
}
// ----------------------------------------------------------------------------
// Package files
//
// Parse methods are annotated with matching Go productions as appropriate.
// The annotations are intended as guidelines only since a single Go grammar
// rule may be covered by multiple parse methods and vice versa.
// SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
func (p *parser) file() *File {
if trace {
defer p.trace("file")()
}
f := new(File)
f.init(p)
// PackageClause
p.want(_Package)
f.PkgName = p.name()
p.want(_Semi)
// don't bother continuing if package clause has errors
if p.nerrors > 0 {
return nil
}
// { ImportDecl ";" }
for p.got(_Import) {
f.DeclList = p.appendGroup(f.DeclList, p.importDecl)
p.want(_Semi)
}
// { TopLevelDecl ";" }
for p.tok != _EOF {
switch p.tok {
case _Const:
p.next()
f.DeclList = p.appendGroup(f.DeclList, p.constDecl)
case _Type:
p.next()
f.DeclList = p.appendGroup(f.DeclList, p.typeDecl)
case _Var:
p.next()
f.DeclList = p.appendGroup(f.DeclList, p.varDecl)
case _Func:
p.next()
f.DeclList = append(f.DeclList, p.funcDecl())
default:
if p.tok == _Lbrace && len(f.DeclList) > 0 && emptyFuncDecl(f.DeclList[len(f.DeclList)-1]) {
// opening { of function declaration on next line
p.syntax_error("unexpected semicolon or newline before {")
} else {
p.syntax_error("non-declaration statement outside function body")
}
p.advance(_Const, _Type, _Var, _Func)
continue
}
if p.tok != _EOF && !p.got(_Semi) {
p.syntax_error("after top level declaration")
p.advance(_Const, _Type, _Var, _Func)
}
}
// p.tok == _EOF
f.Lines = p.source.line
f.Pragmas = p.pragmas
return f
}
func emptyFuncDecl(dcl Decl) bool {
f, ok := dcl.(*FuncDecl)
return ok && f.Body == nil
}
// ----------------------------------------------------------------------------
// Declarations
// appendGroup(f) = f | "(" { f ";" } ")" .
func (p *parser) appendGroup(list []Decl, f func(*Group) Decl) []Decl {
if p.got(_Lparen) {
g := new(Group)
for p.tok != _EOF && p.tok != _Rparen {
list = append(list, f(g))
if !p.osemi(_Rparen) {
break
}
}
p.want(_Rparen)
return list
}
return append(list, f(nil))
}
func (p *parser) importDecl(group *Group) Decl {
if trace {
defer p.trace("importDecl")()
}
d := new(ImportDecl)
d.init(p)
switch p.tok {
case _Name:
d.LocalPkgName = p.name()
case _Dot:
n := new(Name)
n.init(p)
n.Value = "."
d.LocalPkgName = n
p.next()
}
if p.tok == _Literal && p.kind == StringLit {
d.Path = p.oliteral()
} else {
p.syntax_error("missing import path; require quoted string")
p.advance(_Semi, _Rparen)
}
d.Group = group
return d
}
// ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] .
func (p *parser) constDecl(group *Group) Decl {
if trace {
defer p.trace("constDecl")()
}
d := new(ConstDecl)
d.init(p)
d.NameList = p.nameList(p.name())
if p.tok != _EOF && p.tok != _Semi && p.tok != _Rparen {
d.Type = p.tryType()
if p.got(_Assign) {
d.Values = p.exprList()
}
}
d.Group = group
return d
}
// TypeSpec = identifier Type .
func (p *parser) typeDecl(group *Group) Decl {
if trace {
defer p.trace("typeDecl")()
}
d := new(TypeDecl)
d.init(p)
d.Name = p.name()
d.Type = p.tryType()
if d.Type == nil {
p.syntax_error("in type declaration")
p.advance(_Semi, _Rparen)
}
d.Group = group
return d
}
// VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
func (p *parser) varDecl(group *Group) Decl {
if trace {
defer p.trace("varDecl")()
}
d := new(VarDecl)
d.init(p)
d.NameList = p.nameList(p.name())
if p.got(_Assign) {
d.Values = p.exprList()
} else {
d.Type = p.type_()
if p.got(_Assign) {
d.Values = p.exprList()
}
}
d.Group = group
return d
}
// FunctionDecl = "func" FunctionName ( Function | Signature ) .
// FunctionName = identifier .
// Function = Signature FunctionBody .
// MethodDecl = "func" Receiver MethodName ( Function | Signature ) .
// Receiver = Parameters .
func (p *parser) funcDecl() *FuncDecl {
if trace {
defer p.trace("funcDecl")()
}
f := new(FuncDecl)
f.init(p)
if p.tok == _Lparen {
rcvr := p.paramList()
switch len(rcvr) {
case 0:
p.error("method has no receiver")
return nil // TODO(gri) better solution
case 1:
f.Recv = rcvr[0]
default:
p.error("method has multiple receivers")
return nil // TODO(gri) better solution
}
}
if p.tok != _Name {
p.syntax_error("expecting name or (")
p.advance(_Lbrace, _Semi)
return nil
}
// TODO(gri) check for regular functions only
// if name.Sym.Name == "init" {
// name = renameinit()
// if params != nil || result != nil {
// p.error("func init must have no arguments and no return values")
// }
// }
// if localpkg.Name == "main" && name.Name == "main" {
// if params != nil || result != nil {
// p.error("func main must have no arguments and no return values")
// }
// }
f.Name = p.name()
f.Type = p.funcType()
f.Body = p.funcBody()
f.EndLine = uint32(p.line)
// TODO(gri) deal with function properties
// if noescape && body != nil {
// p.error("can only use //go:noescape with external func implementations")
// }
return f
}
// ----------------------------------------------------------------------------
// Expressions
func (p *parser) expr() Expr {
if trace {
defer p.trace("expr")()
}
return p.binaryExpr(0)
}
// Expression = UnaryExpr | Expression binary_op Expression .
func (p *parser) binaryExpr(prec int) Expr {
// don't trace binaryExpr - only leads to overly nested trace output
x := p.unaryExpr()
for (p.tok == _Operator || p.tok == _Star) && p.prec > prec {
t := new(Operation)
t.init(p)
t.Op = p.op
t.X = x
tprec := p.prec
p.next()
t.Y = p.binaryExpr(tprec)
x = t
}
return x
}
// UnaryExpr = PrimaryExpr | unary_op UnaryExpr .
func (p *parser) unaryExpr() Expr {
if trace {
defer p.trace("unaryExpr")()
}
switch p.tok {
case _Operator, _Star:
switch p.op {
case Mul, Add, Sub, Not, Xor:
x := new(Operation)
x.init(p)
x.Op = p.op
p.next()
x.X = p.unaryExpr()
return x
case And:
p.next()
x := new(Operation)
x.init(p)
x.Op = And
// unaryExpr may have returned a parenthesized composite literal
// (see comment in operand) - remove parentheses if any
x.X = unparen(p.unaryExpr())
return x
}
case _Arrow:
// receive op (<-x) or receive-only channel (<-chan E)
p.next()
// If the next token is _Chan we still don't know if it is
// a channel (<-chan int) or a receive op (<-chan int(ch)).
// We only know once we have found the end of the unaryExpr.
x := p.unaryExpr()
// There are two cases:
//
// <-chan... => <-x is a channel type
// <-x => <-x is a receive operation
//
// In the first case, <- must be re-associated with
// the channel type parsed already:
//
// <-(chan E) => (<-chan E)
// <-(chan<-E) => (<-chan (<-E))
if x, ok := x.(*ChanType); ok {
// x is a channel type => re-associate <-
dir := SendOnly
t := x
for ok && dir == SendOnly {
dir = t.Dir
if dir == RecvOnly {
// t is type <-chan E but <-<-chan E is not permitted
// (report same error as for "type _ <-<-chan E")
p.syntax_error("unexpected <-, expecting chan")
// already progressed, no need to advance
}
t.Dir = RecvOnly
t, ok = t.Elem.(*ChanType)
}
if dir == SendOnly {
// channel dir is <- but channel element E is not a channel
// (report same error as for "type _ <-chan<-E")
p.syntax_error(fmt.Sprintf("unexpected %v, expecting chan", t))
// already progressed, no need to advance
}
return x
}
// x is not a channel type => we have a receive op
return &Operation{Op: Recv, X: x}
}
return p.pexpr(false)
}
// callStmt parses call-like statements that can be preceded by 'defer' and 'go'.
func (p *parser) callStmt() *CallStmt {
if trace {
defer p.trace("callStmt")()
}
s := new(CallStmt)
s.init(p)
s.Tok = p.tok
p.next()
x := p.pexpr(p.tok == _Lparen) // keep_parens so we can report error below
switch x := x.(type) {
case *CallExpr:
s.Call = x
case *ParenExpr:
p.error(fmt.Sprintf("expression in %s must not be parenthesized", s.Tok))
// already progressed, no need to advance
default:
p.error(fmt.Sprintf("expression in %s must be function call", s.Tok))
// already progressed, no need to advance
}
return s // TODO(gri) should we return nil in case of failure?
}
// Operand = Literal | OperandName | MethodExpr | "(" Expression ")" .
// Literal = BasicLit | CompositeLit | FunctionLit .
// BasicLit = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
// OperandName = identifier | QualifiedIdent.
func (p *parser) operand(keep_parens bool) Expr {
if trace {
defer p.trace("operand " + p.tok.String())()
}
switch p.tok {
case _Name:
return p.name()
case _Literal:
return p.oliteral()
case _Lparen:
p.next()
p.xnest++
x := p.expr() // expr_or_type
p.xnest--
p.want(_Rparen)
// Optimization: Record presence of ()'s only where needed
// for error reporting. Don't bother in other cases; it is
// just a waste of memory and time.
// Parentheses are not permitted on lhs of := .
// switch x.Op {
// case ONAME, ONONAME, OPACK, OTYPE, OLITERAL, OTYPESW:
// keep_parens = true
// }
// Parentheses are not permitted around T in a composite
// literal T{}. If the next token is a {, assume x is a
// composite literal type T (it may not be, { could be
// the opening brace of a block, but we don't know yet).
if p.tok == _Lbrace {
keep_parens = true
}
// Parentheses are also not permitted around the expression
// in a go/defer statement. In that case, operand is called
// with keep_parens set.
if keep_parens {
x = &ParenExpr{X: x}
}
return x
case _Func:
p.next()
t := p.funcType()
if p.tok == _Lbrace {
p.fnest++
p.xnest++
f := new(FuncLit)
f.init(p)
f.Type = t
f.Body = p.funcBody()
f.EndLine = uint32(p.line)
p.xnest--
p.fnest--
return f
}
return t
case _Lbrack, _Chan, _Map, _Struct, _Interface:
return p.type_() // othertype
case _Lbrace:
// common case: p.header is missing simpleStmt before { in if, for, switch
p.syntax_error("missing operand")
// '{' will be consumed in pexpr - no need to consume it here
return nil
default:
p.syntax_error("expecting expression")
p.advance()
return nil
}
// Syntactically, composite literals are operands. Because a complit
// type may be a qualified identifier which is handled by pexpr
// (together with selector expressions), complits are parsed there
// as well (operand is only called from pexpr).
}
// PrimaryExpr =
// Operand |
// Conversion |
// PrimaryExpr Selector |
// PrimaryExpr Index |
// PrimaryExpr Slice |
// PrimaryExpr TypeAssertion |
// PrimaryExpr Arguments .
//
// Selector = "." identifier .
// Index = "[" Expression "]" .
// Slice = "[" ( [ Expression ] ":" [ Expression ] ) |
// ( [ Expression ] ":" Expression ":" Expression )
// "]" .
// TypeAssertion = "." "(" Type ")" .
// Arguments = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
func (p *parser) pexpr(keep_parens bool) Expr {
if trace {
defer p.trace("pexpr")()
}
x := p.operand(keep_parens)
loop:
for {
switch p.tok {
case _Dot:
p.next()
switch p.tok {
case _Name:
// pexpr '.' sym
t := new(SelectorExpr)
t.init(p)
t.X = x
t.Sel = p.name()
x = t
case _Lparen:
p.next()
if p.got(_Type) {
t := new(TypeSwitchGuard)
t.init(p)
t.X = x
x = t
} else {
t := new(AssertExpr)
t.init(p)
t.X = x
t.Type = p.expr()
x = t
}
p.want(_Rparen)
default:
p.syntax_error("expecting name or (")
p.advance(_Semi, _Rparen)
}
case _Lbrack:
p.next()
p.xnest++
var i Expr
if p.tok != _Colon {
i = p.expr()
if p.got(_Rbrack) {
// x[i]
t := new(IndexExpr)
t.init(p)
t.X = x
t.Index = i
x = t
p.xnest--
break
}
}
// x[i:...
t := new(SliceExpr)
t.init(p)
t.X = x
t.Index[0] = i
p.want(_Colon)
if p.tok != _Colon && p.tok != _Rbrack {
// x[i:j...
t.Index[1] = p.expr()
}
if p.got(_Colon) {
t.Full = true
// x[i:j:...]
if t.Index[1] == nil {
p.error("middle index required in 3-index slice")
}
if p.tok != _Rbrack {
// x[i:j:k...
t.Index[2] = p.expr()
} else {
p.error("final index required in 3-index slice")
}
}
p.want(_Rbrack)
x = t
p.xnest--
case _Lparen:
// call or conversion
// convtype '(' expr ocomma ')'
c := new(CallExpr)
c.init(p)
c.Fun = x
c.ArgList, c.HasDots = p.argList()
x = c
case _Lbrace:
// operand may have returned a parenthesized complit
// type; accept it but complain if we have a complit
t := unparen(x)
// determine if '{' belongs to a complit or a compound_stmt
complit_ok := false
switch t.(type) {
case *Name, *SelectorExpr:
if p.xnest >= 0 {
// x is considered a comptype
complit_ok = true
}
case *ArrayType, *SliceType, *StructType, *MapType:
// x is a comptype
complit_ok = true
}
if !complit_ok {
break loop
}
if t != x {
p.syntax_error("cannot parenthesize type in composite literal")
// already progressed, no need to advance
}
n := p.complitexpr()
n.Type = x
x = n
default:
break loop
}
}
return x
}
// Element = Expression | LiteralValue .
func (p *parser) bare_complitexpr() Expr {
if trace {
defer p.trace("bare_complitexpr")()
}
if p.tok == _Lbrace {
// '{' start_complit braced_keyval_list '}'
return p.complitexpr()
}
return p.expr()
}
// LiteralValue = "{" [ ElementList [ "," ] ] "}" .
func (p *parser) complitexpr() *CompositeLit {
if trace {
defer p.trace("complitexpr")()
}
x := new(CompositeLit)
x.init(p)
p.want(_Lbrace)
p.xnest++
for p.tok != _EOF && p.tok != _Rbrace {
// value
e := p.bare_complitexpr()
if p.got(_Colon) {
// key ':' value
l := new(KeyValueExpr)
l.init(p)
l.Key = e
l.Value = p.bare_complitexpr()
e = l
x.NKeys++
}
x.ElemList = append(x.ElemList, e)
if !p.ocomma(_Rbrace) {
break
}
}
p.xnest--
p.want(_Rbrace)
return x
}
// ----------------------------------------------------------------------------
// Types
func (p *parser) type_() Expr {
if trace {
defer p.trace("type_")()
}
if typ := p.tryType(); typ != nil {
return typ
}
p.syntax_error("")
p.advance()
return nil
}
func indirect(typ Expr) Expr {
return &Operation{Op: Mul, X: typ}
}
// tryType is like type_ but it returns nil if there was no type
// instead of reporting an error.
//
// Type = TypeName | TypeLit | "(" Type ")" .
// TypeName = identifier | QualifiedIdent .
// TypeLit = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
// SliceType | MapType | Channel_Type .
func (p *parser) tryType() Expr {
if trace {
defer p.trace("tryType")()
}
switch p.tok {
case _Star:
// ptrtype
p.next()
return indirect(p.type_())
case _Arrow:
// recvchantype
p.next()
p.want(_Chan)
t := new(ChanType)
t.init(p)
t.Dir = RecvOnly
t.Elem = p.chanElem()
return t
case _Func:
// fntype
p.next()
return p.funcType()
case _Lbrack:
// '[' oexpr ']' ntype
// '[' _DotDotDot ']' ntype
p.next()
p.xnest++
if p.got(_Rbrack) {
// []T
p.xnest--
t := new(SliceType)
t.init(p)
t.Elem = p.type_()
return t
}
// [n]T
t := new(ArrayType)
t.init(p)
if !p.got(_DotDotDot) {
t.Len = p.expr()
}
p.want(_Rbrack)
p.xnest--
t.Elem = p.type_()
return t
case _Chan:
// _Chan non_recvchantype
// _Chan _Comm ntype
p.next()
t := new(ChanType)
t.init(p)
if p.got(_Arrow) {
t.Dir = SendOnly
}
t.Elem = p.chanElem()
return t
case _Map:
// _Map '[' ntype ']' ntype
p.next()
p.want(_Lbrack)
t := new(MapType)
t.init(p)
t.Key = p.type_()
p.want(_Rbrack)
t.Value = p.type_()
return t
case _Struct:
return p.structType()
case _Interface:
return p.interfaceType()
case _Name:
return p.dotname(p.name())
case _Lparen:
p.next()
t := p.type_()
p.want(_Rparen)
return t
}
return nil
}
func (p *parser) funcType() *FuncType {
if trace {
defer p.trace("funcType")()
}
typ := new(FuncType)
typ.init(p)
typ.ParamList = p.paramList()
typ.ResultList = p.funcResult()
return typ
}
func (p *parser) chanElem() Expr {
if trace {
defer p.trace("chanElem")()
}
if typ := p.tryType(); typ != nil {
return typ
}
p.syntax_error("missing channel element type")
// assume element type is simply absent - don't advance
return nil
}
func (p *parser) dotname(name *Name) Expr {
if trace {
defer p.trace("dotname")()
}
if p.got(_Dot) {
s := new(SelectorExpr)
s.init(p)
s.X = name
s.Sel = p.name()
return s
}
return name
}
// StructType = "struct" "{" { FieldDecl ";" } "}" .
func (p *parser) structType() *StructType {
if trace {
defer p.trace("structType")()
}
typ := new(StructType)
typ.init(p)
p.want(_Struct)
p.want(_Lbrace)
for p.tok != _EOF && p.tok != _Rbrace {
p.fieldDecl(typ)
if !p.osemi(_Rbrace) {
break
}
}
p.want(_Rbrace)
return typ
}
// InterfaceType = "interface" "{" { MethodSpec ";" } "}" .
func (p *parser) interfaceType() *InterfaceType {
if trace {
defer p.trace("interfaceType")()
}
typ := new(InterfaceType)
typ.init(p)
p.want(_Interface)
p.want(_Lbrace)
for p.tok != _EOF && p.tok != _Rbrace {
if m := p.methodDecl(); m != nil {
typ.MethodList = append(typ.MethodList, m)
}
if !p.osemi(_Rbrace) {
break
}
}
p.want(_Rbrace)
return typ
}
// FunctionBody = Block .
func (p *parser) funcBody() []Stmt {
if trace {
defer p.trace("funcBody")()
}
if p.got(_Lbrace) {
p.fnest++
body := p.stmtList()
p.fnest--
p.want(_Rbrace)
if body == nil {
body = []Stmt{new(EmptyStmt)}
}
return body
}
return nil
}
// Result = Parameters | Type .
func (p *parser) funcResult() []*Field {
if trace {
defer p.trace("funcResult")()
}
if p.tok == _Lparen {
return p.paramList()
}
if result := p.tryType(); result != nil {
f := new(Field)
f.init(p)
f.Type = result
return []*Field{f}
}
return nil
}
func (p *parser) addField(styp *StructType, name *Name, typ Expr, tag *BasicLit) {
if tag != nil {
for i := len(styp.FieldList) - len(styp.TagList); i > 0; i-- {
styp.TagList = append(styp.TagList, nil)
}
styp.TagList = append(styp.TagList, tag)
}
f := new(Field)
f.init(p)
f.Name = name
f.Type = typ
styp.FieldList = append(styp.FieldList, f)
if debug && tag != nil && len(styp.FieldList) != len(styp.TagList) {
panic("inconsistent struct field list")
}
}
// FieldDecl = (IdentifierList Type | AnonymousField) [ Tag ] .
// AnonymousField = [ "*" ] TypeName .
// Tag = string_lit .
func (p *parser) fieldDecl(styp *StructType) {
if trace {
defer p.trace("fieldDecl")()
}
var name *Name
switch p.tok {
case _Name:
name = p.name()
if p.tok == _Dot || p.tok == _Literal || p.tok == _Semi || p.tok == _Rbrace {
// embed oliteral
typ := p.qualifiedName(name)
tag := p.oliteral()
p.addField(styp, nil, typ, tag)
return
}
// new_name_list ntype oliteral
names := p.nameList(name)
typ := p.type_()
tag := p.oliteral()
for _, name := range names {
p.addField(styp, name, typ, tag)
}
case _Lparen:
p.next()
if p.tok == _Star {
// '(' '*' embed ')' oliteral
p.next()
typ := indirect(p.qualifiedName(nil))
p.want(_Rparen)
tag := p.oliteral()
p.addField(styp, nil, typ, tag)
p.error("cannot parenthesize embedded type")
} else {
// '(' embed ')' oliteral
typ := p.qualifiedName(nil)
p.want(_Rparen)
tag := p.oliteral()
p.addField(styp, nil, typ, tag)
p.error("cannot parenthesize embedded type")
}
case _Star:
p.next()
if p.got(_Lparen) {
// '*' '(' embed ')' oliteral
typ := indirect(p.qualifiedName(nil))
p.want(_Rparen)
tag := p.oliteral()
p.addField(styp, nil, typ, tag)
p.error("cannot parenthesize embedded type")
} else {
// '*' embed oliteral
typ := indirect(p.qualifiedName(nil))
tag := p.oliteral()
p.addField(styp, nil, typ, tag)
}
default:
p.syntax_error("expecting field name or embedded type")
p.advance(_Semi, _Rbrace)
}
}
func (p *parser) oliteral() *BasicLit {
if p.tok == _Literal {
b := new(BasicLit)
b.init(p)
b.Value = p.lit
b.Kind = p.kind
p.next()
return b
}
return nil
}
// MethodSpec = MethodName Signature | InterfaceTypeName .
// MethodName = identifier .
// InterfaceTypeName = TypeName .
func (p *parser) methodDecl() *Field {
if trace {
defer p.trace("methodDecl")()
}
switch p.tok {
case _Name:
name := p.name()
// accept potential name list but complain
hasNameList := false
for p.got(_Comma) {
p.name()
hasNameList = true
}
if hasNameList {
p.syntax_error("name list not allowed in interface type")
// already progressed, no need to advance
}
f := new(Field)
f.init(p)
if p.tok != _Lparen {
// packname
f.Type = p.qualifiedName(name)
return f
}
f.Name = name
f.Type = p.funcType()
return f
case _Lparen:
p.next()
f := new(Field)
f.init(p)
f.Type = p.qualifiedName(nil)
p.want(_Rparen)
p.error("cannot parenthesize embedded type")
return f
default:
p.syntax_error("")
p.advance(_Semi, _Rbrace)
return nil
}
}
// ParameterDecl = [ IdentifierList ] [ "..." ] Type .
func (p *parser) paramDecl() *Field {
if trace {
defer p.trace("paramDecl")()
}
f := new(Field)
f.init(p)
switch p.tok {
case _Name:
f.Name = p.name()
switch p.tok {
case _Name, _Star, _Arrow, _Func, _Lbrack, _Chan, _Map, _Struct, _Interface, _Lparen:
// sym name_or_type
f.Type = p.type_()
case _DotDotDot:
// sym dotdotdot
f.Type = p.dotsType()
case _Dot:
// name_or_type
// from dotname
f.Type = p.dotname(f.Name)
f.Name = nil
}
case _Arrow, _Star, _Func, _Lbrack, _Chan, _Map, _Struct, _Interface, _Lparen:
// name_or_type
f.Type = p.type_()
case _DotDotDot:
// dotdotdot
f.Type = p.dotsType()
default:
p.syntax_error("expecting )")
p.advance(_Comma, _Rparen)
return nil
}
return f
}
// ...Type
func (p *parser) dotsType() *DotsType {
if trace {
defer p.trace("dotsType")()
}
t := new(DotsType)
t.init(p)
p.want(_DotDotDot)
t.Elem = p.tryType()
if t.Elem == nil {
p.error("final argument in variadic function missing type")
}
return t
}
// Parameters = "(" [ ParameterList [ "," ] ] ")" .
// ParameterList = ParameterDecl { "," ParameterDecl } .
func (p *parser) paramList() (list []*Field) {
if trace {
defer p.trace("paramList")()
}
p.want(_Lparen)
var named int // number of parameters that have an explicit name and type
for p.tok != _EOF && p.tok != _Rparen {
if par := p.paramDecl(); par != nil {
if debug && par.Name == nil && par.Type == nil {
panic("parameter without name or type")
}
if par.Name != nil && par.Type != nil {
named++
}
list = append(list, par)
}
if !p.ocomma(_Rparen) {
break
}
}
// distribute parameter types
if named == 0 {
// all unnamed => found names are named types
for _, par := range list {
if typ := par.Name; typ != nil {
par.Type = typ
par.Name = nil
}
}
} else if named != len(list) {
// some named => all must be named
var typ Expr
for i := len(list) - 1; i >= 0; i-- {
if par := list[i]; par.Type != nil {
typ = par.Type
if par.Name == nil {
typ = nil // error
}
} else {
par.Type = typ
}
if typ == nil {
p.syntax_error("mixed named and unnamed function parameters")
break
}
}
}
p.want(_Rparen)
return
}
// ----------------------------------------------------------------------------
// Statements
// We represent x++, x-- as assignments x += ImplicitOne, x -= ImplicitOne.
// ImplicitOne should not be used elsewhere.
var ImplicitOne = &BasicLit{Value: "1"}
// SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
//
// simpleStmt may return missing_stmt if labelOk is set.
func (p *parser) simpleStmt(lhs Expr, rangeOk bool) SimpleStmt {
if trace {
defer p.trace("simpleStmt")()
}
if rangeOk && p.got(_Range) {
// _Range expr
if debug && lhs != nil {
panic("invalid call of simpleStmt")
}
return p.rangeClause(nil, false)
}
if lhs == nil {
lhs = p.exprList()
}
if _, ok := lhs.(*ListExpr); !ok && p.tok != _Assign && p.tok != _Define {
// expr
switch p.tok {
case _AssignOp:
// lhs op= rhs
op := p.op
p.next()
return p.newAssignStmt(op, lhs, p.expr())
case _IncOp:
// lhs++ or lhs--
op := p.op
p.next()
return p.newAssignStmt(op, lhs, ImplicitOne)
case _Arrow:
// lhs <- rhs
p.next()
s := new(SendStmt)
s.init(p)
s.Chan = lhs
s.Value = p.expr()
return s
default:
// expr
return &ExprStmt{X: lhs}
}
}
// expr_list
switch p.tok {
case _Assign:
p.next()
if rangeOk && p.got(_Range) {
// expr_list '=' _Range expr
return p.rangeClause(lhs, false)
}
// expr_list '=' expr_list
return p.newAssignStmt(0, lhs, p.exprList())
case _Define:
//lno := lineno
p.next()
if rangeOk && p.got(_Range) {
// expr_list ':=' range expr
return p.rangeClause(lhs, true)
}
// expr_list ':=' expr_list
rhs := p.exprList()
if x, ok := rhs.(*TypeSwitchGuard); ok {
switch lhs := lhs.(type) {
case *Name:
x.Lhs = lhs
case *ListExpr:
p.error(fmt.Sprintf("argument count mismatch: %d = %d", len(lhs.ElemList), 1))
default:
// TODO(mdempsky): Have Expr types implement Stringer?
p.error(fmt.Sprintf("invalid variable name %s in type switch", lhs))
}
return &ExprStmt{X: x}
}
return p.newAssignStmt(Def, lhs, rhs)
default:
p.syntax_error("expecting := or = or comma")
p.advance(_Semi, _Rbrace)
return nil
}
}
func (p *parser) rangeClause(lhs Expr, def bool) *RangeClause {
r := new(RangeClause)
r.init(p)
r.Lhs = lhs
r.Def = def
r.X = p.expr()
return r
}
func (p *parser) newAssignStmt(op Operator, lhs, rhs Expr) *AssignStmt {
a := new(AssignStmt)
a.init(p)
a.Op = op
a.Lhs = lhs
a.Rhs = rhs
return a
}
func (p *parser) labeledStmt(label *Name) Stmt {
if trace {
defer p.trace("labeledStmt")()
}
var ls Stmt // labeled statement
if p.tok != _Rbrace && p.tok != _EOF {
ls = p.stmt()
if ls == missing_stmt {
// report error at line of ':' token
p.syntax_error_at(label.line, "missing statement after label")
// we are already at the end of the labeled statement - no need to advance
return missing_stmt
}
}
s := new(LabeledStmt)
s.init(p)
s.Label = label
s.Stmt = ls
return s
}
func (p *parser) blockStmt() *BlockStmt {
if trace {
defer p.trace("blockStmt")()
}
s := new(BlockStmt)
s.init(p)
p.want(_Lbrace)
s.Body = p.stmtList()
p.want(_Rbrace)
return s
}
func (p *parser) declStmt(f func(*Group) Decl) *DeclStmt {
if trace {
defer p.trace("declStmt")()
}
s := new(DeclStmt)
s.init(p)
p.next() // _Const, _Type, or _Var
s.DeclList = p.appendGroup(nil, f)
return s
}
func (p *parser) forStmt() Stmt {
if trace {
defer p.trace("forStmt")()
}
s := new(ForStmt)
s.init(p)
p.want(_For)
s.Init, s.Cond, s.Post = p.header(true)
s.Body = p.stmtBody("for clause")
return s
}
// stmtBody parses if and for statement bodies.
func (p *parser) stmtBody(context string) []Stmt {
if trace {
defer p.trace("stmtBody")()
}
if !p.got(_Lbrace) {
p.syntax_error("missing { after " + context)
p.advance(_Name, _Rbrace)
}
body := p.stmtList()
p.want(_Rbrace)
return body
}
func (p *parser) header(forStmt bool) (init SimpleStmt, cond Expr, post SimpleStmt) {
if p.tok == _Lbrace {
return
}
outer := p.xnest
p.xnest = -1
if p.tok != _Semi {
// accept potential varDecl but complain
if p.got(_Var) {
p.error("var declaration not allowed in initializer")
}
init = p.simpleStmt(nil, forStmt)
// If we have a range clause, we are done.
if _, ok := init.(*RangeClause); ok {
p.xnest = outer
return
}
}
var condStmt SimpleStmt
if p.got(_Semi) {
if forStmt {
if p.tok != _Semi {
condStmt = p.simpleStmt(nil, false)
}
p.want(_Semi)
if p.tok != _Lbrace {
post = p.simpleStmt(nil, false)
}
} else if p.tok != _Lbrace {
condStmt = p.simpleStmt(nil, false)
}
} else {
condStmt = init
init = nil
}
// unpack condStmt
switch s := condStmt.(type) {
case nil:
// nothing to do
case *ExprStmt:
cond = s.X
default:
p.error("invalid condition, tag, or type switch guard")
}
p.xnest = outer
return
}
func (p *parser) ifStmt() *IfStmt {
if trace {
defer p.trace("ifStmt")()
}
s := new(IfStmt)
s.init(p)
p.want(_If)
s.Init, s.Cond, _ = p.header(false)
if s.Cond == nil {
p.error("missing condition in if statement")
}
s.Then = p.stmtBody("if clause")
if p.got(_Else) {
if p.tok == _If {
s.Else = p.ifStmt()
} else {
s.Else = p.blockStmt()
}
}
return s
}
func (p *parser) switchStmt() *SwitchStmt {
if trace {
defer p.trace("switchStmt")()
}
p.want(_Switch)
s := new(SwitchStmt)
s.init(p)
s.Init, s.Tag, _ = p.header(false)
if !p.got(_Lbrace) {
p.syntax_error("missing { after switch clause")
p.advance(_Case, _Default, _Rbrace)
}
for p.tok != _EOF && p.tok != _Rbrace {
s.Body = append(s.Body, p.caseClause())
}
p.want(_Rbrace)
return s
}
func (p *parser) selectStmt() *SelectStmt {
if trace {
defer p.trace("selectStmt")()
}
p.want(_Select)
s := new(SelectStmt)
s.init(p)
if !p.got(_Lbrace) {
p.syntax_error("missing { after select clause")
p.advance(_Case, _Default, _Rbrace)
}
for p.tok != _EOF && p.tok != _Rbrace {
s.Body = append(s.Body, p.commClause())
}
p.want(_Rbrace)
return s
}
func (p *parser) caseClause() *CaseClause {
if trace {
defer p.trace("caseClause")()
}
c := new(CaseClause)
c.init(p)
switch p.tok {
case _Case:
p.next()
c.Cases = p.exprList()
case _Default:
p.next()
default:
p.syntax_error("expecting case or default or }")
p.advance(_Case, _Default, _Rbrace)
}
p.want(_Colon)
c.Body = p.stmtList()
return c
}
func (p *parser) commClause() *CommClause {
if trace {
defer p.trace("commClause")()
}
c := new(CommClause)
c.init(p)
switch p.tok {
case _Case:
p.next()
lhs := p.exprList()
if _, ok := lhs.(*ListExpr); !ok && p.tok == _Arrow {
// lhs <- x
} else {
// lhs
// lhs = <-x
// lhs := <-x
if p.tok == _Assign || p.tok == _Define {
// TODO(gri) check that lhs has at most 2 entries
} else if p.tok == _Colon {
// TODO(gri) check that lhs has at most 1 entry
} else {
panic("unimplemented")
}
}
c.Comm = p.simpleStmt(lhs, false)
case _Default:
p.next()
default:
p.syntax_error("expecting case or default or }")
p.advance(_Case, _Default, _Rbrace)
}
p.want(_Colon)
c.Body = p.stmtList()
return c
}
// TODO(gri) find a better solution
var missing_stmt Stmt = new(EmptyStmt) // = Nod(OXXX, nil, nil)
// Statement =
// Declaration | LabeledStmt | SimpleStmt |
// GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
// FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
// DeferStmt .
//
// stmt may return missing_stmt.
func (p *parser) stmt() Stmt {
if trace {
defer p.trace("stmt " + p.tok.String())()
}
// Most statements (assignments) start with an identifier;
// look for it first before doing anything more expensive.
if p.tok == _Name {
lhs := p.exprList()
if label, ok := lhs.(*Name); ok && p.got(_Colon) {
return p.labeledStmt(label)
}
return p.simpleStmt(lhs, false)
}
switch p.tok {
case _Lbrace:
return p.blockStmt()
case _Var:
return p.declStmt(p.varDecl)
case _Const:
return p.declStmt(p.constDecl)
case _Type:
return p.declStmt(p.typeDecl)
case _Operator, _Star:
switch p.op {
case Add, Sub, Mul, And, Xor, Not:
return p.simpleStmt(nil, false) // unary operators
}
case _Literal, _Func, _Lparen, // operands
_Lbrack, _Struct, _Map, _Chan, _Interface, // composite types
_Arrow: // receive operator
return p.simpleStmt(nil, false)
case _For:
return p.forStmt()
case _Switch:
return p.switchStmt()
case _Select:
return p.selectStmt()
case _If:
return p.ifStmt()
case _Fallthrough:
p.next()
s := new(BranchStmt)
s.init(p)
s.Tok = _Fallthrough
return s
// // will be converted to OFALL
// stmt := Nod(OXFALL, nil, nil)
// stmt.Xoffset = int64(block)
// return stmt
case _Break, _Continue:
tok := p.tok
p.next()
s := new(BranchStmt)
s.init(p)
s.Tok = tok
if p.tok == _Name {
s.Label = p.name()
}
return s
case _Go, _Defer:
return p.callStmt()
case _Goto:
p.next()
s := new(BranchStmt)
s.init(p)
s.Tok = _Goto
s.Label = p.name()
return s
// stmt := Nod(OGOTO, p.new_name(p.name()), nil)
// stmt.Sym = dclstack // context, for goto restrictions
// return stmt
case _Return:
p.next()
s := new(ReturnStmt)
s.init(p)
if p.tok != _Semi && p.tok != _Rbrace {
s.Results = p.exprList()
}
return s
case _Semi:
s := new(EmptyStmt)
s.init(p)
return s
}
return missing_stmt
}
// StatementList = { Statement ";" } .
func (p *parser) stmtList() (l []Stmt) {
if trace {
defer p.trace("stmtList")()
}
for p.tok != _EOF && p.tok != _Rbrace && p.tok != _Case && p.tok != _Default {
s := p.stmt()
if s == missing_stmt {
break
}
l = append(l, s)
// customized version of osemi:
// ';' is optional before a closing ')' or '}'
if p.tok == _Rparen || p.tok == _Rbrace {
continue
}
if !p.got(_Semi) {
p.syntax_error("at end of statement")
p.advance(_Semi, _Rbrace)
}
}
return
}
// Arguments = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
func (p *parser) argList() (list []Expr, hasDots bool) {
if trace {
defer p.trace("argList")()
}
p.want(_Lparen)
p.xnest++
for p.tok != _EOF && p.tok != _Rparen {
list = append(list, p.expr()) // expr_or_type
hasDots = p.got(_DotDotDot)
if !p.ocomma(_Rparen) || hasDots {
break
}
}
p.xnest--
p.want(_Rparen)
return
}
// ----------------------------------------------------------------------------
// Common productions
func (p *parser) name() *Name {
// no tracing to avoid overly verbose output
n := new(Name)
n.init(p)
if p.tok == _Name {
n.Value = p.lit
p.next()
} else {
n.Value = "_"
p.syntax_error("expecting name")
p.advance()
}
return n
}
// IdentifierList = identifier { "," identifier } .
// The first name must be provided.
func (p *parser) nameList(first *Name) []*Name {
if trace {
defer p.trace("nameList")()
}
if debug && first == nil {
panic("first name not provided")
}
l := []*Name{first}
for p.got(_Comma) {
l = append(l, p.name())
}
return l
}
// The first name may be provided, or nil.
func (p *parser) qualifiedName(name *Name) Expr {
if trace {
defer p.trace("qualifiedName")()
}
switch {
case name != nil:
// name is provided
case p.tok == _Name:
name = p.name()
default:
name = new(Name)
name.init(p)
p.syntax_error("expecting name")
p.advance(_Dot, _Semi, _Rbrace)
}
return p.dotname(name)
}
// ExpressionList = Expression { "," Expression } .
func (p *parser) exprList() Expr {
if trace {
defer p.trace("exprList")()
}
x := p.expr()
if p.got(_Comma) {
list := []Expr{x, p.expr()}
for p.got(_Comma) {
list = append(list, p.expr())
}
t := new(ListExpr)
t.init(p) // TODO(gri) what is the correct thing here?
t.ElemList = list
x = t
}
return x
}
// osemi parses an optional semicolon.
func (p *parser) osemi(follow token) bool {
switch p.tok {
case _Semi:
p.next()
return true
case _Rparen, _Rbrace:
// semicolon is optional before ) or }
return true
}
p.syntax_error("expecting semicolon, newline, or " + tokstring(follow))
p.advance(follow)
return false
}
// ocomma parses an optional comma.
func (p *parser) ocomma(follow token) bool {
switch p.tok {
case _Comma:
p.next()
return true
case _Rparen, _Rbrace:
// comma is optional before ) or }
return true
}
p.syntax_error("expecting comma or " + tokstring(follow))
p.advance(follow)
return false
}
// unparen removes all parentheses around an expression.
func unparen(x Expr) Expr {
for {
p, ok := x.(*ParenExpr)
if !ok {
break
}
x = p.X
}
return x
}