go/src/cmd/compile/internal/ir/node.go
Russ Cox 14d667341f [dev.regabi] cmd/compile: remove Node.Left etc [generated]
This automated CL adds type assertions on the true branches of
n.Op() equality tests, to redeclare n with a more specific type, when
it is safe to do so. (That is, when n is not reassigned with a more
general type, when n is not reassigned and then used outside the
scope, and so on.) All the "unsafe" times that the automated tool
would avoid have been removed or rewritten in earlier CLs, so that
after this CL and the next one, which removes the use of ir.Nod,
every use of the Left, Right, and so on methods is done using concrete
types, never the Node interface.

Having done that, the CL locks in the progress by deleting many of
the access methods, including Left, SetLeft and so on, from the
Node interface.

There are still uses of Name, Func, Sym, some of the tracking
bits, and a few other miscellaneous fields, but all the main access
methods are gone from the Node interface. The others will be cleaned
up in smaller CLs.

Passes buildall w/ toolstash -cmp.

[git-generate]
cd src/cmd/compile/internal/gc
rf 'typeassert {
        import "cmd/compile/internal/ir"
        var n ir.Node

        n.Op() == ir.OADD -> n.(*ir.BinaryExpr)
        n.Op() == ir.OADDR -> n.(*ir.AddrExpr)
        n.Op() == ir.OADDSTR -> n.(*ir.AddStringExpr)
        n.Op() == ir.OALIGNOF -> n.(*ir.UnaryExpr)
        n.Op() == ir.OAND -> n.(*ir.BinaryExpr)
        n.Op() == ir.OANDAND -> n.(*ir.LogicalExpr)
        n.Op() == ir.OANDNOT -> n.(*ir.BinaryExpr)
        n.Op() == ir.OAPPEND -> n.(*ir.CallExpr)
        n.Op() == ir.OARRAYLIT -> n.(*ir.CompLitExpr)
        n.Op() == ir.OAS -> n.(*ir.AssignStmt)
        n.Op() == ir.OAS2 -> n.(*ir.AssignListStmt)
        n.Op() == ir.OAS2DOTTYPE -> n.(*ir.AssignListStmt)
        n.Op() == ir.OAS2FUNC -> n.(*ir.AssignListStmt)
        n.Op() == ir.OAS2MAPR -> n.(*ir.AssignListStmt)
        n.Op() == ir.OAS2RECV -> n.(*ir.AssignListStmt)
        n.Op() == ir.OASOP -> n.(*ir.AssignOpStmt)
        n.Op() == ir.OBITNOT -> n.(*ir.UnaryExpr)
        n.Op() == ir.OBLOCK -> n.(*ir.BlockStmt)
        n.Op() == ir.OBREAK -> n.(*ir.BranchStmt)
        n.Op() == ir.OBYTES2STR -> n.(*ir.ConvExpr)
        n.Op() == ir.OBYTES2STRTMP -> n.(*ir.ConvExpr)
        n.Op() == ir.OCALL -> n.(*ir.CallExpr)
        n.Op() == ir.OCALLFUNC -> n.(*ir.CallExpr)
        n.Op() == ir.OCALLINTER -> n.(*ir.CallExpr)
        n.Op() == ir.OCALLMETH -> n.(*ir.CallExpr)
        n.Op() == ir.OCALLPART -> n.(*ir.CallPartExpr)
        n.Op() == ir.OCAP -> n.(*ir.UnaryExpr)
        n.Op() == ir.OCASE -> n.(*ir.CaseStmt)
        n.Op() == ir.OCFUNC -> n.(*ir.UnaryExpr)
        n.Op() == ir.OCHECKNIL -> n.(*ir.UnaryExpr)
        n.Op() == ir.OCLOSE -> n.(*ir.UnaryExpr)
        n.Op() == ir.OCOMPLEX -> n.(*ir.BinaryExpr)
        n.Op() == ir.OCOMPLIT -> n.(*ir.CompLitExpr)
        n.Op() == ir.OCONTINUE -> n.(*ir.BranchStmt)
        n.Op() == ir.OCONV -> n.(*ir.ConvExpr)
        n.Op() == ir.OCONVIFACE -> n.(*ir.ConvExpr)
        n.Op() == ir.OCONVNOP -> n.(*ir.ConvExpr)
        n.Op() == ir.OCOPY -> n.(*ir.BinaryExpr)
        n.Op() == ir.ODCL -> n.(*ir.Decl)
        n.Op() == ir.ODCLCONST -> n.(*ir.Decl)
        n.Op() == ir.ODCLFUNC -> n.(*ir.Func)
        n.Op() == ir.ODCLTYPE -> n.(*ir.Decl)
        n.Op() == ir.ODEFER -> n.(*ir.GoDeferStmt)
        n.Op() == ir.ODELETE -> n.(*ir.CallExpr)
        n.Op() == ir.ODEREF -> n.(*ir.StarExpr)
        n.Op() == ir.ODIV -> n.(*ir.BinaryExpr)
        n.Op() == ir.ODOT -> n.(*ir.SelectorExpr)
        n.Op() == ir.ODOTINTER -> n.(*ir.SelectorExpr)
        n.Op() == ir.ODOTMETH -> n.(*ir.SelectorExpr)
        n.Op() == ir.ODOTPTR -> n.(*ir.SelectorExpr)
        n.Op() == ir.ODOTTYPE -> n.(*ir.TypeAssertExpr)
        n.Op() == ir.ODOTTYPE2 -> n.(*ir.TypeAssertExpr)
        n.Op() == ir.OEFACE -> n.(*ir.BinaryExpr)
        n.Op() == ir.OEQ -> n.(*ir.BinaryExpr)
        n.Op() == ir.OFALL -> n.(*ir.BranchStmt)
        n.Op() == ir.OFOR -> n.(*ir.ForStmt)
        n.Op() == ir.OFORUNTIL -> n.(*ir.ForStmt)
        n.Op() == ir.OGE -> n.(*ir.BinaryExpr)
        n.Op() == ir.OGETG -> n.(*ir.CallExpr)
        n.Op() == ir.OGO -> n.(*ir.GoDeferStmt)
        n.Op() == ir.OGOTO -> n.(*ir.BranchStmt)
        n.Op() == ir.OGT -> n.(*ir.BinaryExpr)
        n.Op() == ir.OIDATA -> n.(*ir.UnaryExpr)
        n.Op() == ir.OIF -> n.(*ir.IfStmt)
        n.Op() == ir.OIMAG -> n.(*ir.UnaryExpr)
        n.Op() == ir.OINDEX -> n.(*ir.IndexExpr)
        n.Op() == ir.OINDEXMAP -> n.(*ir.IndexExpr)
        n.Op() == ir.OINLCALL -> n.(*ir.InlinedCallExpr)
        n.Op() == ir.OINLMARK -> n.(*ir.InlineMarkStmt)
        n.Op() == ir.OITAB -> n.(*ir.UnaryExpr)
        n.Op() == ir.OKEY -> n.(*ir.KeyExpr)
        n.Op() == ir.OLABEL -> n.(*ir.LabelStmt)
        n.Op() == ir.OLE -> n.(*ir.BinaryExpr)
        n.Op() == ir.OLEN -> n.(*ir.UnaryExpr)
        n.Op() == ir.OLSH -> n.(*ir.BinaryExpr)
        n.Op() == ir.OLT -> n.(*ir.BinaryExpr)
        n.Op() == ir.OMAKE -> n.(*ir.CallExpr)
        n.Op() == ir.OMAKECHAN -> n.(*ir.MakeExpr)
        n.Op() == ir.OMAKEMAP -> n.(*ir.MakeExpr)
        n.Op() == ir.OMAKESLICE -> n.(*ir.MakeExpr)
        n.Op() == ir.OMAKESLICECOPY -> n.(*ir.MakeExpr)
        n.Op() == ir.OMAPLIT -> n.(*ir.CompLitExpr)
        n.Op() == ir.OMETHEXPR -> n.(*ir.MethodExpr)
        n.Op() == ir.OMOD -> n.(*ir.BinaryExpr)
        n.Op() == ir.OMUL -> n.(*ir.BinaryExpr)
        n.Op() == ir.ONAME -> n.(*ir.Name)
        n.Op() == ir.ONE -> n.(*ir.BinaryExpr)
        n.Op() == ir.ONEG -> n.(*ir.UnaryExpr)
        n.Op() == ir.ONEW -> n.(*ir.UnaryExpr)
        n.Op() == ir.ONEWOBJ -> n.(*ir.UnaryExpr)
        n.Op() == ir.ONIL -> n.(*ir.NilExpr)
        n.Op() == ir.ONOT -> n.(*ir.UnaryExpr)
        n.Op() == ir.OOFFSETOF -> n.(*ir.UnaryExpr)
        n.Op() == ir.OOR -> n.(*ir.BinaryExpr)
        n.Op() == ir.OOROR -> n.(*ir.LogicalExpr)
        n.Op() == ir.OPACK -> n.(*ir.PkgName)
        n.Op() == ir.OPANIC -> n.(*ir.UnaryExpr)
        n.Op() == ir.OPAREN -> n.(*ir.ParenExpr)
        n.Op() == ir.OPLUS -> n.(*ir.UnaryExpr)
        n.Op() == ir.OPRINT -> n.(*ir.CallExpr)
        n.Op() == ir.OPRINTN -> n.(*ir.CallExpr)
        n.Op() == ir.OPTRLIT -> n.(*ir.AddrExpr)
        n.Op() == ir.ORANGE -> n.(*ir.RangeStmt)
        n.Op() == ir.OREAL -> n.(*ir.UnaryExpr)
        n.Op() == ir.ORECOVER -> n.(*ir.CallExpr)
        n.Op() == ir.ORECV -> n.(*ir.UnaryExpr)
        n.Op() == ir.ORESULT -> n.(*ir.ResultExpr)
        n.Op() == ir.ORETJMP -> n.(*ir.BranchStmt)
        n.Op() == ir.ORETURN -> n.(*ir.ReturnStmt)
        n.Op() == ir.ORSH -> n.(*ir.BinaryExpr)
        n.Op() == ir.ORUNES2STR -> n.(*ir.ConvExpr)
        n.Op() == ir.ORUNESTR -> n.(*ir.ConvExpr)
        n.Op() == ir.OSELECT -> n.(*ir.SelectStmt)
        n.Op() == ir.OSELRECV2 -> n.(*ir.AssignListStmt)
        n.Op() == ir.OSEND -> n.(*ir.SendStmt)
        n.Op() == ir.OSIZEOF -> n.(*ir.UnaryExpr)
        n.Op() == ir.OSLICE -> n.(*ir.SliceExpr)
        n.Op() == ir.OSLICE3 -> n.(*ir.SliceExpr)
        n.Op() == ir.OSLICE3ARR -> n.(*ir.SliceExpr)
        n.Op() == ir.OSLICEARR -> n.(*ir.SliceExpr)
        n.Op() == ir.OSLICEHEADER -> n.(*ir.SliceHeaderExpr)
        n.Op() == ir.OSLICELIT -> n.(*ir.CompLitExpr)
        n.Op() == ir.OSLICESTR -> n.(*ir.SliceExpr)
        n.Op() == ir.OSPTR -> n.(*ir.UnaryExpr)
        n.Op() == ir.OSTR2BYTES -> n.(*ir.ConvExpr)
        n.Op() == ir.OSTR2BYTESTMP -> n.(*ir.ConvExpr)
        n.Op() == ir.OSTR2RUNES -> n.(*ir.ConvExpr)
        n.Op() == ir.OSTRUCTLIT -> n.(*ir.CompLitExpr)
        n.Op() == ir.OSUB -> n.(*ir.BinaryExpr)
        n.Op() == ir.OSWITCH -> n.(*ir.SwitchStmt)
        n.Op() == ir.OTYPESW -> n.(*ir.TypeSwitchGuard)
        n.Op() == ir.OVARDEF -> n.(*ir.UnaryExpr)
        n.Op() == ir.OVARKILL -> n.(*ir.UnaryExpr)
        n.Op() == ir.OVARLIVE -> n.(*ir.UnaryExpr)
        n.Op() == ir.OXDOT -> n.(*ir.SelectorExpr)
        n.Op() == ir.OXOR -> n.(*ir.BinaryExpr)
}
'

cd ../ir
rf '
        rm \
                Node.SetOp \
                miniNode.SetOp \
                Node.Func \
                miniNode.Func \
                Node.Left Node.SetLeft \
                miniNode.Left miniNode.SetLeft \
                Node.Right Node.SetRight \
                miniNode.Right miniNode.SetRight \
                Node.List Node.PtrList Node.SetList \
                miniNode.List miniNode.PtrList miniNode.SetList \
                Node.Rlist Node.PtrRlist Node.SetRlist \
                miniNode.Rlist miniNode.PtrRlist miniNode.SetRlist \
                Node.Body Node.PtrBody Node.SetBody \
                miniNode.Body miniNode.PtrBody miniNode.SetBody \
                Node.SubOp Node.SetSubOp \
                miniNode.SubOp miniNode.SetSubOp \
                Node.SetSym \
                miniNode.SetSym \
                Node.Offset Node.SetOffset \
                miniNode.Offset miniNode.SetOffset \
                Node.Class Node.SetClass \
                miniNode.Class miniNode.SetClass \
                Node.Iota Node.SetIota \
                miniNode.Iota miniNode.SetIota \
                Node.Colas Node.SetColas \
                miniNode.Colas miniNode.SetColas \
                Node.Transient Node.SetTransient \
                miniNode.Transient miniNode.SetTransient \
                Node.Implicit Node.SetImplicit \
                miniNode.Implicit miniNode.SetImplicit \
                Node.IsDDD Node.SetIsDDD \
                miniNode.IsDDD miniNode.SetIsDDD \
                Node.MarkReadonly \
                miniNode.MarkReadonly \
                Node.Likely Node.SetLikely \
                miniNode.Likely miniNode.SetLikely \
                Node.SliceBounds Node.SetSliceBounds \
                miniNode.SliceBounds miniNode.SetSliceBounds \
                Node.NoInline Node.SetNoInline \
                miniNode.NoInline miniNode.SetNoInline \
                Node.IndexMapLValue Node.SetIndexMapLValue \
                miniNode.IndexMapLValue miniNode.SetIndexMapLValue \
                Node.ResetAux \
                miniNode.ResetAux \
                Node.HasBreak Node.SetHasBreak \
                miniNode.HasBreak miniNode.SetHasBreak \
                Node.Bounded Node.SetBounded \
                miniNode.Bounded miniNode.SetBounded \
                miniNode.Embedded miniNode.SetEmbedded \
                miniNode.Int64Val miniNode.Uint64Val miniNode.CanInt64 \
                miniNode.BoolVal miniNode.StringVal \
                miniNode.TChanDir miniNode.SetTChanDir \
                miniNode.Format \
                miniNode.copy miniNode.doChildren miniNode.editChildren \

'

Change-Id: I2a05b535963b43f83b1849fcf653f82b99af6035
Reviewed-on: https://go-review.googlesource.com/c/go/+/277934
Trust: Russ Cox <rsc@golang.org>
Run-TryBot: Russ Cox <rsc@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 06:37:34 +00:00

596 lines
18 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// “Abstract” syntax representation.
package ir
import (
"fmt"
"go/constant"
"sort"
"cmd/compile/internal/base"
"cmd/compile/internal/types"
"cmd/internal/src"
)
// A Node is the abstract interface to an IR node.
type Node interface {
// Formatting
Format(s fmt.State, verb rune)
// Source position.
Pos() src.XPos
SetPos(x src.XPos)
// For making copies. For Copy and SepCopy.
copy() Node
doChildren(func(Node) error) error
editChildren(func(Node) Node)
// Abstract graph structure, for generic traversals.
Op() Op
Init() Nodes
PtrInit() *Nodes
SetInit(x Nodes)
// Fields specific to certain Ops only.
Type() *types.Type
SetType(t *types.Type)
Name() *Name
Sym() *types.Sym
Val() constant.Value
SetVal(v constant.Value)
// Storage for analysis passes.
Esc() uint16
SetEsc(x uint16)
Walkdef() uint8
SetWalkdef(x uint8)
Opt() interface{}
SetOpt(x interface{})
Diag() bool
SetDiag(x bool)
Typecheck() uint8
SetTypecheck(x uint8)
NonNil() bool
MarkNonNil()
HasCall() bool
SetHasCall(x bool)
}
// Line returns n's position as a string. If n has been inlined,
// it uses the outermost position where n has been inlined.
func Line(n Node) string {
return base.FmtPos(n.Pos())
}
func IsSynthetic(n Node) bool {
name := n.Sym().Name
return name[0] == '.' || name[0] == '~'
}
// IsAutoTmp indicates if n was created by the compiler as a temporary,
// based on the setting of the .AutoTemp flag in n's Name.
func IsAutoTmp(n Node) bool {
if n == nil || n.Op() != ONAME {
return false
}
return n.Name().AutoTemp()
}
// mayBeShared reports whether n may occur in multiple places in the AST.
// Extra care must be taken when mutating such a node.
func MayBeShared(n Node) bool {
switch n.Op() {
case ONAME, OLITERAL, ONIL, OTYPE:
return true
}
return false
}
//go:generate stringer -type=Op -trimprefix=O
type Op uint8
// Node ops.
const (
OXXX Op = iota
// names
ONAME // var or func name
// Unnamed arg or return value: f(int, string) (int, error) { etc }
// Also used for a qualified package identifier that hasn't been resolved yet.
ONONAME
OTYPE // type name
OPACK // import
OLITERAL // literal
ONIL // nil
// expressions
OADD // Left + Right
OSUB // Left - Right
OOR // Left | Right
OXOR // Left ^ Right
OADDSTR // +{List} (string addition, list elements are strings)
OADDR // &Left
OANDAND // Left && Right
OAPPEND // append(List); after walk, Left may contain elem type descriptor
OBYTES2STR // Type(Left) (Type is string, Left is a []byte)
OBYTES2STRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
ORUNES2STR // Type(Left) (Type is string, Left is a []rune)
OSTR2BYTES // Type(Left) (Type is []byte, Left is a string)
OSTR2BYTESTMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
OSTR2RUNES // Type(Left) (Type is []rune, Left is a string)
// Left = Right or (if Colas=true) Left := Right
// If Colas, then Ninit includes a DCL node for Left.
OAS
// List = Rlist (x, y, z = a, b, c) or (if Colas=true) List := Rlist
// If Colas, then Ninit includes DCL nodes for List
OAS2
OAS2DOTTYPE // List = Right (x, ok = I.(int))
OAS2FUNC // List = Right (x, y = f())
OAS2MAPR // List = Right (x, ok = m["foo"])
OAS2RECV // List = Right (x, ok = <-c)
OASOP // Left Etype= Right (x += y)
OCALL // Left(List) (function call, method call or type conversion)
// OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure.
// Prior to walk, they are: Left(List), where List is all regular arguments.
// After walk, List is a series of assignments to temporaries,
// and Rlist is an updated set of arguments.
// Nbody is all OVARLIVE nodes that are attached to OCALLxxx.
// TODO(josharian/khr): Use Ninit instead of List for the assignments to temporaries. See CL 114797.
OCALLFUNC // Left(List/Rlist) (function call f(args))
OCALLMETH // Left(List/Rlist) (direct method call x.Method(args))
OCALLINTER // Left(List/Rlist) (interface method call x.Method(args))
OCALLPART // Left.Right (method expression x.Method, not called)
OCAP // cap(Left)
OCLOSE // close(Left)
OCLOSURE // func Type { Func.Closure.Nbody } (func literal)
OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form)
OMAPLIT // Type{List} (composite literal, Type is map)
OSTRUCTLIT // Type{List} (composite literal, Type is struct)
OARRAYLIT // Type{List} (composite literal, Type is array)
OSLICELIT // Type{List} (composite literal, Type is slice) Right.Int64() = slice length.
OPTRLIT // &Left (left is composite literal)
OCONV // Type(Left) (type conversion)
OCONVIFACE // Type(Left) (type conversion, to interface)
OCONVNOP // Type(Left) (type conversion, no effect)
OCOPY // copy(Left, Right)
ODCL // var Left (declares Left of type Left.Type)
// Used during parsing but don't last.
ODCLFUNC // func f() or func (r) f()
ODCLCONST // const pi = 3.14
ODCLTYPE // type Int int or type Int = int
ODELETE // delete(List)
ODOT // Left.Sym (Left is of struct type)
ODOTPTR // Left.Sym (Left is of pointer to struct type)
ODOTMETH // Left.Sym (Left is non-interface, Right is method name)
ODOTINTER // Left.Sym (Left is interface, Right is method name)
OXDOT // Left.Sym (before rewrite to one of the preceding)
ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor
ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor
OEQ // Left == Right
ONE // Left != Right
OLT // Left < Right
OLE // Left <= Right
OGE // Left >= Right
OGT // Left > Right
ODEREF // *Left
OINDEX // Left[Right] (index of array or slice)
OINDEXMAP // Left[Right] (index of map)
OKEY // Left:Right (key:value in struct/array/map literal)
OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking)
OLEN // len(Left)
OMAKE // make(List) (before type checking converts to one of the following)
OMAKECHAN // make(Type, Left) (type is chan)
OMAKEMAP // make(Type, Left) (type is map)
OMAKESLICE // make(Type, Left, Right) (type is slice)
OMAKESLICECOPY // makeslicecopy(Type, Left, Right) (type is slice; Left is length and Right is the copied from slice)
// OMAKESLICECOPY is created by the order pass and corresponds to:
// s = make(Type, Left); copy(s, Right)
//
// Bounded can be set on the node when Left == len(Right) is known at compile time.
//
// This node is created so the walk pass can optimize this pattern which would
// otherwise be hard to detect after the order pass.
OMUL // Left * Right
ODIV // Left / Right
OMOD // Left % Right
OLSH // Left << Right
ORSH // Left >> Right
OAND // Left & Right
OANDNOT // Left &^ Right
ONEW // new(Left); corresponds to calls to new in source code
ONEWOBJ // runtime.newobject(n.Type); introduced by walk; Left is type descriptor
ONOT // !Left
OBITNOT // ^Left
OPLUS // +Left
ONEG // -Left
OOROR // Left || Right
OPANIC // panic(Left)
OPRINT // print(List)
OPRINTN // println(List)
OPAREN // (Left)
OSEND // Left <- Right
OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice)
OSLICEARR // Left[List[0] : List[1]] (Left is array)
OSLICESTR // Left[List[0] : List[1]] (Left is string)
OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array)
OSLICEHEADER // sliceheader{Left, List[0], List[1]} (Left is unsafe.Pointer, List[0] is length, List[1] is capacity)
ORECOVER // recover()
ORECV // <-Left
ORUNESTR // Type(Left) (Type is string, Left is rune)
OSELRECV2 // like OAS2: List = Rlist where len(List)=2, len(Rlist)=1, Rlist[0].Op = ORECV (appears as .Left of OCASE)
OIOTA // iota
OREAL // real(Left)
OIMAG // imag(Left)
OCOMPLEX // complex(Left, Right) or complex(List[0]) where List[0] is a 2-result function call
OALIGNOF // unsafe.Alignof(Left)
OOFFSETOF // unsafe.Offsetof(Left)
OSIZEOF // unsafe.Sizeof(Left)
OMETHEXPR // method expression
OSTMTEXPR // statement expression (Init; Left)
// statements
OBLOCK // { List } (block of code)
OBREAK // break [Sym]
// OCASE: case List: Nbody (List==nil means default)
// For OTYPESW, List is a OTYPE node for the specified type (or OLITERAL
// for nil), and, if a type-switch variable is specified, Rlist is an
// ONAME for the version of the type-switch variable with the specified
// type.
OCASE
OCONTINUE // continue [Sym]
ODEFER // defer Left (Left must be call)
OFALL // fallthrough
OFOR // for Ninit; Left; Right { Nbody }
// OFORUNTIL is like OFOR, but the test (Left) is applied after the body:
// Ninit
// top: { Nbody } // Execute the body at least once
// cont: Right
// if Left { // And then test the loop condition
// List // Before looping to top, execute List
// goto top
// }
// OFORUNTIL is created by walk. There's no way to write this in Go code.
OFORUNTIL
OGOTO // goto Sym
OIF // if Ninit; Left { Nbody } else { Rlist }
OLABEL // Sym:
OGO // go Left (Left must be call)
ORANGE // for List = range Right { Nbody }
ORETURN // return List
OSELECT // select { List } (List is list of OCASE)
OSWITCH // switch Ninit; Left { List } (List is a list of OCASE)
// OTYPESW: Left := Right.(type) (appears as .Left of OSWITCH)
// Left is nil if there is no type-switch variable
OTYPESW
// types
OTCHAN // chan int
OTMAP // map[string]int
OTSTRUCT // struct{}
OTINTER // interface{}
// OTFUNC: func() - Left is receiver field, List is list of param fields, Rlist is
// list of result fields.
OTFUNC
OTARRAY // [8]int or [...]int
OTSLICE // []int
// misc
OINLCALL // intermediary representation of an inlined call.
OEFACE // itable and data words of an empty-interface value.
OITAB // itable word of an interface value.
OIDATA // data word of an interface value in Left
OSPTR // base pointer of a slice or string.
OCLOSUREREAD // read from inside closure struct at beginning of closure function
OCFUNC // reference to c function pointer (not go func value)
OCHECKNIL // emit code to ensure pointer/interface not nil
OVARDEF // variable is about to be fully initialized
OVARKILL // variable is dead
OVARLIVE // variable is alive
ORESULT // result of a function call; Xoffset is stack offset
OINLMARK // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree.
ONAMEOFFSET // offset within a name
// arch-specific opcodes
ORETJMP // return to other function
OGETG // runtime.getg() (read g pointer)
OEND
)
// Nodes is a pointer to a slice of *Node.
// For fields that are not used in most nodes, this is used instead of
// a slice to save space.
type Nodes []Node
// immutableEmptyNodes is an immutable, empty Nodes list.
// The methods that would modify it panic instead.
var immutableEmptyNodes = Nodes{}
// asNodes returns a slice of *Node as a Nodes value.
func AsNodes(s []Node) Nodes {
return s
}
// Slice returns the entries in Nodes as a slice.
// Changes to the slice entries (as in s[i] = n) will be reflected in
// the Nodes.
func (n Nodes) Slice() []Node {
return n
}
// Len returns the number of entries in Nodes.
func (n Nodes) Len() int {
return len(n)
}
// Index returns the i'th element of Nodes.
// It panics if n does not have at least i+1 elements.
func (n Nodes) Index(i int) Node {
return n[i]
}
// First returns the first element of Nodes (same as n.Index(0)).
// It panics if n has no elements.
func (n Nodes) First() Node {
return n[0]
}
// Second returns the second element of Nodes (same as n.Index(1)).
// It panics if n has fewer than two elements.
func (n Nodes) Second() Node {
return n[1]
}
func (n *Nodes) mutate() {
if n == &immutableEmptyNodes {
panic("immutable Nodes.Set")
}
}
// Set sets n to a slice.
// This takes ownership of the slice.
func (n *Nodes) Set(s []Node) {
if n == &immutableEmptyNodes {
if len(s) == 0 {
// Allow immutableEmptyNodes.Set(nil) (a no-op).
return
}
n.mutate()
}
*n = s
}
// Set1 sets n to a slice containing a single node.
func (n *Nodes) Set1(n1 Node) {
n.mutate()
*n = []Node{n1}
}
// Set2 sets n to a slice containing two nodes.
func (n *Nodes) Set2(n1, n2 Node) {
n.mutate()
*n = []Node{n1, n2}
}
// Set3 sets n to a slice containing three nodes.
func (n *Nodes) Set3(n1, n2, n3 Node) {
n.mutate()
*n = []Node{n1, n2, n3}
}
// MoveNodes sets n to the contents of n2, then clears n2.
func (n *Nodes) MoveNodes(n2 *Nodes) {
n.mutate()
*n = *n2
*n2 = nil
}
// SetIndex sets the i'th element of Nodes to node.
// It panics if n does not have at least i+1 elements.
func (n Nodes) SetIndex(i int, node Node) {
n[i] = node
}
// SetFirst sets the first element of Nodes to node.
// It panics if n does not have at least one elements.
func (n Nodes) SetFirst(node Node) {
n[0] = node
}
// SetSecond sets the second element of Nodes to node.
// It panics if n does not have at least two elements.
func (n Nodes) SetSecond(node Node) {
n[1] = node
}
// Addr returns the address of the i'th element of Nodes.
// It panics if n does not have at least i+1 elements.
func (n Nodes) Addr(i int) *Node {
return &n[i]
}
// Append appends entries to Nodes.
func (n *Nodes) Append(a ...Node) {
if len(a) == 0 {
return
}
n.mutate()
*n = append(*n, a...)
}
// Prepend prepends entries to Nodes.
// If a slice is passed in, this will take ownership of it.
func (n *Nodes) Prepend(a ...Node) {
if len(a) == 0 {
return
}
n.mutate()
*n = append(a, *n...)
}
// Take clears n, returning its former contents.
func (n *Nodes) Take() []Node {
ret := *n
*n = nil
return ret
}
// AppendNodes appends the contents of *n2 to n, then clears n2.
func (n *Nodes) AppendNodes(n2 *Nodes) {
n.mutate()
*n = append(*n, n2.Take()...)
}
// Copy returns a copy of the content of the slice.
func (n Nodes) Copy() Nodes {
if n == nil {
return nil
}
c := make(Nodes, n.Len())
copy(c, n)
return c
}
// NameQueue is a FIFO queue of *Name. The zero value of NameQueue is
// a ready-to-use empty queue.
type NameQueue struct {
ring []*Name
head, tail int
}
// Empty reports whether q contains no Names.
func (q *NameQueue) Empty() bool {
return q.head == q.tail
}
// PushRight appends n to the right of the queue.
func (q *NameQueue) PushRight(n *Name) {
if len(q.ring) == 0 {
q.ring = make([]*Name, 16)
} else if q.head+len(q.ring) == q.tail {
// Grow the ring.
nring := make([]*Name, len(q.ring)*2)
// Copy the old elements.
part := q.ring[q.head%len(q.ring):]
if q.tail-q.head <= len(part) {
part = part[:q.tail-q.head]
copy(nring, part)
} else {
pos := copy(nring, part)
copy(nring[pos:], q.ring[:q.tail%len(q.ring)])
}
q.ring, q.head, q.tail = nring, 0, q.tail-q.head
}
q.ring[q.tail%len(q.ring)] = n
q.tail++
}
// PopLeft pops a Name from the left of the queue. It panics if q is
// empty.
func (q *NameQueue) PopLeft() *Name {
if q.Empty() {
panic("dequeue empty")
}
n := q.ring[q.head%len(q.ring)]
q.head++
return n
}
// NameSet is a set of Names.
type NameSet map[*Name]struct{}
// Has reports whether s contains n.
func (s NameSet) Has(n *Name) bool {
_, isPresent := s[n]
return isPresent
}
// Add adds n to s.
func (s *NameSet) Add(n *Name) {
if *s == nil {
*s = make(map[*Name]struct{})
}
(*s)[n] = struct{}{}
}
// Sorted returns s sorted according to less.
func (s NameSet) Sorted(less func(*Name, *Name) bool) []*Name {
var res []*Name
for n := range s {
res = append(res, n)
}
sort.Slice(res, func(i, j int) bool { return less(res[i], res[j]) })
return res
}
type PragmaFlag int16
const (
// Func pragmas.
Nointerface PragmaFlag = 1 << iota
Noescape // func parameters don't escape
Norace // func must not have race detector annotations
Nosplit // func should not execute on separate stack
Noinline // func should not be inlined
NoCheckPtr // func should not be instrumented by checkptr
CgoUnsafeArgs // treat a pointer to one arg as a pointer to them all
UintptrEscapes // pointers converted to uintptr escape
// Runtime-only func pragmas.
// See ../../../../runtime/README.md for detailed descriptions.
Systemstack // func must run on system stack
Nowritebarrier // emit compiler error instead of write barrier
Nowritebarrierrec // error on write barrier in this or recursive callees
Yeswritebarrierrec // cancels Nowritebarrierrec in this function and callees
// Runtime and cgo type pragmas
NotInHeap // values of this type must not be heap allocated
// Go command pragmas
GoBuildPragma
)
func AsNode(n types.Object) Node {
if n == nil {
return nil
}
return n.(Node)
}
var BlankNode Node
func IsConst(n Node, ct constant.Kind) bool {
return ConstType(n) == ct
}
// isNil reports whether n represents the universal untyped zero value "nil".
func IsNil(n Node) bool {
// Check n.Orig because constant propagation may produce typed nil constants,
// which don't exist in the Go spec.
return n != nil && Orig(n).Op() == ONIL
}
func IsBlank(n Node) bool {
if n == nil {
return false
}
return n.Sym().IsBlank()
}
// IsMethod reports whether n is a method.
// n must be a function or a method.
func IsMethod(n Node) bool {
return n.Type().Recv() != nil
}