go/src/cmd/compile/internal/ssa/rewrite.go
Keith Randall 4fa050024f cmd/compile: enable constant-time CFG editing
Provide indexes along with block pointers for Preds
and Succs arrays.  This allows us to splice edges in
and out of those arrays in constant time.

Fixes worst-case O(n^2) behavior in deadcode and fuse.

benchmark                     old ns/op      new ns/op     delta
BenchmarkFuse1-8              2065           2057          -0.39%
BenchmarkFuse10-8             9408           9073          -3.56%
BenchmarkFuse100-8            105238         76277         -27.52%
BenchmarkFuse1000-8           3982562        1026750       -74.22%
BenchmarkFuse10000-8          301220329      12824005      -95.74%
BenchmarkDeadCode1-8          1588           1566          -1.39%
BenchmarkDeadCode10-8         4333           4250          -1.92%
BenchmarkDeadCode100-8        32031          32574         +1.70%
BenchmarkDeadCode1000-8       590407         468275        -20.69%
BenchmarkDeadCode10000-8      17822890       5000818       -71.94%
BenchmarkDeadCode100000-8     1388706640     78021127      -94.38%
BenchmarkDeadCode200000-8     5372518479     168598762     -96.86%

Change-Id: Iccabdbb9343fd1c921ba07bbf673330a1c36ee17
Reviewed-on: https://go-review.googlesource.com/22589
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-05-05 15:58:59 +00:00

359 lines
7.8 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"fmt"
"math"
)
func applyRewrite(f *Func, rb func(*Block) bool, rv func(*Value, *Config) bool) {
// repeat rewrites until we find no more rewrites
var curb *Block
var curv *Value
defer func() {
if curb != nil {
curb.Fatalf("panic during rewrite of block %s\n", curb.LongString())
}
if curv != nil {
curv.Fatalf("panic during rewrite of value %s\n", curv.LongString())
// TODO(khr): print source location also
}
}()
config := f.Config
for {
change := false
for _, b := range f.Blocks {
if b.Control != nil && b.Control.Op == OpCopy {
for b.Control.Op == OpCopy {
b.SetControl(b.Control.Args[0])
}
}
curb = b
if rb(b) {
change = true
}
curb = nil
for _, v := range b.Values {
change = phielimValue(v) || change
// Eliminate copy inputs.
// If any copy input becomes unused, mark it
// as invalid and discard its argument. Repeat
// recursively on the discarded argument.
// This phase helps remove phantom "dead copy" uses
// of a value so that a x.Uses==1 rule condition
// fires reliably.
for i, a := range v.Args {
if a.Op != OpCopy {
continue
}
v.SetArg(i, copySource(a))
change = true
for a.Uses == 0 {
b := a.Args[0]
a.reset(OpInvalid)
a = b
}
}
// apply rewrite function
curv = v
if rv(v, config) {
change = true
}
curv = nil
}
}
if !change {
break
}
}
// remove clobbered values
for _, b := range f.Blocks {
j := 0
for i, v := range b.Values {
if v.Op == OpInvalid {
f.freeValue(v)
continue
}
if i != j {
b.Values[j] = v
}
j++
}
if j != len(b.Values) {
tail := b.Values[j:]
for j := range tail {
tail[j] = nil
}
b.Values = b.Values[:j]
}
}
}
// Common functions called from rewriting rules
func is64BitFloat(t Type) bool {
return t.Size() == 8 && t.IsFloat()
}
func is32BitFloat(t Type) bool {
return t.Size() == 4 && t.IsFloat()
}
func is64BitInt(t Type) bool {
return t.Size() == 8 && t.IsInteger()
}
func is32BitInt(t Type) bool {
return t.Size() == 4 && t.IsInteger()
}
func is16BitInt(t Type) bool {
return t.Size() == 2 && t.IsInteger()
}
func is8BitInt(t Type) bool {
return t.Size() == 1 && t.IsInteger()
}
func isPtr(t Type) bool {
return t.IsPtrShaped()
}
func isSigned(t Type) bool {
return t.IsSigned()
}
func typeSize(t Type) int64 {
return t.Size()
}
// mergeSym merges two symbolic offsets. There is no real merging of
// offsets, we just pick the non-nil one.
func mergeSym(x, y interface{}) interface{} {
if x == nil {
return y
}
if y == nil {
return x
}
panic(fmt.Sprintf("mergeSym with two non-nil syms %s %s", x, y))
}
func canMergeSym(x, y interface{}) bool {
return x == nil || y == nil
}
// nlz returns the number of leading zeros.
func nlz(x int64) int64 {
// log2(0) == 1, so nlz(0) == 64
return 63 - log2(x)
}
// ntz returns the number of trailing zeros.
func ntz(x int64) int64 {
return 64 - nlz(^x&(x-1))
}
// nlo returns the number of leading ones.
func nlo(x int64) int64 {
return nlz(^x)
}
// nto returns the number of trailing ones.
func nto(x int64) int64 {
return ntz(^x)
}
// log2 returns logarithm in base of uint64(n), with log2(0) = -1.
func log2(n int64) (l int64) {
l = -1
x := uint64(n)
for ; x >= 0x8000; x >>= 16 {
l += 16
}
if x >= 0x80 {
x >>= 8
l += 8
}
if x >= 0x8 {
x >>= 4
l += 4
}
if x >= 0x2 {
x >>= 2
l += 2
}
if x >= 0x1 {
l++
}
return
}
// isPowerOfTwo reports whether n is a power of 2.
func isPowerOfTwo(n int64) bool {
return n > 0 && n&(n-1) == 0
}
// is32Bit reports whether n can be represented as a signed 32 bit integer.
func is32Bit(n int64) bool {
return n == int64(int32(n))
}
// b2i translates a boolean value to 0 or 1 for assigning to auxInt.
func b2i(b bool) int64 {
if b {
return 1
}
return 0
}
// i2f is used in rules for converting from an AuxInt to a float.
func i2f(i int64) float64 {
return math.Float64frombits(uint64(i))
}
// i2f32 is used in rules for converting from an AuxInt to a float32.
func i2f32(i int64) float32 {
return float32(math.Float64frombits(uint64(i)))
}
// f2i is used in the rules for storing a float in AuxInt.
func f2i(f float64) int64 {
return int64(math.Float64bits(f))
}
// uaddOvf returns true if unsigned a+b would overflow.
func uaddOvf(a, b int64) bool {
return uint64(a)+uint64(b) < uint64(a)
}
// isSamePtr reports whether p1 and p2 point to the same address.
func isSamePtr(p1, p2 *Value) bool {
if p1 == p2 {
return true
}
if p1.Op != p2.Op {
return false
}
switch p1.Op {
case OpOffPtr:
return p1.AuxInt == p2.AuxInt && isSamePtr(p1.Args[0], p2.Args[0])
case OpAddr:
// OpAddr's 0th arg is either OpSP or OpSB, which means that it is uniquely identified by its Op.
// Checking for value equality only works after [z]cse has run.
return p1.Aux == p2.Aux && p1.Args[0].Op == p2.Args[0].Op
case OpAddPtr:
return p1.Args[1] == p2.Args[1] && isSamePtr(p1.Args[0], p2.Args[0])
}
return false
}
// DUFFZERO consists of repeated blocks of 4 MOVUPSs + ADD,
// See runtime/mkduff.go.
const (
dzBlocks = 16 // number of MOV/ADD blocks
dzBlockLen = 4 // number of clears per block
dzBlockSize = 19 // size of instructions in a single block
dzMovSize = 4 // size of single MOV instruction w/ offset
dzAddSize = 4 // size of single ADD instruction
dzClearStep = 16 // number of bytes cleared by each MOV instruction
dzTailLen = 4 // number of final STOSQ instructions
dzTailSize = 2 // size of single STOSQ instruction
dzClearLen = dzClearStep * dzBlockLen // bytes cleared by one block
dzSize = dzBlocks * dzBlockSize
)
func duffStart(size int64) int64 {
x, _ := duff(size)
return x
}
func duffAdj(size int64) int64 {
_, x := duff(size)
return x
}
// duff returns the offset (from duffzero, in bytes) and pointer adjust (in bytes)
// required to use the duffzero mechanism for a block of the given size.
func duff(size int64) (int64, int64) {
if size < 32 || size > 1024 || size%dzClearStep != 0 {
panic("bad duffzero size")
}
// TODO: arch-dependent
steps := size / dzClearStep
blocks := steps / dzBlockLen
steps %= dzBlockLen
off := dzBlockSize * (dzBlocks - blocks)
var adj int64
if steps != 0 {
off -= dzAddSize
off -= dzMovSize * steps
adj -= dzClearStep * (dzBlockLen - steps)
}
return off, adj
}
// mergePoint finds a block among a's blocks which dominates b and is itself
// dominated by all of a's blocks. Returns nil if it can't find one.
// Might return nil even if one does exist.
func mergePoint(b *Block, a ...*Value) *Block {
// Walk backward from b looking for one of the a's blocks.
// Max distance
d := 100
for d > 0 {
for _, x := range a {
if b == x.Block {
goto found
}
}
if len(b.Preds) > 1 {
// Don't know which way to go back. Abort.
return nil
}
b = b.Preds[0].b
d--
}
return nil // too far away
found:
// At this point, r is the first value in a that we find by walking backwards.
// if we return anything, r will be it.
r := b
// Keep going, counting the other a's that we find. They must all dominate r.
na := 0
for d > 0 {
for _, x := range a {
if b == x.Block {
na++
}
}
if na == len(a) {
// Found all of a in a backwards walk. We can return r.
return r
}
if len(b.Preds) > 1 {
return nil
}
b = b.Preds[0].b
d--
}
return nil // too far away
}
// clobber invalidates v. Returns true.
// clobber is used by rewrite rules to:
// A) make sure v is really dead and never used again.
// B) decrement use counts of v's args.
func clobber(v *Value) bool {
v.reset(OpInvalid)
// Note: leave v.Block intact. The Block field is used after clobber.
return true
}