mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
Remove go115ReduceLiveness feature gating flag, along with code that only needed when go115ReduceLiveness is false. Change-Id: I7571913cc74cbd17b330a0ee0160fefc9eeee66e Reviewed-on: https://go-review.googlesource.com/c/go/+/264338 Trust: Cherry Zhang <cherryyz@google.com> Run-TryBot: Cherry Zhang <cherryyz@google.com> Reviewed-by: Austin Clements <austin@google.com>
1321 lines
37 KiB
Go
1321 lines
37 KiB
Go
// Copyright 2013 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Garbage collector liveness bitmap generation.
|
|
|
|
// The command line flag -live causes this code to print debug information.
|
|
// The levels are:
|
|
//
|
|
// -live (aka -live=1): print liveness lists as code warnings at safe points
|
|
// -live=2: print an assembly listing with liveness annotations
|
|
//
|
|
// Each level includes the earlier output as well.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"cmd/compile/internal/ssa"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/objabi"
|
|
"crypto/md5"
|
|
"fmt"
|
|
"strings"
|
|
)
|
|
|
|
// OpVarDef is an annotation for the liveness analysis, marking a place
|
|
// where a complete initialization (definition) of a variable begins.
|
|
// Since the liveness analysis can see initialization of single-word
|
|
// variables quite easy, OpVarDef is only needed for multi-word
|
|
// variables satisfying isfat(n.Type). For simplicity though, buildssa
|
|
// emits OpVarDef regardless of variable width.
|
|
//
|
|
// An 'OpVarDef x' annotation in the instruction stream tells the liveness
|
|
// analysis to behave as though the variable x is being initialized at that
|
|
// point in the instruction stream. The OpVarDef must appear before the
|
|
// actual (multi-instruction) initialization, and it must also appear after
|
|
// any uses of the previous value, if any. For example, if compiling:
|
|
//
|
|
// x = x[1:]
|
|
//
|
|
// it is important to generate code like:
|
|
//
|
|
// base, len, cap = pieces of x[1:]
|
|
// OpVarDef x
|
|
// x = {base, len, cap}
|
|
//
|
|
// If instead the generated code looked like:
|
|
//
|
|
// OpVarDef x
|
|
// base, len, cap = pieces of x[1:]
|
|
// x = {base, len, cap}
|
|
//
|
|
// then the liveness analysis would decide the previous value of x was
|
|
// unnecessary even though it is about to be used by the x[1:] computation.
|
|
// Similarly, if the generated code looked like:
|
|
//
|
|
// base, len, cap = pieces of x[1:]
|
|
// x = {base, len, cap}
|
|
// OpVarDef x
|
|
//
|
|
// then the liveness analysis will not preserve the new value of x, because
|
|
// the OpVarDef appears to have "overwritten" it.
|
|
//
|
|
// OpVarDef is a bit of a kludge to work around the fact that the instruction
|
|
// stream is working on single-word values but the liveness analysis
|
|
// wants to work on individual variables, which might be multi-word
|
|
// aggregates. It might make sense at some point to look into letting
|
|
// the liveness analysis work on single-word values as well, although
|
|
// there are complications around interface values, slices, and strings,
|
|
// all of which cannot be treated as individual words.
|
|
//
|
|
// OpVarKill is the opposite of OpVarDef: it marks a value as no longer needed,
|
|
// even if its address has been taken. That is, an OpVarKill annotation asserts
|
|
// that its argument is certainly dead, for use when the liveness analysis
|
|
// would not otherwise be able to deduce that fact.
|
|
|
|
// TODO: get rid of OpVarKill here. It's useful for stack frame allocation
|
|
// so the compiler can allocate two temps to the same location. Here it's now
|
|
// useless, since the implementation of stack objects.
|
|
|
|
// BlockEffects summarizes the liveness effects on an SSA block.
|
|
type BlockEffects struct {
|
|
// Computed during Liveness.prologue using only the content of
|
|
// individual blocks:
|
|
//
|
|
// uevar: upward exposed variables (used before set in block)
|
|
// varkill: killed variables (set in block)
|
|
uevar bvec
|
|
varkill bvec
|
|
|
|
// Computed during Liveness.solve using control flow information:
|
|
//
|
|
// livein: variables live at block entry
|
|
// liveout: variables live at block exit
|
|
livein bvec
|
|
liveout bvec
|
|
}
|
|
|
|
// A collection of global state used by liveness analysis.
|
|
type Liveness struct {
|
|
fn *Node
|
|
f *ssa.Func
|
|
vars []*Node
|
|
idx map[*Node]int32
|
|
stkptrsize int64
|
|
|
|
be []BlockEffects
|
|
|
|
// allUnsafe indicates that all points in this function are
|
|
// unsafe-points.
|
|
allUnsafe bool
|
|
// unsafePoints bit i is set if Value ID i is an unsafe-point
|
|
// (preemption is not allowed). Only valid if !allUnsafe.
|
|
unsafePoints bvec
|
|
|
|
// An array with a bit vector for each safe point in the
|
|
// current Block during Liveness.epilogue. Indexed in Value
|
|
// order for that block. Additionally, for the entry block
|
|
// livevars[0] is the entry bitmap. Liveness.compact moves
|
|
// these to stackMaps.
|
|
livevars []bvec
|
|
|
|
// livenessMap maps from safe points (i.e., CALLs) to their
|
|
// liveness map indexes.
|
|
livenessMap LivenessMap
|
|
stackMapSet bvecSet
|
|
stackMaps []bvec
|
|
|
|
cache progeffectscache
|
|
}
|
|
|
|
// LivenessMap maps from *ssa.Value to LivenessIndex.
|
|
type LivenessMap struct {
|
|
vals map[ssa.ID]LivenessIndex
|
|
// The set of live, pointer-containing variables at the deferreturn
|
|
// call (only set when open-coded defers are used).
|
|
deferreturn LivenessIndex
|
|
}
|
|
|
|
func (m *LivenessMap) reset() {
|
|
if m.vals == nil {
|
|
m.vals = make(map[ssa.ID]LivenessIndex)
|
|
} else {
|
|
for k := range m.vals {
|
|
delete(m.vals, k)
|
|
}
|
|
}
|
|
m.deferreturn = LivenessDontCare
|
|
}
|
|
|
|
func (m *LivenessMap) set(v *ssa.Value, i LivenessIndex) {
|
|
m.vals[v.ID] = i
|
|
}
|
|
|
|
func (m LivenessMap) Get(v *ssa.Value) LivenessIndex {
|
|
// If v isn't in the map, then it's a "don't care" and not an
|
|
// unsafe-point.
|
|
if idx, ok := m.vals[v.ID]; ok {
|
|
return idx
|
|
}
|
|
return LivenessIndex{StackMapDontCare, false}
|
|
}
|
|
|
|
// LivenessIndex stores the liveness map information for a Value.
|
|
type LivenessIndex struct {
|
|
stackMapIndex int
|
|
|
|
// isUnsafePoint indicates that this is an unsafe-point.
|
|
//
|
|
// Note that it's possible for a call Value to have a stack
|
|
// map while also being an unsafe-point. This means it cannot
|
|
// be preempted at this instruction, but that a preemption or
|
|
// stack growth may happen in the called function.
|
|
isUnsafePoint bool
|
|
}
|
|
|
|
// LivenessDontCare indicates that the liveness information doesn't
|
|
// matter. Currently it is used in deferreturn liveness when we don't
|
|
// actually need it. It should never be emitted to the PCDATA stream.
|
|
var LivenessDontCare = LivenessIndex{StackMapDontCare, true}
|
|
|
|
// StackMapDontCare indicates that the stack map index at a Value
|
|
// doesn't matter.
|
|
//
|
|
// This is a sentinel value that should never be emitted to the PCDATA
|
|
// stream. We use -1000 because that's obviously never a valid stack
|
|
// index (but -1 is).
|
|
const StackMapDontCare = -1000
|
|
|
|
func (idx LivenessIndex) StackMapValid() bool {
|
|
return idx.stackMapIndex != StackMapDontCare
|
|
}
|
|
|
|
type progeffectscache struct {
|
|
retuevar []int32
|
|
tailuevar []int32
|
|
initialized bool
|
|
}
|
|
|
|
// livenessShouldTrack reports whether the liveness analysis
|
|
// should track the variable n.
|
|
// We don't care about variables that have no pointers,
|
|
// nor do we care about non-local variables,
|
|
// nor do we care about empty structs (handled by the pointer check),
|
|
// nor do we care about the fake PAUTOHEAP variables.
|
|
func livenessShouldTrack(n *Node) bool {
|
|
return n.Op == ONAME && (n.Class() == PAUTO || n.Class() == PPARAM || n.Class() == PPARAMOUT) && n.Type.HasPointers()
|
|
}
|
|
|
|
// getvariables returns the list of on-stack variables that we need to track
|
|
// and a map for looking up indices by *Node.
|
|
func getvariables(fn *Node) ([]*Node, map[*Node]int32) {
|
|
var vars []*Node
|
|
for _, n := range fn.Func.Dcl {
|
|
if livenessShouldTrack(n) {
|
|
vars = append(vars, n)
|
|
}
|
|
}
|
|
idx := make(map[*Node]int32, len(vars))
|
|
for i, n := range vars {
|
|
idx[n] = int32(i)
|
|
}
|
|
return vars, idx
|
|
}
|
|
|
|
func (lv *Liveness) initcache() {
|
|
if lv.cache.initialized {
|
|
Fatalf("liveness cache initialized twice")
|
|
return
|
|
}
|
|
lv.cache.initialized = true
|
|
|
|
for i, node := range lv.vars {
|
|
switch node.Class() {
|
|
case PPARAM:
|
|
// A return instruction with a p.to is a tail return, which brings
|
|
// the stack pointer back up (if it ever went down) and then jumps
|
|
// to a new function entirely. That form of instruction must read
|
|
// all the parameters for correctness, and similarly it must not
|
|
// read the out arguments - they won't be set until the new
|
|
// function runs.
|
|
lv.cache.tailuevar = append(lv.cache.tailuevar, int32(i))
|
|
|
|
case PPARAMOUT:
|
|
// All results are live at every return point.
|
|
// Note that this point is after escaping return values
|
|
// are copied back to the stack using their PAUTOHEAP references.
|
|
lv.cache.retuevar = append(lv.cache.retuevar, int32(i))
|
|
}
|
|
}
|
|
}
|
|
|
|
// A liveEffect is a set of flags that describe an instruction's
|
|
// liveness effects on a variable.
|
|
//
|
|
// The possible flags are:
|
|
// uevar - used by the instruction
|
|
// varkill - killed by the instruction (set)
|
|
// A kill happens after the use (for an instruction that updates a value, for example).
|
|
type liveEffect int
|
|
|
|
const (
|
|
uevar liveEffect = 1 << iota
|
|
varkill
|
|
)
|
|
|
|
// valueEffects returns the index of a variable in lv.vars and the
|
|
// liveness effects v has on that variable.
|
|
// If v does not affect any tracked variables, it returns -1, 0.
|
|
func (lv *Liveness) valueEffects(v *ssa.Value) (int32, liveEffect) {
|
|
n, e := affectedNode(v)
|
|
if e == 0 || n == nil || n.Op != ONAME { // cheapest checks first
|
|
return -1, 0
|
|
}
|
|
|
|
// AllocFrame has dropped unused variables from
|
|
// lv.fn.Func.Dcl, but they might still be referenced by
|
|
// OpVarFoo pseudo-ops. Ignore them to prevent "lost track of
|
|
// variable" ICEs (issue 19632).
|
|
switch v.Op {
|
|
case ssa.OpVarDef, ssa.OpVarKill, ssa.OpVarLive, ssa.OpKeepAlive:
|
|
if !n.Name.Used() {
|
|
return -1, 0
|
|
}
|
|
}
|
|
|
|
var effect liveEffect
|
|
// Read is a read, obviously.
|
|
//
|
|
// Addr is a read also, as any subsequent holder of the pointer must be able
|
|
// to see all the values (including initialization) written so far.
|
|
// This also prevents a variable from "coming back from the dead" and presenting
|
|
// stale pointers to the garbage collector. See issue 28445.
|
|
if e&(ssa.SymRead|ssa.SymAddr) != 0 {
|
|
effect |= uevar
|
|
}
|
|
if e&ssa.SymWrite != 0 && (!isfat(n.Type) || v.Op == ssa.OpVarDef) {
|
|
effect |= varkill
|
|
}
|
|
|
|
if effect == 0 {
|
|
return -1, 0
|
|
}
|
|
|
|
if pos, ok := lv.idx[n]; ok {
|
|
return pos, effect
|
|
}
|
|
return -1, 0
|
|
}
|
|
|
|
// affectedNode returns the *Node affected by v
|
|
func affectedNode(v *ssa.Value) (*Node, ssa.SymEffect) {
|
|
// Special cases.
|
|
switch v.Op {
|
|
case ssa.OpLoadReg:
|
|
n, _ := AutoVar(v.Args[0])
|
|
return n, ssa.SymRead
|
|
case ssa.OpStoreReg:
|
|
n, _ := AutoVar(v)
|
|
return n, ssa.SymWrite
|
|
|
|
case ssa.OpVarLive:
|
|
return v.Aux.(*Node), ssa.SymRead
|
|
case ssa.OpVarDef, ssa.OpVarKill:
|
|
return v.Aux.(*Node), ssa.SymWrite
|
|
case ssa.OpKeepAlive:
|
|
n, _ := AutoVar(v.Args[0])
|
|
return n, ssa.SymRead
|
|
}
|
|
|
|
e := v.Op.SymEffect()
|
|
if e == 0 {
|
|
return nil, 0
|
|
}
|
|
|
|
switch a := v.Aux.(type) {
|
|
case nil, *obj.LSym:
|
|
// ok, but no node
|
|
return nil, e
|
|
case *Node:
|
|
return a, e
|
|
default:
|
|
Fatalf("weird aux: %s", v.LongString())
|
|
return nil, e
|
|
}
|
|
}
|
|
|
|
type livenessFuncCache struct {
|
|
be []BlockEffects
|
|
livenessMap LivenessMap
|
|
}
|
|
|
|
// Constructs a new liveness structure used to hold the global state of the
|
|
// liveness computation. The cfg argument is a slice of *BasicBlocks and the
|
|
// vars argument is a slice of *Nodes.
|
|
func newliveness(fn *Node, f *ssa.Func, vars []*Node, idx map[*Node]int32, stkptrsize int64) *Liveness {
|
|
lv := &Liveness{
|
|
fn: fn,
|
|
f: f,
|
|
vars: vars,
|
|
idx: idx,
|
|
stkptrsize: stkptrsize,
|
|
}
|
|
|
|
// Significant sources of allocation are kept in the ssa.Cache
|
|
// and reused. Surprisingly, the bit vectors themselves aren't
|
|
// a major source of allocation, but the liveness maps are.
|
|
if lc, _ := f.Cache.Liveness.(*livenessFuncCache); lc == nil {
|
|
// Prep the cache so liveness can fill it later.
|
|
f.Cache.Liveness = new(livenessFuncCache)
|
|
} else {
|
|
if cap(lc.be) >= f.NumBlocks() {
|
|
lv.be = lc.be[:f.NumBlocks()]
|
|
}
|
|
lv.livenessMap = LivenessMap{vals: lc.livenessMap.vals, deferreturn: LivenessDontCare}
|
|
lc.livenessMap.vals = nil
|
|
}
|
|
if lv.be == nil {
|
|
lv.be = make([]BlockEffects, f.NumBlocks())
|
|
}
|
|
|
|
nblocks := int32(len(f.Blocks))
|
|
nvars := int32(len(vars))
|
|
bulk := bvbulkalloc(nvars, nblocks*7)
|
|
for _, b := range f.Blocks {
|
|
be := lv.blockEffects(b)
|
|
|
|
be.uevar = bulk.next()
|
|
be.varkill = bulk.next()
|
|
be.livein = bulk.next()
|
|
be.liveout = bulk.next()
|
|
}
|
|
lv.livenessMap.reset()
|
|
|
|
lv.markUnsafePoints()
|
|
return lv
|
|
}
|
|
|
|
func (lv *Liveness) blockEffects(b *ssa.Block) *BlockEffects {
|
|
return &lv.be[b.ID]
|
|
}
|
|
|
|
// NOTE: The bitmap for a specific type t could be cached in t after
|
|
// the first run and then simply copied into bv at the correct offset
|
|
// on future calls with the same type t.
|
|
func onebitwalktype1(t *types.Type, off int64, bv bvec) {
|
|
if t.Align > 0 && off&int64(t.Align-1) != 0 {
|
|
Fatalf("onebitwalktype1: invalid initial alignment: type %v has alignment %d, but offset is %v", t, t.Align, off)
|
|
}
|
|
if !t.HasPointers() {
|
|
// Note: this case ensures that pointers to go:notinheap types
|
|
// are not considered pointers by garbage collection and stack copying.
|
|
return
|
|
}
|
|
|
|
switch t.Etype {
|
|
case TPTR, TUNSAFEPTR, TFUNC, TCHAN, TMAP:
|
|
if off&int64(Widthptr-1) != 0 {
|
|
Fatalf("onebitwalktype1: invalid alignment, %v", t)
|
|
}
|
|
bv.Set(int32(off / int64(Widthptr))) // pointer
|
|
|
|
case TSTRING:
|
|
// struct { byte *str; intgo len; }
|
|
if off&int64(Widthptr-1) != 0 {
|
|
Fatalf("onebitwalktype1: invalid alignment, %v", t)
|
|
}
|
|
bv.Set(int32(off / int64(Widthptr))) //pointer in first slot
|
|
|
|
case TINTER:
|
|
// struct { Itab *tab; void *data; }
|
|
// or, when isnilinter(t)==true:
|
|
// struct { Type *type; void *data; }
|
|
if off&int64(Widthptr-1) != 0 {
|
|
Fatalf("onebitwalktype1: invalid alignment, %v", t)
|
|
}
|
|
// The first word of an interface is a pointer, but we don't
|
|
// treat it as such.
|
|
// 1. If it is a non-empty interface, the pointer points to an itab
|
|
// which is always in persistentalloc space.
|
|
// 2. If it is an empty interface, the pointer points to a _type.
|
|
// a. If it is a compile-time-allocated type, it points into
|
|
// the read-only data section.
|
|
// b. If it is a reflect-allocated type, it points into the Go heap.
|
|
// Reflect is responsible for keeping a reference to
|
|
// the underlying type so it won't be GCd.
|
|
// If we ever have a moving GC, we need to change this for 2b (as
|
|
// well as scan itabs to update their itab._type fields).
|
|
bv.Set(int32(off/int64(Widthptr) + 1)) // pointer in second slot
|
|
|
|
case TSLICE:
|
|
// struct { byte *array; uintgo len; uintgo cap; }
|
|
if off&int64(Widthptr-1) != 0 {
|
|
Fatalf("onebitwalktype1: invalid TARRAY alignment, %v", t)
|
|
}
|
|
bv.Set(int32(off / int64(Widthptr))) // pointer in first slot (BitsPointer)
|
|
|
|
case TARRAY:
|
|
elt := t.Elem()
|
|
if elt.Width == 0 {
|
|
// Short-circuit for #20739.
|
|
break
|
|
}
|
|
for i := int64(0); i < t.NumElem(); i++ {
|
|
onebitwalktype1(elt, off, bv)
|
|
off += elt.Width
|
|
}
|
|
|
|
case TSTRUCT:
|
|
for _, f := range t.Fields().Slice() {
|
|
onebitwalktype1(f.Type, off+f.Offset, bv)
|
|
}
|
|
|
|
default:
|
|
Fatalf("onebitwalktype1: unexpected type, %v", t)
|
|
}
|
|
}
|
|
|
|
// Generates live pointer value maps for arguments and local variables. The
|
|
// this argument and the in arguments are always assumed live. The vars
|
|
// argument is a slice of *Nodes.
|
|
func (lv *Liveness) pointerMap(liveout bvec, vars []*Node, args, locals bvec) {
|
|
for i := int32(0); ; i++ {
|
|
i = liveout.Next(i)
|
|
if i < 0 {
|
|
break
|
|
}
|
|
node := vars[i]
|
|
switch node.Class() {
|
|
case PAUTO:
|
|
onebitwalktype1(node.Type, node.Xoffset+lv.stkptrsize, locals)
|
|
|
|
case PPARAM, PPARAMOUT:
|
|
onebitwalktype1(node.Type, node.Xoffset, args)
|
|
}
|
|
}
|
|
}
|
|
|
|
// allUnsafe indicates that all points in this function are
|
|
// unsafe-points.
|
|
func allUnsafe(f *ssa.Func) bool {
|
|
// The runtime assumes the only safe-points are function
|
|
// prologues (because that's how it used to be). We could and
|
|
// should improve that, but for now keep consider all points
|
|
// in the runtime unsafe. obj will add prologues and their
|
|
// safe-points.
|
|
//
|
|
// go:nosplit functions are similar. Since safe points used to
|
|
// be coupled with stack checks, go:nosplit often actually
|
|
// means "no safe points in this function".
|
|
return compiling_runtime || f.NoSplit
|
|
}
|
|
|
|
// markUnsafePoints finds unsafe points and computes lv.unsafePoints.
|
|
func (lv *Liveness) markUnsafePoints() {
|
|
if allUnsafe(lv.f) {
|
|
// No complex analysis necessary.
|
|
lv.allUnsafe = true
|
|
return
|
|
}
|
|
|
|
lv.unsafePoints = bvalloc(int32(lv.f.NumValues()))
|
|
|
|
// Mark architecture-specific unsafe points.
|
|
for _, b := range lv.f.Blocks {
|
|
for _, v := range b.Values {
|
|
if v.Op.UnsafePoint() {
|
|
lv.unsafePoints.Set(int32(v.ID))
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mark write barrier unsafe points.
|
|
for _, wbBlock := range lv.f.WBLoads {
|
|
if wbBlock.Kind == ssa.BlockPlain && len(wbBlock.Values) == 0 {
|
|
// The write barrier block was optimized away
|
|
// but we haven't done dead block elimination.
|
|
// (This can happen in -N mode.)
|
|
continue
|
|
}
|
|
// Check that we have the expected diamond shape.
|
|
if len(wbBlock.Succs) != 2 {
|
|
lv.f.Fatalf("expected branch at write barrier block %v", wbBlock)
|
|
}
|
|
s0, s1 := wbBlock.Succs[0].Block(), wbBlock.Succs[1].Block()
|
|
if s0 == s1 {
|
|
// There's no difference between write barrier on and off.
|
|
// Thus there's no unsafe locations. See issue 26024.
|
|
continue
|
|
}
|
|
if s0.Kind != ssa.BlockPlain || s1.Kind != ssa.BlockPlain {
|
|
lv.f.Fatalf("expected successors of write barrier block %v to be plain", wbBlock)
|
|
}
|
|
if s0.Succs[0].Block() != s1.Succs[0].Block() {
|
|
lv.f.Fatalf("expected successors of write barrier block %v to converge", wbBlock)
|
|
}
|
|
|
|
// Flow backwards from the control value to find the
|
|
// flag load. We don't know what lowered ops we're
|
|
// looking for, but all current arches produce a
|
|
// single op that does the memory load from the flag
|
|
// address, so we look for that.
|
|
var load *ssa.Value
|
|
v := wbBlock.Controls[0]
|
|
for {
|
|
if sym, ok := v.Aux.(*obj.LSym); ok && sym == writeBarrier {
|
|
load = v
|
|
break
|
|
}
|
|
switch v.Op {
|
|
case ssa.Op386TESTL:
|
|
// 386 lowers Neq32 to (TESTL cond cond),
|
|
if v.Args[0] == v.Args[1] {
|
|
v = v.Args[0]
|
|
continue
|
|
}
|
|
case ssa.Op386MOVLload, ssa.OpARM64MOVWUload, ssa.OpPPC64MOVWZload, ssa.OpWasmI64Load32U:
|
|
// Args[0] is the address of the write
|
|
// barrier control. Ignore Args[1],
|
|
// which is the mem operand.
|
|
// TODO: Just ignore mem operands?
|
|
v = v.Args[0]
|
|
continue
|
|
}
|
|
// Common case: just flow backwards.
|
|
if len(v.Args) != 1 {
|
|
v.Fatalf("write barrier control value has more than one argument: %s", v.LongString())
|
|
}
|
|
v = v.Args[0]
|
|
}
|
|
|
|
// Mark everything after the load unsafe.
|
|
found := false
|
|
for _, v := range wbBlock.Values {
|
|
found = found || v == load
|
|
if found {
|
|
lv.unsafePoints.Set(int32(v.ID))
|
|
}
|
|
}
|
|
|
|
// Mark the two successor blocks unsafe. These come
|
|
// back together immediately after the direct write in
|
|
// one successor and the last write barrier call in
|
|
// the other, so there's no need to be more precise.
|
|
for _, succ := range wbBlock.Succs {
|
|
for _, v := range succ.Block().Values {
|
|
lv.unsafePoints.Set(int32(v.ID))
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find uintptr -> unsafe.Pointer conversions and flood
|
|
// unsafeness back to a call (which is always a safe point).
|
|
//
|
|
// Looking for the uintptr -> unsafe.Pointer conversion has a
|
|
// few advantages over looking for unsafe.Pointer -> uintptr
|
|
// conversions:
|
|
//
|
|
// 1. We avoid needlessly blocking safe-points for
|
|
// unsafe.Pointer -> uintptr conversions that never go back to
|
|
// a Pointer.
|
|
//
|
|
// 2. We don't have to detect calls to reflect.Value.Pointer,
|
|
// reflect.Value.UnsafeAddr, and reflect.Value.InterfaceData,
|
|
// which are implicit unsafe.Pointer -> uintptr conversions.
|
|
// We can't even reliably detect this if there's an indirect
|
|
// call to one of these methods.
|
|
//
|
|
// TODO: For trivial unsafe.Pointer arithmetic, it would be
|
|
// nice to only flood as far as the unsafe.Pointer -> uintptr
|
|
// conversion, but it's hard to know which argument of an Add
|
|
// or Sub to follow.
|
|
var flooded bvec
|
|
var flood func(b *ssa.Block, vi int)
|
|
flood = func(b *ssa.Block, vi int) {
|
|
if flooded.n == 0 {
|
|
flooded = bvalloc(int32(lv.f.NumBlocks()))
|
|
}
|
|
if flooded.Get(int32(b.ID)) {
|
|
return
|
|
}
|
|
for i := vi - 1; i >= 0; i-- {
|
|
v := b.Values[i]
|
|
if v.Op.IsCall() {
|
|
// Uintptrs must not contain live
|
|
// pointers across calls, so stop
|
|
// flooding.
|
|
return
|
|
}
|
|
lv.unsafePoints.Set(int32(v.ID))
|
|
}
|
|
if vi == len(b.Values) {
|
|
// We marked all values in this block, so no
|
|
// need to flood this block again.
|
|
flooded.Set(int32(b.ID))
|
|
}
|
|
for _, pred := range b.Preds {
|
|
flood(pred.Block(), len(pred.Block().Values))
|
|
}
|
|
}
|
|
for _, b := range lv.f.Blocks {
|
|
for i, v := range b.Values {
|
|
if !(v.Op == ssa.OpConvert && v.Type.IsPtrShaped()) {
|
|
continue
|
|
}
|
|
// Flood the unsafe-ness of this backwards
|
|
// until we hit a call.
|
|
flood(b, i+1)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns true for instructions that must have a stack map.
|
|
//
|
|
// This does not necessarily mean the instruction is a safe-point. In
|
|
// particular, call Values can have a stack map in case the callee
|
|
// grows the stack, but not themselves be a safe-point.
|
|
func (lv *Liveness) hasStackMap(v *ssa.Value) bool {
|
|
if !v.Op.IsCall() {
|
|
return false
|
|
}
|
|
// typedmemclr and typedmemmove are write barriers and
|
|
// deeply non-preemptible. They are unsafe points and
|
|
// hence should not have liveness maps.
|
|
if sym, ok := v.Aux.(*ssa.AuxCall); ok && (sym.Fn == typedmemclr || sym.Fn == typedmemmove) {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Initializes the sets for solving the live variables. Visits all the
|
|
// instructions in each basic block to summarizes the information at each basic
|
|
// block
|
|
func (lv *Liveness) prologue() {
|
|
lv.initcache()
|
|
|
|
for _, b := range lv.f.Blocks {
|
|
be := lv.blockEffects(b)
|
|
|
|
// Walk the block instructions backward and update the block
|
|
// effects with the each prog effects.
|
|
for j := len(b.Values) - 1; j >= 0; j-- {
|
|
pos, e := lv.valueEffects(b.Values[j])
|
|
if e&varkill != 0 {
|
|
be.varkill.Set(pos)
|
|
be.uevar.Unset(pos)
|
|
}
|
|
if e&uevar != 0 {
|
|
be.uevar.Set(pos)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Solve the liveness dataflow equations.
|
|
func (lv *Liveness) solve() {
|
|
// These temporary bitvectors exist to avoid successive allocations and
|
|
// frees within the loop.
|
|
nvars := int32(len(lv.vars))
|
|
newlivein := bvalloc(nvars)
|
|
newliveout := bvalloc(nvars)
|
|
|
|
// Walk blocks in postorder ordering. This improves convergence.
|
|
po := lv.f.Postorder()
|
|
|
|
// Iterate through the blocks in reverse round-robin fashion. A work
|
|
// queue might be slightly faster. As is, the number of iterations is
|
|
// so low that it hardly seems to be worth the complexity.
|
|
|
|
for change := true; change; {
|
|
change = false
|
|
for _, b := range po {
|
|
be := lv.blockEffects(b)
|
|
|
|
newliveout.Clear()
|
|
switch b.Kind {
|
|
case ssa.BlockRet:
|
|
for _, pos := range lv.cache.retuevar {
|
|
newliveout.Set(pos)
|
|
}
|
|
case ssa.BlockRetJmp:
|
|
for _, pos := range lv.cache.tailuevar {
|
|
newliveout.Set(pos)
|
|
}
|
|
case ssa.BlockExit:
|
|
// panic exit - nothing to do
|
|
default:
|
|
// A variable is live on output from this block
|
|
// if it is live on input to some successor.
|
|
//
|
|
// out[b] = \bigcup_{s \in succ[b]} in[s]
|
|
newliveout.Copy(lv.blockEffects(b.Succs[0].Block()).livein)
|
|
for _, succ := range b.Succs[1:] {
|
|
newliveout.Or(newliveout, lv.blockEffects(succ.Block()).livein)
|
|
}
|
|
}
|
|
|
|
if !be.liveout.Eq(newliveout) {
|
|
change = true
|
|
be.liveout.Copy(newliveout)
|
|
}
|
|
|
|
// A variable is live on input to this block
|
|
// if it is used by this block, or live on output from this block and
|
|
// not set by the code in this block.
|
|
//
|
|
// in[b] = uevar[b] \cup (out[b] \setminus varkill[b])
|
|
newlivein.AndNot(be.liveout, be.varkill)
|
|
be.livein.Or(newlivein, be.uevar)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Visits all instructions in a basic block and computes a bit vector of live
|
|
// variables at each safe point locations.
|
|
func (lv *Liveness) epilogue() {
|
|
nvars := int32(len(lv.vars))
|
|
liveout := bvalloc(nvars)
|
|
livedefer := bvalloc(nvars) // always-live variables
|
|
|
|
// If there is a defer (that could recover), then all output
|
|
// parameters are live all the time. In addition, any locals
|
|
// that are pointers to heap-allocated output parameters are
|
|
// also always live (post-deferreturn code needs these
|
|
// pointers to copy values back to the stack).
|
|
// TODO: if the output parameter is heap-allocated, then we
|
|
// don't need to keep the stack copy live?
|
|
if lv.fn.Func.HasDefer() {
|
|
for i, n := range lv.vars {
|
|
if n.Class() == PPARAMOUT {
|
|
if n.Name.IsOutputParamHeapAddr() {
|
|
// Just to be paranoid. Heap addresses are PAUTOs.
|
|
Fatalf("variable %v both output param and heap output param", n)
|
|
}
|
|
if n.Name.Param.Heapaddr != nil {
|
|
// If this variable moved to the heap, then
|
|
// its stack copy is not live.
|
|
continue
|
|
}
|
|
// Note: zeroing is handled by zeroResults in walk.go.
|
|
livedefer.Set(int32(i))
|
|
}
|
|
if n.Name.IsOutputParamHeapAddr() {
|
|
// This variable will be overwritten early in the function
|
|
// prologue (from the result of a mallocgc) but we need to
|
|
// zero it in case that malloc causes a stack scan.
|
|
n.Name.SetNeedzero(true)
|
|
livedefer.Set(int32(i))
|
|
}
|
|
if n.Name.OpenDeferSlot() {
|
|
// Open-coded defer args slots must be live
|
|
// everywhere in a function, since a panic can
|
|
// occur (almost) anywhere. Because it is live
|
|
// everywhere, it must be zeroed on entry.
|
|
livedefer.Set(int32(i))
|
|
// It was already marked as Needzero when created.
|
|
if !n.Name.Needzero() {
|
|
Fatalf("all pointer-containing defer arg slots should have Needzero set")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We must analyze the entry block first. The runtime assumes
|
|
// the function entry map is index 0. Conveniently, layout
|
|
// already ensured that the entry block is first.
|
|
if lv.f.Entry != lv.f.Blocks[0] {
|
|
lv.f.Fatalf("entry block must be first")
|
|
}
|
|
|
|
{
|
|
// Reserve an entry for function entry.
|
|
live := bvalloc(nvars)
|
|
lv.livevars = append(lv.livevars, live)
|
|
}
|
|
|
|
for _, b := range lv.f.Blocks {
|
|
be := lv.blockEffects(b)
|
|
|
|
// Walk forward through the basic block instructions and
|
|
// allocate liveness maps for those instructions that need them.
|
|
for _, v := range b.Values {
|
|
if !lv.hasStackMap(v) {
|
|
continue
|
|
}
|
|
|
|
live := bvalloc(nvars)
|
|
lv.livevars = append(lv.livevars, live)
|
|
}
|
|
|
|
// walk backward, construct maps at each safe point
|
|
index := int32(len(lv.livevars) - 1)
|
|
|
|
liveout.Copy(be.liveout)
|
|
for i := len(b.Values) - 1; i >= 0; i-- {
|
|
v := b.Values[i]
|
|
|
|
if lv.hasStackMap(v) {
|
|
// Found an interesting instruction, record the
|
|
// corresponding liveness information.
|
|
|
|
live := &lv.livevars[index]
|
|
live.Or(*live, liveout)
|
|
live.Or(*live, livedefer) // only for non-entry safe points
|
|
index--
|
|
}
|
|
|
|
// Update liveness information.
|
|
pos, e := lv.valueEffects(v)
|
|
if e&varkill != 0 {
|
|
liveout.Unset(pos)
|
|
}
|
|
if e&uevar != 0 {
|
|
liveout.Set(pos)
|
|
}
|
|
}
|
|
|
|
if b == lv.f.Entry {
|
|
if index != 0 {
|
|
Fatalf("bad index for entry point: %v", index)
|
|
}
|
|
|
|
// Check to make sure only input variables are live.
|
|
for i, n := range lv.vars {
|
|
if !liveout.Get(int32(i)) {
|
|
continue
|
|
}
|
|
if n.Class() == PPARAM {
|
|
continue // ok
|
|
}
|
|
Fatalf("bad live variable at entry of %v: %L", lv.fn.Func.Nname, n)
|
|
}
|
|
|
|
// Record live variables.
|
|
live := &lv.livevars[index]
|
|
live.Or(*live, liveout)
|
|
}
|
|
|
|
// The liveness maps for this block are now complete. Compact them.
|
|
lv.compact(b)
|
|
}
|
|
|
|
// If we have an open-coded deferreturn call, make a liveness map for it.
|
|
if lv.fn.Func.OpenCodedDeferDisallowed() {
|
|
lv.livenessMap.deferreturn = LivenessDontCare
|
|
} else {
|
|
lv.livenessMap.deferreturn = LivenessIndex{
|
|
stackMapIndex: lv.stackMapSet.add(livedefer),
|
|
isUnsafePoint: false,
|
|
}
|
|
}
|
|
|
|
// Done compacting. Throw out the stack map set.
|
|
lv.stackMaps = lv.stackMapSet.extractUniqe()
|
|
lv.stackMapSet = bvecSet{}
|
|
|
|
// Useful sanity check: on entry to the function,
|
|
// the only things that can possibly be live are the
|
|
// input parameters.
|
|
for j, n := range lv.vars {
|
|
if n.Class() != PPARAM && lv.stackMaps[0].Get(int32(j)) {
|
|
lv.f.Fatalf("%v %L recorded as live on entry", lv.fn.Func.Nname, n)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compact coalesces identical bitmaps from lv.livevars into the sets
|
|
// lv.stackMapSet.
|
|
//
|
|
// Compact clears lv.livevars.
|
|
//
|
|
// There are actually two lists of bitmaps, one list for the local variables and one
|
|
// list for the function arguments. Both lists are indexed by the same PCDATA
|
|
// index, so the corresponding pairs must be considered together when
|
|
// merging duplicates. The argument bitmaps change much less often during
|
|
// function execution than the local variable bitmaps, so it is possible that
|
|
// we could introduce a separate PCDATA index for arguments vs locals and
|
|
// then compact the set of argument bitmaps separately from the set of
|
|
// local variable bitmaps. As of 2014-04-02, doing this to the godoc binary
|
|
// is actually a net loss: we save about 50k of argument bitmaps but the new
|
|
// PCDATA tables cost about 100k. So for now we keep using a single index for
|
|
// both bitmap lists.
|
|
func (lv *Liveness) compact(b *ssa.Block) {
|
|
pos := 0
|
|
if b == lv.f.Entry {
|
|
// Handle entry stack map.
|
|
lv.stackMapSet.add(lv.livevars[0])
|
|
pos++
|
|
}
|
|
for _, v := range b.Values {
|
|
hasStackMap := lv.hasStackMap(v)
|
|
isUnsafePoint := lv.allUnsafe || lv.unsafePoints.Get(int32(v.ID))
|
|
idx := LivenessIndex{StackMapDontCare, isUnsafePoint}
|
|
if hasStackMap {
|
|
idx.stackMapIndex = lv.stackMapSet.add(lv.livevars[pos])
|
|
pos++
|
|
}
|
|
if hasStackMap || isUnsafePoint {
|
|
lv.livenessMap.set(v, idx)
|
|
}
|
|
}
|
|
|
|
// Reset livevars.
|
|
lv.livevars = lv.livevars[:0]
|
|
}
|
|
|
|
func (lv *Liveness) showlive(v *ssa.Value, live bvec) {
|
|
if debuglive == 0 || lv.fn.funcname() == "init" || strings.HasPrefix(lv.fn.funcname(), ".") {
|
|
return
|
|
}
|
|
if !(v == nil || v.Op.IsCall()) {
|
|
// Historically we only printed this information at
|
|
// calls. Keep doing so.
|
|
return
|
|
}
|
|
if live.IsEmpty() {
|
|
return
|
|
}
|
|
|
|
pos := lv.fn.Func.Nname.Pos
|
|
if v != nil {
|
|
pos = v.Pos
|
|
}
|
|
|
|
s := "live at "
|
|
if v == nil {
|
|
s += fmt.Sprintf("entry to %s:", lv.fn.funcname())
|
|
} else if sym, ok := v.Aux.(*ssa.AuxCall); ok && sym.Fn != nil {
|
|
fn := sym.Fn.Name
|
|
if pos := strings.Index(fn, "."); pos >= 0 {
|
|
fn = fn[pos+1:]
|
|
}
|
|
s += fmt.Sprintf("call to %s:", fn)
|
|
} else {
|
|
s += "indirect call:"
|
|
}
|
|
|
|
for j, n := range lv.vars {
|
|
if live.Get(int32(j)) {
|
|
s += fmt.Sprintf(" %v", n)
|
|
}
|
|
}
|
|
|
|
Warnl(pos, s)
|
|
}
|
|
|
|
func (lv *Liveness) printbvec(printed bool, name string, live bvec) bool {
|
|
if live.IsEmpty() {
|
|
return printed
|
|
}
|
|
|
|
if !printed {
|
|
fmt.Printf("\t")
|
|
} else {
|
|
fmt.Printf(" ")
|
|
}
|
|
fmt.Printf("%s=", name)
|
|
|
|
comma := ""
|
|
for i, n := range lv.vars {
|
|
if !live.Get(int32(i)) {
|
|
continue
|
|
}
|
|
fmt.Printf("%s%s", comma, n.Sym.Name)
|
|
comma = ","
|
|
}
|
|
return true
|
|
}
|
|
|
|
// printeffect is like printbvec, but for valueEffects.
|
|
func (lv *Liveness) printeffect(printed bool, name string, pos int32, x bool) bool {
|
|
if !x {
|
|
return printed
|
|
}
|
|
if !printed {
|
|
fmt.Printf("\t")
|
|
} else {
|
|
fmt.Printf(" ")
|
|
}
|
|
fmt.Printf("%s=", name)
|
|
if x {
|
|
fmt.Printf("%s", lv.vars[pos].Sym.Name)
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// Prints the computed liveness information and inputs, for debugging.
|
|
// This format synthesizes the information used during the multiple passes
|
|
// into a single presentation.
|
|
func (lv *Liveness) printDebug() {
|
|
fmt.Printf("liveness: %s\n", lv.fn.funcname())
|
|
|
|
for i, b := range lv.f.Blocks {
|
|
if i > 0 {
|
|
fmt.Printf("\n")
|
|
}
|
|
|
|
// bb#0 pred=1,2 succ=3,4
|
|
fmt.Printf("bb#%d pred=", b.ID)
|
|
for j, pred := range b.Preds {
|
|
if j > 0 {
|
|
fmt.Printf(",")
|
|
}
|
|
fmt.Printf("%d", pred.Block().ID)
|
|
}
|
|
fmt.Printf(" succ=")
|
|
for j, succ := range b.Succs {
|
|
if j > 0 {
|
|
fmt.Printf(",")
|
|
}
|
|
fmt.Printf("%d", succ.Block().ID)
|
|
}
|
|
fmt.Printf("\n")
|
|
|
|
be := lv.blockEffects(b)
|
|
|
|
// initial settings
|
|
printed := false
|
|
printed = lv.printbvec(printed, "uevar", be.uevar)
|
|
printed = lv.printbvec(printed, "livein", be.livein)
|
|
if printed {
|
|
fmt.Printf("\n")
|
|
}
|
|
|
|
// program listing, with individual effects listed
|
|
|
|
if b == lv.f.Entry {
|
|
live := lv.stackMaps[0]
|
|
fmt.Printf("(%s) function entry\n", linestr(lv.fn.Func.Nname.Pos))
|
|
fmt.Printf("\tlive=")
|
|
printed = false
|
|
for j, n := range lv.vars {
|
|
if !live.Get(int32(j)) {
|
|
continue
|
|
}
|
|
if printed {
|
|
fmt.Printf(",")
|
|
}
|
|
fmt.Printf("%v", n)
|
|
printed = true
|
|
}
|
|
fmt.Printf("\n")
|
|
}
|
|
|
|
for _, v := range b.Values {
|
|
fmt.Printf("(%s) %v\n", linestr(v.Pos), v.LongString())
|
|
|
|
pcdata := lv.livenessMap.Get(v)
|
|
|
|
pos, effect := lv.valueEffects(v)
|
|
printed = false
|
|
printed = lv.printeffect(printed, "uevar", pos, effect&uevar != 0)
|
|
printed = lv.printeffect(printed, "varkill", pos, effect&varkill != 0)
|
|
if printed {
|
|
fmt.Printf("\n")
|
|
}
|
|
|
|
if pcdata.StackMapValid() {
|
|
fmt.Printf("\tlive=")
|
|
printed = false
|
|
if pcdata.StackMapValid() {
|
|
live := lv.stackMaps[pcdata.stackMapIndex]
|
|
for j, n := range lv.vars {
|
|
if !live.Get(int32(j)) {
|
|
continue
|
|
}
|
|
if printed {
|
|
fmt.Printf(",")
|
|
}
|
|
fmt.Printf("%v", n)
|
|
printed = true
|
|
}
|
|
}
|
|
fmt.Printf("\n")
|
|
}
|
|
|
|
if pcdata.isUnsafePoint {
|
|
fmt.Printf("\tunsafe-point\n")
|
|
}
|
|
}
|
|
|
|
// bb bitsets
|
|
fmt.Printf("end\n")
|
|
printed = false
|
|
printed = lv.printbvec(printed, "varkill", be.varkill)
|
|
printed = lv.printbvec(printed, "liveout", be.liveout)
|
|
if printed {
|
|
fmt.Printf("\n")
|
|
}
|
|
}
|
|
|
|
fmt.Printf("\n")
|
|
}
|
|
|
|
// Dumps a slice of bitmaps to a symbol as a sequence of uint32 values. The
|
|
// first word dumped is the total number of bitmaps. The second word is the
|
|
// length of the bitmaps. All bitmaps are assumed to be of equal length. The
|
|
// remaining bytes are the raw bitmaps.
|
|
func (lv *Liveness) emit() (argsSym, liveSym *obj.LSym) {
|
|
// Size args bitmaps to be just large enough to hold the largest pointer.
|
|
// First, find the largest Xoffset node we care about.
|
|
// (Nodes without pointers aren't in lv.vars; see livenessShouldTrack.)
|
|
var maxArgNode *Node
|
|
for _, n := range lv.vars {
|
|
switch n.Class() {
|
|
case PPARAM, PPARAMOUT:
|
|
if maxArgNode == nil || n.Xoffset > maxArgNode.Xoffset {
|
|
maxArgNode = n
|
|
}
|
|
}
|
|
}
|
|
// Next, find the offset of the largest pointer in the largest node.
|
|
var maxArgs int64
|
|
if maxArgNode != nil {
|
|
maxArgs = maxArgNode.Xoffset + typeptrdata(maxArgNode.Type)
|
|
}
|
|
|
|
// Size locals bitmaps to be stkptrsize sized.
|
|
// We cannot shrink them to only hold the largest pointer,
|
|
// because their size is used to calculate the beginning
|
|
// of the local variables frame.
|
|
// Further discussion in https://golang.org/cl/104175.
|
|
// TODO: consider trimming leading zeros.
|
|
// This would require shifting all bitmaps.
|
|
maxLocals := lv.stkptrsize
|
|
|
|
// Temporary symbols for encoding bitmaps.
|
|
var argsSymTmp, liveSymTmp obj.LSym
|
|
|
|
args := bvalloc(int32(maxArgs / int64(Widthptr)))
|
|
aoff := duint32(&argsSymTmp, 0, uint32(len(lv.stackMaps))) // number of bitmaps
|
|
aoff = duint32(&argsSymTmp, aoff, uint32(args.n)) // number of bits in each bitmap
|
|
|
|
locals := bvalloc(int32(maxLocals / int64(Widthptr)))
|
|
loff := duint32(&liveSymTmp, 0, uint32(len(lv.stackMaps))) // number of bitmaps
|
|
loff = duint32(&liveSymTmp, loff, uint32(locals.n)) // number of bits in each bitmap
|
|
|
|
for _, live := range lv.stackMaps {
|
|
args.Clear()
|
|
locals.Clear()
|
|
|
|
lv.pointerMap(live, lv.vars, args, locals)
|
|
|
|
aoff = dbvec(&argsSymTmp, aoff, args)
|
|
loff = dbvec(&liveSymTmp, loff, locals)
|
|
}
|
|
|
|
// Give these LSyms content-addressable names,
|
|
// so that they can be de-duplicated.
|
|
// This provides significant binary size savings.
|
|
//
|
|
// These symbols will be added to Ctxt.Data by addGCLocals
|
|
// after parallel compilation is done.
|
|
makeSym := func(tmpSym *obj.LSym) *obj.LSym {
|
|
return Ctxt.LookupInit(fmt.Sprintf("gclocals·%x", md5.Sum(tmpSym.P)), func(lsym *obj.LSym) {
|
|
lsym.P = tmpSym.P
|
|
lsym.Set(obj.AttrContentAddressable, true)
|
|
})
|
|
}
|
|
return makeSym(&argsSymTmp), makeSym(&liveSymTmp)
|
|
}
|
|
|
|
// Entry pointer for liveness analysis. Solves for the liveness of
|
|
// pointer variables in the function and emits a runtime data
|
|
// structure read by the garbage collector.
|
|
// Returns a map from GC safe points to their corresponding stack map index.
|
|
func liveness(e *ssafn, f *ssa.Func, pp *Progs) LivenessMap {
|
|
// Construct the global liveness state.
|
|
vars, idx := getvariables(e.curfn)
|
|
lv := newliveness(e.curfn, f, vars, idx, e.stkptrsize)
|
|
|
|
// Run the dataflow framework.
|
|
lv.prologue()
|
|
lv.solve()
|
|
lv.epilogue()
|
|
if debuglive > 0 {
|
|
lv.showlive(nil, lv.stackMaps[0])
|
|
for _, b := range f.Blocks {
|
|
for _, val := range b.Values {
|
|
if idx := lv.livenessMap.Get(val); idx.StackMapValid() {
|
|
lv.showlive(val, lv.stackMaps[idx.stackMapIndex])
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if debuglive >= 2 {
|
|
lv.printDebug()
|
|
}
|
|
|
|
// Update the function cache.
|
|
{
|
|
cache := f.Cache.Liveness.(*livenessFuncCache)
|
|
if cap(lv.be) < 2000 { // Threshold from ssa.Cache slices.
|
|
for i := range lv.be {
|
|
lv.be[i] = BlockEffects{}
|
|
}
|
|
cache.be = lv.be
|
|
}
|
|
if len(lv.livenessMap.vals) < 2000 {
|
|
cache.livenessMap = lv.livenessMap
|
|
}
|
|
}
|
|
|
|
// Emit the live pointer map data structures
|
|
ls := e.curfn.Func.lsym
|
|
fninfo := ls.Func()
|
|
fninfo.GCArgs, fninfo.GCLocals = lv.emit()
|
|
|
|
p := pp.Prog(obj.AFUNCDATA)
|
|
Addrconst(&p.From, objabi.FUNCDATA_ArgsPointerMaps)
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Name = obj.NAME_EXTERN
|
|
p.To.Sym = fninfo.GCArgs
|
|
|
|
p = pp.Prog(obj.AFUNCDATA)
|
|
Addrconst(&p.From, objabi.FUNCDATA_LocalsPointerMaps)
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Name = obj.NAME_EXTERN
|
|
p.To.Sym = fninfo.GCLocals
|
|
|
|
return lv.livenessMap
|
|
}
|
|
|
|
// isfat reports whether a variable of type t needs multiple assignments to initialize.
|
|
// For example:
|
|
//
|
|
// type T struct { x, y int }
|
|
// x := T{x: 0, y: 1}
|
|
//
|
|
// Then we need:
|
|
//
|
|
// var t T
|
|
// t.x = 0
|
|
// t.y = 1
|
|
//
|
|
// to fully initialize t.
|
|
func isfat(t *types.Type) bool {
|
|
if t != nil {
|
|
switch t.Etype {
|
|
case TSLICE, TSTRING,
|
|
TINTER: // maybe remove later
|
|
return true
|
|
case TARRAY:
|
|
// Array of 1 element, check if element is fat
|
|
if t.NumElem() == 1 {
|
|
return isfat(t.Elem())
|
|
}
|
|
return true
|
|
case TSTRUCT:
|
|
// Struct with 1 field, check if field is fat
|
|
if t.NumFields() == 1 {
|
|
return isfat(t.Field(0).Type)
|
|
}
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|