go/src/cmd/compile/internal/syntax/parser.go
Robert Griesemer 18bd7aa625 [dev.typeparams] cmd/compile: use nil instead of syntax.ImplicitOne
Represent x++/-- as x +=/-= with the RHS of the assignment being nil
rather than syntax.ImplicitOne.

Dependent code already had to check for syntax.ImplicitOne, but
then shared some existing code for regular assignment operations.
Now always handle this case fully explicit, which simplifies the
code.

Change-Id: I28c7918153c27cbbf97b041d0c85ff027c58687c
Reviewed-on: https://go-review.googlesource.com/c/go/+/285172
Trust: Robert Griesemer <gri@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2021-01-21 06:55:47 +00:00

2610 lines
55 KiB
Go

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import (
"fmt"
"io"
"strconv"
"strings"
)
const debug = false
const trace = false
type parser struct {
file *PosBase
errh ErrorHandler
mode Mode
pragh PragmaHandler
scanner
base *PosBase // current position base
first error // first error encountered
errcnt int // number of errors encountered
pragma Pragma // pragmas
fnest int // function nesting level (for error handling)
xnest int // expression nesting level (for complit ambiguity resolution)
indent []byte // tracing support
}
func (p *parser) init(file *PosBase, r io.Reader, errh ErrorHandler, pragh PragmaHandler, mode Mode) {
p.file = file
p.errh = errh
p.mode = mode
p.pragh = pragh
p.scanner.init(
r,
// Error and directive handler for scanner.
// Because the (line, col) positions passed to the
// handler is always at or after the current reading
// position, it is safe to use the most recent position
// base to compute the corresponding Pos value.
func(line, col uint, msg string) {
if msg[0] != '/' {
p.errorAt(p.posAt(line, col), msg)
return
}
// otherwise it must be a comment containing a line or go: directive.
// //line directives must be at the start of the line (column colbase).
// /*line*/ directives can be anywhere in the line.
text := commentText(msg)
if (col == colbase || msg[1] == '*') && strings.HasPrefix(text, "line ") {
var pos Pos // position immediately following the comment
if msg[1] == '/' {
// line comment (newline is part of the comment)
pos = MakePos(p.file, line+1, colbase)
} else {
// regular comment
// (if the comment spans multiple lines it's not
// a valid line directive and will be discarded
// by updateBase)
pos = MakePos(p.file, line, col+uint(len(msg)))
}
p.updateBase(pos, line, col+2+5, text[5:]) // +2 to skip over // or /*
return
}
// go: directive (but be conservative and test)
if pragh != nil && strings.HasPrefix(text, "go:") {
p.pragma = pragh(p.posAt(line, col+2), p.scanner.blank, text, p.pragma) // +2 to skip over // or /*
}
},
directives,
)
p.base = file
p.first = nil
p.errcnt = 0
p.pragma = nil
p.fnest = 0
p.xnest = 0
p.indent = nil
}
// takePragma returns the current parsed pragmas
// and clears them from the parser state.
func (p *parser) takePragma() Pragma {
prag := p.pragma
p.pragma = nil
return prag
}
// clearPragma is called at the end of a statement or
// other Go form that does NOT accept a pragma.
// It sends the pragma back to the pragma handler
// to be reported as unused.
func (p *parser) clearPragma() {
if p.pragma != nil {
p.pragh(p.pos(), p.scanner.blank, "", p.pragma)
p.pragma = nil
}
}
// updateBase sets the current position base to a new line base at pos.
// The base's filename, line, and column values are extracted from text
// which is positioned at (tline, tcol) (only needed for error messages).
func (p *parser) updateBase(pos Pos, tline, tcol uint, text string) {
i, n, ok := trailingDigits(text)
if i == 0 {
return // ignore (not a line directive)
}
// i > 0
if !ok {
// text has a suffix :xxx but xxx is not a number
p.errorAt(p.posAt(tline, tcol+i), "invalid line number: "+text[i:])
return
}
var line, col uint
i2, n2, ok2 := trailingDigits(text[:i-1])
if ok2 {
//line filename:line:col
i, i2 = i2, i
line, col = n2, n
if col == 0 || col > PosMax {
p.errorAt(p.posAt(tline, tcol+i2), "invalid column number: "+text[i2:])
return
}
text = text[:i2-1] // lop off ":col"
} else {
//line filename:line
line = n
}
if line == 0 || line > PosMax {
p.errorAt(p.posAt(tline, tcol+i), "invalid line number: "+text[i:])
return
}
// If we have a column (//line filename:line:col form),
// an empty filename means to use the previous filename.
filename := text[:i-1] // lop off ":line"
if filename == "" && ok2 {
filename = p.base.Filename()
}
p.base = NewLineBase(pos, filename, line, col)
}
func commentText(s string) string {
if s[:2] == "/*" {
return s[2 : len(s)-2] // lop off /* and */
}
// line comment (does not include newline)
// (on Windows, the line comment may end in \r\n)
i := len(s)
if s[i-1] == '\r' {
i--
}
return s[2:i] // lop off //, and \r at end, if any
}
func trailingDigits(text string) (uint, uint, bool) {
// Want to use LastIndexByte below but it's not defined in Go1.4 and bootstrap fails.
i := strings.LastIndex(text, ":") // look from right (Windows filenames may contain ':')
if i < 0 {
return 0, 0, false // no ":"
}
// i >= 0
n, err := strconv.ParseUint(text[i+1:], 10, 0)
return uint(i + 1), uint(n), err == nil
}
func (p *parser) got(tok token) bool {
if p.tok == tok {
p.next()
return true
}
return false
}
func (p *parser) want(tok token) {
if !p.got(tok) {
p.syntaxError("expecting " + tokstring(tok))
p.advance()
}
}
// gotAssign is like got(_Assign) but it also accepts ":="
// (and reports an error) for better parser error recovery.
func (p *parser) gotAssign() bool {
switch p.tok {
case _Define:
p.syntaxError("expecting =")
fallthrough
case _Assign:
p.next()
return true
}
return false
}
// ----------------------------------------------------------------------------
// Error handling
// posAt returns the Pos value for (line, col) and the current position base.
func (p *parser) posAt(line, col uint) Pos {
return MakePos(p.base, line, col)
}
// error reports an error at the given position.
func (p *parser) errorAt(pos Pos, msg string) {
err := Error{pos, msg}
if p.first == nil {
p.first = err
}
p.errcnt++
if p.errh == nil {
panic(p.first)
}
p.errh(err)
}
// syntaxErrorAt reports a syntax error at the given position.
func (p *parser) syntaxErrorAt(pos Pos, msg string) {
if trace {
p.print("syntax error: " + msg)
}
if p.tok == _EOF && p.first != nil {
return // avoid meaningless follow-up errors
}
// add punctuation etc. as needed to msg
switch {
case msg == "":
// nothing to do
case strings.HasPrefix(msg, "in "), strings.HasPrefix(msg, "at "), strings.HasPrefix(msg, "after "):
msg = " " + msg
case strings.HasPrefix(msg, "expecting "):
msg = ", " + msg
default:
// plain error - we don't care about current token
p.errorAt(pos, "syntax error: "+msg)
return
}
// determine token string
var tok string
switch p.tok {
case _Name, _Semi:
tok = p.lit
case _Literal:
tok = "literal " + p.lit
case _Operator:
tok = p.op.String()
case _AssignOp:
tok = p.op.String() + "="
case _IncOp:
tok = p.op.String()
tok += tok
default:
tok = tokstring(p.tok)
}
p.errorAt(pos, "syntax error: unexpected "+tok+msg)
}
// tokstring returns the English word for selected punctuation tokens
// for more readable error messages.
func tokstring(tok token) string {
switch tok {
case _Comma:
return "comma"
case _Semi:
return "semicolon or newline"
}
return tok.String()
}
// Convenience methods using the current token position.
func (p *parser) pos() Pos { return p.posAt(p.line, p.col) }
func (p *parser) error(msg string) { p.errorAt(p.pos(), msg) }
func (p *parser) syntaxError(msg string) { p.syntaxErrorAt(p.pos(), msg) }
// The stopset contains keywords that start a statement.
// They are good synchronization points in case of syntax
// errors and (usually) shouldn't be skipped over.
const stopset uint64 = 1<<_Break |
1<<_Const |
1<<_Continue |
1<<_Defer |
1<<_Fallthrough |
1<<_For |
1<<_Go |
1<<_Goto |
1<<_If |
1<<_Return |
1<<_Select |
1<<_Switch |
1<<_Type |
1<<_Var
// Advance consumes tokens until it finds a token of the stopset or followlist.
// The stopset is only considered if we are inside a function (p.fnest > 0).
// The followlist is the list of valid tokens that can follow a production;
// if it is empty, exactly one (non-EOF) token is consumed to ensure progress.
func (p *parser) advance(followlist ...token) {
if trace {
p.print(fmt.Sprintf("advance %s", followlist))
}
// compute follow set
// (not speed critical, advance is only called in error situations)
var followset uint64 = 1 << _EOF // don't skip over EOF
if len(followlist) > 0 {
if p.fnest > 0 {
followset |= stopset
}
for _, tok := range followlist {
followset |= 1 << tok
}
}
for !contains(followset, p.tok) {
if trace {
p.print("skip " + p.tok.String())
}
p.next()
if len(followlist) == 0 {
break
}
}
if trace {
p.print("next " + p.tok.String())
}
}
// usage: defer p.trace(msg)()
func (p *parser) trace(msg string) func() {
p.print(msg + " (")
const tab = ". "
p.indent = append(p.indent, tab...)
return func() {
p.indent = p.indent[:len(p.indent)-len(tab)]
if x := recover(); x != nil {
panic(x) // skip print_trace
}
p.print(")")
}
}
func (p *parser) print(msg string) {
fmt.Printf("%5d: %s%s\n", p.line, p.indent, msg)
}
// ----------------------------------------------------------------------------
// Package files
//
// Parse methods are annotated with matching Go productions as appropriate.
// The annotations are intended as guidelines only since a single Go grammar
// rule may be covered by multiple parse methods and vice versa.
//
// Excluding methods returning slices, parse methods named xOrNil may return
// nil; all others are expected to return a valid non-nil node.
// SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
func (p *parser) fileOrNil() *File {
if trace {
defer p.trace("file")()
}
f := new(File)
f.pos = p.pos()
// PackageClause
if !p.got(_Package) {
p.syntaxError("package statement must be first")
return nil
}
f.Pragma = p.takePragma()
f.PkgName = p.name()
p.want(_Semi)
// don't bother continuing if package clause has errors
if p.first != nil {
return nil
}
// { ImportDecl ";" }
for p.got(_Import) {
f.DeclList = p.appendGroup(f.DeclList, p.importDecl)
p.want(_Semi)
}
// { TopLevelDecl ";" }
for p.tok != _EOF {
switch p.tok {
case _Const:
p.next()
f.DeclList = p.appendGroup(f.DeclList, p.constDecl)
case _Type:
p.next()
f.DeclList = p.appendGroup(f.DeclList, p.typeDecl)
case _Var:
p.next()
f.DeclList = p.appendGroup(f.DeclList, p.varDecl)
case _Func:
p.next()
if d := p.funcDeclOrNil(); d != nil {
f.DeclList = append(f.DeclList, d)
}
default:
if p.tok == _Lbrace && len(f.DeclList) > 0 && isEmptyFuncDecl(f.DeclList[len(f.DeclList)-1]) {
// opening { of function declaration on next line
p.syntaxError("unexpected semicolon or newline before {")
} else {
p.syntaxError("non-declaration statement outside function body")
}
p.advance(_Const, _Type, _Var, _Func)
continue
}
// Reset p.pragma BEFORE advancing to the next token (consuming ';')
// since comments before may set pragmas for the next function decl.
p.clearPragma()
if p.tok != _EOF && !p.got(_Semi) {
p.syntaxError("after top level declaration")
p.advance(_Const, _Type, _Var, _Func)
}
}
// p.tok == _EOF
p.clearPragma()
f.EOF = p.pos()
return f
}
func isEmptyFuncDecl(dcl Decl) bool {
f, ok := dcl.(*FuncDecl)
return ok && f.Body == nil
}
// ----------------------------------------------------------------------------
// Declarations
// list parses a possibly empty, sep-separated list of elements, optionally
// followed by sep, and closed by close (or EOF). sep must be one of _Comma
// or _Semi, and close must be one of _Rparen, _Rbrace, or _Rbrack.
//
// For each list element, f is called. Specifically, unless we're at close
// (or EOF), f is called at least once. After f returns true, no more list
// elements are accepted. list returns the position of the closing token.
//
// list = [ f { sep f } [sep] ] close .
//
func (p *parser) list(sep, close token, f func() bool) Pos {
if debug && (sep != _Comma && sep != _Semi || close != _Rparen && close != _Rbrace && close != _Rbrack) {
panic("invalid sep or close argument for list")
}
done := false
for p.tok != _EOF && p.tok != close && !done {
done = f()
// sep is optional before close
if !p.got(sep) && p.tok != close {
p.syntaxError(fmt.Sprintf("expecting %s or %s", tokstring(sep), tokstring(close)))
p.advance(_Rparen, _Rbrack, _Rbrace)
if p.tok != close {
// position could be better but we had an error so we don't care
return p.pos()
}
}
}
pos := p.pos()
p.want(close)
return pos
}
// appendGroup(f) = f | "(" { f ";" } ")" . // ";" is optional before ")"
func (p *parser) appendGroup(list []Decl, f func(*Group) Decl) []Decl {
if p.tok == _Lparen {
g := new(Group)
p.clearPragma()
p.next() // must consume "(" after calling clearPragma!
p.list(_Semi, _Rparen, func() bool {
if x := f(g); x != nil {
list = append(list, x)
}
return false
})
} else {
if x := f(nil); x != nil {
list = append(list, x)
}
}
return list
}
// ImportSpec = [ "." | PackageName ] ImportPath .
// ImportPath = string_lit .
func (p *parser) importDecl(group *Group) Decl {
if trace {
defer p.trace("importDecl")()
}
d := new(ImportDecl)
d.pos = p.pos()
d.Group = group
d.Pragma = p.takePragma()
switch p.tok {
case _Name:
d.LocalPkgName = p.name()
case _Dot:
d.LocalPkgName = NewName(p.pos(), ".")
p.next()
}
d.Path = p.oliteral()
if d.Path == nil {
p.syntaxError("missing import path")
p.advance(_Semi, _Rparen)
return d
}
if !d.Path.Bad && d.Path.Kind != StringLit {
p.syntaxError("import path must be a string")
d.Path.Bad = true
}
// d.Path.Bad || d.Path.Kind == StringLit
return d
}
// ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] .
func (p *parser) constDecl(group *Group) Decl {
if trace {
defer p.trace("constDecl")()
}
d := new(ConstDecl)
d.pos = p.pos()
d.Group = group
d.Pragma = p.takePragma()
d.NameList = p.nameList(p.name())
if p.tok != _EOF && p.tok != _Semi && p.tok != _Rparen {
d.Type = p.typeOrNil()
if p.gotAssign() {
d.Values = p.exprList()
}
}
return d
}
// TypeSpec = identifier [ TypeParams ] [ "=" ] Type .
func (p *parser) typeDecl(group *Group) Decl {
if trace {
defer p.trace("typeDecl")()
}
d := new(TypeDecl)
d.pos = p.pos()
d.Group = group
d.Pragma = p.takePragma()
d.Name = p.name()
if p.tok == _Lbrack {
// array/slice or generic type
pos := p.pos()
p.next()
switch p.tok {
case _Rbrack:
p.next()
d.Type = p.sliceType(pos)
case _Name:
// array or generic type
p.xnest++
x := p.expr()
p.xnest--
if name0, ok := x.(*Name); p.mode&AllowGenerics != 0 && ok && p.tok != _Rbrack {
// generic type
d.TParamList = p.paramList(name0, _Rbrack, true)
pos := p.pos()
if p.gotAssign() {
p.syntaxErrorAt(pos, "generic type cannot be alias")
}
d.Type = p.typeOrNil()
} else {
// x is the array length expression
if debug && x == nil {
panic("internal error: nil expression")
}
d.Type = p.arrayType(pos, x)
}
default:
d.Type = p.arrayType(pos, nil)
}
} else {
d.Alias = p.gotAssign()
d.Type = p.typeOrNil()
}
if d.Type == nil {
d.Type = p.badExpr()
p.syntaxError("in type declaration")
p.advance(_Semi, _Rparen)
}
return d
}
// VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
func (p *parser) varDecl(group *Group) Decl {
if trace {
defer p.trace("varDecl")()
}
d := new(VarDecl)
d.pos = p.pos()
d.Group = group
d.Pragma = p.takePragma()
d.NameList = p.nameList(p.name())
if p.gotAssign() {
d.Values = p.exprList()
} else {
d.Type = p.type_()
if p.gotAssign() {
d.Values = p.exprList()
}
}
return d
}
// FunctionDecl = "func" FunctionName [ TypeParams ] ( Function | Signature ) .
// FunctionName = identifier .
// Function = Signature FunctionBody .
// MethodDecl = "func" Receiver MethodName ( Function | Signature ) .
// Receiver = Parameters .
func (p *parser) funcDeclOrNil() *FuncDecl {
if trace {
defer p.trace("funcDecl")()
}
f := new(FuncDecl)
f.pos = p.pos()
f.Pragma = p.takePragma()
if p.got(_Lparen) {
rcvr := p.paramList(nil, _Rparen, false)
switch len(rcvr) {
case 0:
p.error("method has no receiver")
default:
p.error("method has multiple receivers")
fallthrough
case 1:
f.Recv = rcvr[0]
}
}
if p.tok != _Name {
p.syntaxError("expecting name or (")
p.advance(_Lbrace, _Semi)
return nil
}
f.Name = p.name()
if p.mode&AllowGenerics != 0 && p.got(_Lbrack) {
if p.tok == _Rbrack {
p.syntaxError("empty type parameter list")
p.next()
} else {
f.TParamList = p.paramList(nil, _Rbrack, true)
}
}
f.Type = p.funcType()
if p.tok == _Lbrace {
f.Body = p.funcBody()
}
return f
}
func (p *parser) funcBody() *BlockStmt {
p.fnest++
errcnt := p.errcnt
body := p.blockStmt("")
p.fnest--
// Don't check branches if there were syntax errors in the function
// as it may lead to spurious errors (e.g., see test/switch2.go) or
// possibly crashes due to incomplete syntax trees.
if p.mode&CheckBranches != 0 && errcnt == p.errcnt {
checkBranches(body, p.errh)
}
return body
}
// ----------------------------------------------------------------------------
// Expressions
func (p *parser) expr() Expr {
if trace {
defer p.trace("expr")()
}
return p.binaryExpr(0)
}
// Expression = UnaryExpr | Expression binary_op Expression .
func (p *parser) binaryExpr(prec int) Expr {
// don't trace binaryExpr - only leads to overly nested trace output
x := p.unaryExpr()
for (p.tok == _Operator || p.tok == _Star) && p.prec > prec {
t := new(Operation)
t.pos = p.pos()
t.Op = p.op
t.X = x
tprec := p.prec
p.next()
t.Y = p.binaryExpr(tprec)
x = t
}
return x
}
// UnaryExpr = PrimaryExpr | unary_op UnaryExpr .
func (p *parser) unaryExpr() Expr {
if trace {
defer p.trace("unaryExpr")()
}
switch p.tok {
case _Operator, _Star:
switch p.op {
case Mul, Add, Sub, Not, Xor:
x := new(Operation)
x.pos = p.pos()
x.Op = p.op
p.next()
x.X = p.unaryExpr()
return x
case And:
x := new(Operation)
x.pos = p.pos()
x.Op = And
p.next()
// unaryExpr may have returned a parenthesized composite literal
// (see comment in operand) - remove parentheses if any
x.X = unparen(p.unaryExpr())
return x
}
case _Arrow:
// receive op (<-x) or receive-only channel (<-chan E)
pos := p.pos()
p.next()
// If the next token is _Chan we still don't know if it is
// a channel (<-chan int) or a receive op (<-chan int(ch)).
// We only know once we have found the end of the unaryExpr.
x := p.unaryExpr()
// There are two cases:
//
// <-chan... => <-x is a channel type
// <-x => <-x is a receive operation
//
// In the first case, <- must be re-associated with
// the channel type parsed already:
//
// <-(chan E) => (<-chan E)
// <-(chan<-E) => (<-chan (<-E))
if _, ok := x.(*ChanType); ok {
// x is a channel type => re-associate <-
dir := SendOnly
t := x
for dir == SendOnly {
c, ok := t.(*ChanType)
if !ok {
break
}
dir = c.Dir
if dir == RecvOnly {
// t is type <-chan E but <-<-chan E is not permitted
// (report same error as for "type _ <-<-chan E")
p.syntaxError("unexpected <-, expecting chan")
// already progressed, no need to advance
}
c.Dir = RecvOnly
t = c.Elem
}
if dir == SendOnly {
// channel dir is <- but channel element E is not a channel
// (report same error as for "type _ <-chan<-E")
p.syntaxError(fmt.Sprintf("unexpected %s, expecting chan", String(t)))
// already progressed, no need to advance
}
return x
}
// x is not a channel type => we have a receive op
o := new(Operation)
o.pos = pos
o.Op = Recv
o.X = x
return o
}
// TODO(mdempsky): We need parens here so we can report an
// error for "(x) := true". It should be possible to detect
// and reject that more efficiently though.
return p.pexpr(true)
}
// callStmt parses call-like statements that can be preceded by 'defer' and 'go'.
func (p *parser) callStmt() *CallStmt {
if trace {
defer p.trace("callStmt")()
}
s := new(CallStmt)
s.pos = p.pos()
s.Tok = p.tok // _Defer or _Go
p.next()
x := p.pexpr(p.tok == _Lparen) // keep_parens so we can report error below
if t := unparen(x); t != x {
p.errorAt(x.Pos(), fmt.Sprintf("expression in %s must not be parenthesized", s.Tok))
// already progressed, no need to advance
x = t
}
cx, ok := x.(*CallExpr)
if !ok {
p.errorAt(x.Pos(), fmt.Sprintf("expression in %s must be function call", s.Tok))
// already progressed, no need to advance
cx = new(CallExpr)
cx.pos = x.Pos()
cx.Fun = x // assume common error of missing parentheses (function invocation)
}
s.Call = cx
return s
}
// Operand = Literal | OperandName | MethodExpr | "(" Expression ")" .
// Literal = BasicLit | CompositeLit | FunctionLit .
// BasicLit = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
// OperandName = identifier | QualifiedIdent.
func (p *parser) operand(keep_parens bool) Expr {
if trace {
defer p.trace("operand " + p.tok.String())()
}
switch p.tok {
case _Name:
return p.name()
case _Literal:
return p.oliteral()
case _Lparen:
pos := p.pos()
p.next()
p.xnest++
x := p.expr()
p.xnest--
p.want(_Rparen)
// Optimization: Record presence of ()'s only where needed
// for error reporting. Don't bother in other cases; it is
// just a waste of memory and time.
//
// Parentheses are not permitted around T in a composite
// literal T{}. If the next token is a {, assume x is a
// composite literal type T (it may not be, { could be
// the opening brace of a block, but we don't know yet).
if p.tok == _Lbrace {
keep_parens = true
}
// Parentheses are also not permitted around the expression
// in a go/defer statement. In that case, operand is called
// with keep_parens set.
if keep_parens {
px := new(ParenExpr)
px.pos = pos
px.X = x
x = px
}
return x
case _Func:
pos := p.pos()
p.next()
ftyp := p.funcType()
if p.tok == _Lbrace {
p.xnest++
f := new(FuncLit)
f.pos = pos
f.Type = ftyp
f.Body = p.funcBody()
p.xnest--
return f
}
return ftyp
case _Lbrack, _Chan, _Map, _Struct, _Interface:
return p.type_() // othertype
default:
x := p.badExpr()
p.syntaxError("expecting expression")
p.advance(_Rparen, _Rbrack, _Rbrace)
return x
}
// Syntactically, composite literals are operands. Because a complit
// type may be a qualified identifier which is handled by pexpr
// (together with selector expressions), complits are parsed there
// as well (operand is only called from pexpr).
}
// PrimaryExpr =
// Operand |
// Conversion |
// PrimaryExpr Selector |
// PrimaryExpr Index |
// PrimaryExpr Slice |
// PrimaryExpr TypeAssertion |
// PrimaryExpr Arguments .
//
// Selector = "." identifier .
// Index = "[" Expression "]" .
// Slice = "[" ( [ Expression ] ":" [ Expression ] ) |
// ( [ Expression ] ":" Expression ":" Expression )
// "]" .
// TypeAssertion = "." "(" Type ")" .
// Arguments = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
func (p *parser) pexpr(keep_parens bool) Expr {
if trace {
defer p.trace("pexpr")()
}
x := p.operand(keep_parens)
loop:
for {
pos := p.pos()
switch p.tok {
case _Dot:
p.next()
switch p.tok {
case _Name:
// pexpr '.' sym
t := new(SelectorExpr)
t.pos = pos
t.X = x
t.Sel = p.name()
x = t
case _Lparen:
p.next()
if p.got(_Type) {
t := new(TypeSwitchGuard)
// t.Lhs is filled in by parser.simpleStmt
t.pos = pos
t.X = x
x = t
} else {
t := new(AssertExpr)
t.pos = pos
t.X = x
t.Type = p.type_()
x = t
}
p.want(_Rparen)
default:
p.syntaxError("expecting name or (")
p.advance(_Semi, _Rparen)
}
case _Lbrack:
p.next()
if p.tok == _Rbrack {
// invalid empty instance, slice or index expression; accept but complain
p.syntaxError("expecting operand")
p.next()
break
}
var i Expr
if p.tok != _Colon {
if p.mode&AllowGenerics == 0 {
p.xnest++
i = p.expr()
p.xnest--
if p.got(_Rbrack) {
// x[i]
t := new(IndexExpr)
t.pos = pos
t.X = x
t.Index = i
x = t
break
}
} else {
var comma bool
i, comma = p.typeList()
if comma || p.tok == _Rbrack {
p.want(_Rbrack)
// x[i,] or x[i, j, ...]
t := new(IndexExpr)
t.pos = pos
t.X = x
t.Index = i
x = t
break
}
}
}
// x[i:...
p.want(_Colon)
p.xnest++
t := new(SliceExpr)
t.pos = pos
t.X = x
t.Index[0] = i
if p.tok != _Colon && p.tok != _Rbrack {
// x[i:j...
t.Index[1] = p.expr()
}
if p.tok == _Colon {
t.Full = true
// x[i:j:...]
if t.Index[1] == nil {
p.error("middle index required in 3-index slice")
t.Index[1] = p.badExpr()
}
p.next()
if p.tok != _Rbrack {
// x[i:j:k...
t.Index[2] = p.expr()
} else {
p.error("final index required in 3-index slice")
t.Index[2] = p.badExpr()
}
}
p.xnest--
p.want(_Rbrack)
x = t
case _Lparen:
t := new(CallExpr)
t.pos = pos
p.next()
t.Fun = x
t.ArgList, t.HasDots = p.argList()
x = t
case _Lbrace:
// operand may have returned a parenthesized complit
// type; accept it but complain if we have a complit
t := unparen(x)
// determine if '{' belongs to a composite literal or a block statement
complit_ok := false
switch t.(type) {
case *Name, *SelectorExpr:
if p.xnest >= 0 {
// x is possibly a composite literal type
complit_ok = true
}
case *IndexExpr:
if p.xnest >= 0 {
// x is possibly a composite literal type
complit_ok = true
}
case *ArrayType, *SliceType, *StructType, *MapType:
// x is a comptype
complit_ok = true
}
if !complit_ok {
break loop
}
if t != x {
p.syntaxError("cannot parenthesize type in composite literal")
// already progressed, no need to advance
}
n := p.complitexpr()
n.Type = x
x = n
default:
break loop
}
}
return x
}
// Element = Expression | LiteralValue .
func (p *parser) bare_complitexpr() Expr {
if trace {
defer p.trace("bare_complitexpr")()
}
if p.tok == _Lbrace {
// '{' start_complit braced_keyval_list '}'
return p.complitexpr()
}
return p.expr()
}
// LiteralValue = "{" [ ElementList [ "," ] ] "}" .
func (p *parser) complitexpr() *CompositeLit {
if trace {
defer p.trace("complitexpr")()
}
x := new(CompositeLit)
x.pos = p.pos()
p.xnest++
p.want(_Lbrace)
x.Rbrace = p.list(_Comma, _Rbrace, func() bool {
// value
e := p.bare_complitexpr()
if p.tok == _Colon {
// key ':' value
l := new(KeyValueExpr)
l.pos = p.pos()
p.next()
l.Key = e
l.Value = p.bare_complitexpr()
e = l
x.NKeys++
}
x.ElemList = append(x.ElemList, e)
return false
})
p.xnest--
return x
}
// ----------------------------------------------------------------------------
// Types
func (p *parser) type_() Expr {
if trace {
defer p.trace("type_")()
}
typ := p.typeOrNil()
if typ == nil {
typ = p.badExpr()
p.syntaxError("expecting type")
p.advance(_Comma, _Colon, _Semi, _Rparen, _Rbrack, _Rbrace)
}
return typ
}
func newIndirect(pos Pos, typ Expr) Expr {
o := new(Operation)
o.pos = pos
o.Op = Mul
o.X = typ
return o
}
// typeOrNil is like type_ but it returns nil if there was no type
// instead of reporting an error.
//
// Type = TypeName | TypeLit | "(" Type ")" .
// TypeName = identifier | QualifiedIdent .
// TypeLit = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
// SliceType | MapType | Channel_Type .
func (p *parser) typeOrNil() Expr {
if trace {
defer p.trace("typeOrNil")()
}
pos := p.pos()
switch p.tok {
case _Star:
// ptrtype
p.next()
return newIndirect(pos, p.type_())
case _Arrow:
// recvchantype
p.next()
p.want(_Chan)
t := new(ChanType)
t.pos = pos
t.Dir = RecvOnly
t.Elem = p.chanElem()
return t
case _Func:
// fntype
p.next()
return p.funcType()
case _Lbrack:
// '[' oexpr ']' ntype
// '[' _DotDotDot ']' ntype
p.next()
if p.got(_Rbrack) {
return p.sliceType(pos)
}
return p.arrayType(pos, nil)
case _Chan:
// _Chan non_recvchantype
// _Chan _Comm ntype
p.next()
t := new(ChanType)
t.pos = pos
if p.got(_Arrow) {
t.Dir = SendOnly
}
t.Elem = p.chanElem()
return t
case _Map:
// _Map '[' ntype ']' ntype
p.next()
p.want(_Lbrack)
t := new(MapType)
t.pos = pos
t.Key = p.type_()
p.want(_Rbrack)
t.Value = p.type_()
return t
case _Struct:
return p.structType()
case _Interface:
return p.interfaceType()
case _Name:
return p.qualifiedName(nil)
case _Lparen:
p.next()
t := p.type_()
p.want(_Rparen)
return t
}
return nil
}
func (p *parser) typeInstance(typ Expr) Expr {
if trace {
defer p.trace("typeInstance")()
}
pos := p.pos()
p.want(_Lbrack)
if p.tok == _Rbrack {
p.error("expecting type")
p.next()
return typ
}
x := new(IndexExpr)
x.pos = pos
x.X = typ
x.Index, _ = p.typeList()
p.want(_Rbrack)
return x
}
func (p *parser) funcType() *FuncType {
if trace {
defer p.trace("funcType")()
}
typ := new(FuncType)
typ.pos = p.pos()
p.want(_Lparen)
typ.ParamList = p.paramList(nil, _Rparen, false)
typ.ResultList = p.funcResult()
return typ
}
// "[" has already been consumed, and pos is its position.
// If len != nil it is the already consumed array length.
func (p *parser) arrayType(pos Pos, len Expr) Expr {
if trace {
defer p.trace("arrayType")()
}
if len == nil && !p.got(_DotDotDot) {
p.xnest++
len = p.expr()
p.xnest--
}
p.want(_Rbrack)
t := new(ArrayType)
t.pos = pos
t.Len = len
t.Elem = p.type_()
return t
}
// "[" and "]" have already been consumed, and pos is the position of "[".
func (p *parser) sliceType(pos Pos) Expr {
t := new(SliceType)
t.pos = pos
t.Elem = p.type_()
return t
}
func (p *parser) chanElem() Expr {
if trace {
defer p.trace("chanElem")()
}
typ := p.typeOrNil()
if typ == nil {
typ = p.badExpr()
p.syntaxError("missing channel element type")
// assume element type is simply absent - don't advance
}
return typ
}
// StructType = "struct" "{" { FieldDecl ";" } "}" .
func (p *parser) structType() *StructType {
if trace {
defer p.trace("structType")()
}
typ := new(StructType)
typ.pos = p.pos()
p.want(_Struct)
p.want(_Lbrace)
p.list(_Semi, _Rbrace, func() bool {
p.fieldDecl(typ)
return false
})
return typ
}
// InterfaceType = "interface" "{" { MethodSpec ";" } "}" .
func (p *parser) interfaceType() *InterfaceType {
if trace {
defer p.trace("interfaceType")()
}
typ := new(InterfaceType)
typ.pos = p.pos()
p.want(_Interface)
p.want(_Lbrace)
p.list(_Semi, _Rbrace, func() bool {
switch p.tok {
case _Name:
typ.MethodList = append(typ.MethodList, p.methodDecl())
case _Lparen:
p.syntaxError("cannot parenthesize embedded type")
f := new(Field)
f.pos = p.pos()
p.next()
f.Type = p.qualifiedName(nil)
p.want(_Rparen)
typ.MethodList = append(typ.MethodList, f)
case _Type:
if p.mode&AllowGenerics != 0 {
// TODO(gri) factor this better
type_ := NewName(p.pos(), "type") // cannot have a method named "type"
p.next()
if p.tok != _Semi && p.tok != _Rbrace {
f := new(Field)
f.pos = p.pos()
f.Name = type_
f.Type = p.type_()
typ.MethodList = append(typ.MethodList, f)
for p.got(_Comma) {
f := new(Field)
f.pos = p.pos()
f.Name = type_
f.Type = p.type_()
typ.MethodList = append(typ.MethodList, f)
}
} else {
p.syntaxError("expecting type")
}
break
}
fallthrough
default:
if p.mode&AllowGenerics != 0 {
p.syntaxError("expecting method, interface name, or type list")
p.advance(_Semi, _Rbrace, _Type)
} else {
p.syntaxError("expecting method or interface name")
p.advance(_Semi, _Rbrace)
}
}
return false
})
return typ
}
// Result = Parameters | Type .
func (p *parser) funcResult() []*Field {
if trace {
defer p.trace("funcResult")()
}
if p.got(_Lparen) {
return p.paramList(nil, _Rparen, false)
}
pos := p.pos()
if typ := p.typeOrNil(); typ != nil {
f := new(Field)
f.pos = pos
f.Type = typ
return []*Field{f}
}
return nil
}
func (p *parser) addField(styp *StructType, pos Pos, name *Name, typ Expr, tag *BasicLit) {
if tag != nil {
for i := len(styp.FieldList) - len(styp.TagList); i > 0; i-- {
styp.TagList = append(styp.TagList, nil)
}
styp.TagList = append(styp.TagList, tag)
}
f := new(Field)
f.pos = pos
f.Name = name
f.Type = typ
styp.FieldList = append(styp.FieldList, f)
if debug && tag != nil && len(styp.FieldList) != len(styp.TagList) {
panic("inconsistent struct field list")
}
}
// FieldDecl = (IdentifierList Type | AnonymousField) [ Tag ] .
// AnonymousField = [ "*" ] TypeName .
// Tag = string_lit .
func (p *parser) fieldDecl(styp *StructType) {
if trace {
defer p.trace("fieldDecl")()
}
pos := p.pos()
switch p.tok {
case _Name:
name := p.name()
if p.tok == _Dot || p.tok == _Literal || p.tok == _Semi || p.tok == _Rbrace {
// embedded type
typ := p.qualifiedName(name)
tag := p.oliteral()
p.addField(styp, pos, nil, typ, tag)
break
}
// name1, name2, ... Type [ tag ]
names := p.nameList(name)
var typ Expr
// Careful dance: We don't know if we have an embedded instantiated
// type T[P1, P2, ...] or a field T of array/slice type [P]E or []E.
if p.mode&AllowGenerics != 0 && len(names) == 1 && p.tok == _Lbrack {
typ = p.arrayOrTArgs()
if typ, ok := typ.(*IndexExpr); ok {
// embedded type T[P1, P2, ...]
typ.X = name // name == names[0]
tag := p.oliteral()
p.addField(styp, pos, nil, typ, tag)
break
}
} else {
// T P
typ = p.type_()
}
tag := p.oliteral()
for _, name := range names {
p.addField(styp, name.Pos(), name, typ, tag)
}
case _Star:
p.next()
var typ Expr
if p.tok == _Lparen {
// *(T)
p.syntaxError("cannot parenthesize embedded type")
p.next()
typ = p.qualifiedName(nil)
p.got(_Rparen) // no need to complain if missing
} else {
// *T
typ = p.qualifiedName(nil)
}
tag := p.oliteral()
p.addField(styp, pos, nil, newIndirect(pos, typ), tag)
case _Lparen:
p.syntaxError("cannot parenthesize embedded type")
p.next()
var typ Expr
if p.tok == _Star {
// (*T)
pos := p.pos()
p.next()
typ = newIndirect(pos, p.qualifiedName(nil))
} else {
// (T)
typ = p.qualifiedName(nil)
}
p.got(_Rparen) // no need to complain if missing
tag := p.oliteral()
p.addField(styp, pos, nil, typ, tag)
default:
p.syntaxError("expecting field name or embedded type")
p.advance(_Semi, _Rbrace)
}
}
func (p *parser) arrayOrTArgs() Expr {
if trace {
defer p.trace("arrayOrTArgs")()
}
pos := p.pos()
p.want(_Lbrack)
if p.got(_Rbrack) {
return p.sliceType(pos)
}
// x [n]E or x[n,], x[n1, n2], ...
n, comma := p.typeList()
p.want(_Rbrack)
if !comma {
if elem := p.typeOrNil(); elem != nil {
// x [n]E
t := new(ArrayType)
t.pos = pos
t.Len = n
t.Elem = elem
return t
}
}
// x[n,], x[n1, n2], ...
t := new(IndexExpr)
t.pos = pos
// t.X will be filled in by caller
t.Index = n
return t
}
func (p *parser) oliteral() *BasicLit {
if p.tok == _Literal {
b := new(BasicLit)
b.pos = p.pos()
b.Value = p.lit
b.Kind = p.kind
b.Bad = p.bad
p.next()
return b
}
return nil
}
// MethodSpec = MethodName Signature | InterfaceTypeName .
// MethodName = identifier .
// InterfaceTypeName = TypeName .
func (p *parser) methodDecl() *Field {
if trace {
defer p.trace("methodDecl")()
}
f := new(Field)
f.pos = p.pos()
name := p.name()
// accept potential name list but complain
// TODO(gri) We probably don't need this special check anymore.
// Nobody writes this kind of code. It's from ancient
// Go beginnings.
hasNameList := false
for p.got(_Comma) {
p.name()
hasNameList = true
}
if hasNameList {
p.syntaxError("name list not allowed in interface type")
// already progressed, no need to advance
}
switch p.tok {
case _Lparen:
// method
f.Name = name
f.Type = p.funcType()
case _Lbrack:
if p.mode&AllowGenerics != 0 {
// Careful dance: We don't know if we have a generic method m[T C](x T)
// or an embedded instantiated type T[P1, P2] (we accept generic methods
// for generality and robustness of parsing).
pos := p.pos()
p.next()
// Empty type parameter or argument lists are not permitted.
// Treat as if [] were absent.
if p.tok == _Rbrack {
// name[]
pos := p.pos()
p.next()
if p.tok == _Lparen {
// name[](
p.errorAt(pos, "empty type parameter list")
f.Name = name
f.Type = p.funcType()
} else {
p.errorAt(pos, "empty type argument list")
f.Type = name
}
break
}
// A type argument list looks like a parameter list with only
// types. Parse a parameter list and decide afterwards.
list := p.paramList(nil, _Rbrack, false)
if len(list) == 0 {
// The type parameter list is not [] but we got nothing
// due to other errors (reported by paramList). Treat
// as if [] were absent.
if p.tok == _Lparen {
f.Name = name
f.Type = p.funcType()
} else {
f.Type = name
}
break
}
// len(list) > 0
if list[0].Name != nil {
// generic method
f.Name = name
f.Type = p.funcType()
// TODO(gri) Record list as type parameter list with f.Type
// if we want to type-check the generic method.
// For now, report an error so this is not a silent event.
p.errorAt(pos, "interface method cannot have type parameters")
break
}
// embedded instantiated type
t := new(IndexExpr)
t.pos = pos
t.X = name
if len(list) == 1 {
t.Index = list[0].Type
} else {
// len(list) > 1
l := new(ListExpr)
l.pos = list[0].Pos()
l.ElemList = make([]Expr, len(list))
for i := range list {
l.ElemList[i] = list[i].Type
}
t.Index = l
}
f.Type = t
break
}
fallthrough
default:
// embedded type
f.Type = p.qualifiedName(name)
}
return f
}
// ParameterDecl = [ IdentifierList ] [ "..." ] Type .
func (p *parser) paramDeclOrNil(name *Name) *Field {
if trace {
defer p.trace("paramDecl")()
}
f := new(Field)
f.pos = p.pos()
if p.tok == _Name || name != nil {
if name == nil {
name = p.name()
}
if p.mode&AllowGenerics != 0 && p.tok == _Lbrack {
f.Type = p.arrayOrTArgs()
if typ, ok := f.Type.(*IndexExpr); ok {
typ.X = name
} else {
f.Name = name
}
return f
}
if p.tok == _Dot {
// name_or_type
f.Type = p.qualifiedName(name)
return f
}
f.Name = name
}
if p.tok == _DotDotDot {
t := new(DotsType)
t.pos = p.pos()
p.next()
t.Elem = p.typeOrNil()
if t.Elem == nil {
t.Elem = p.badExpr()
p.syntaxError("final argument in variadic function missing type")
}
f.Type = t
return f
}
f.Type = p.typeOrNil()
if f.Name != nil || f.Type != nil {
return f
}
p.syntaxError("expecting )")
p.advance(_Comma, _Rparen)
return nil
}
// Parameters = "(" [ ParameterList [ "," ] ] ")" .
// ParameterList = ParameterDecl { "," ParameterDecl } .
// "(" or "[" has already been consumed.
// If name != nil, it is the first name after "(" or "[".
// In the result list, either all fields have a name, or no field has a name.
func (p *parser) paramList(name *Name, close token, requireNames bool) (list []*Field) {
if trace {
defer p.trace("paramList")()
}
var named int // number of parameters that have an explicit name and type/bound
p.list(_Comma, close, func() bool {
par := p.paramDeclOrNil(name)
name = nil // 1st name was consumed if present
if par != nil {
if debug && par.Name == nil && par.Type == nil {
panic("parameter without name or type")
}
if par.Name != nil && par.Type != nil {
named++
}
list = append(list, par)
}
return false
})
if len(list) == 0 {
return
}
// distribute parameter types (len(list) > 0)
if named == 0 {
// all unnamed => found names are named types
for _, par := range list {
if typ := par.Name; typ != nil {
par.Type = typ
par.Name = nil
}
}
if requireNames {
p.syntaxErrorAt(list[0].Type.Pos(), "type parameters must be named")
}
} else if named != len(list) {
// some named => all must have names and types
var pos Pos // left-most error position (or unknown)
var typ Expr
for i := len(list) - 1; i >= 0; i-- {
if par := list[i]; par.Type != nil {
typ = par.Type
if par.Name == nil {
pos = typ.Pos()
par.Name = NewName(pos, "_")
}
} else if typ != nil {
par.Type = typ
} else {
// par.Type == nil && typ == nil => we only have a par.Name
pos = par.Name.Pos()
t := p.badExpr()
t.pos = pos // correct position
par.Type = t
}
}
if pos.IsKnown() {
var msg string
if requireNames {
msg = "type parameters must be named"
} else {
msg = "mixed named and unnamed parameters"
}
p.syntaxErrorAt(pos, msg)
}
}
return
}
func (p *parser) badExpr() *BadExpr {
b := new(BadExpr)
b.pos = p.pos()
return b
}
// ----------------------------------------------------------------------------
// Statements
// SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
func (p *parser) simpleStmt(lhs Expr, keyword token) SimpleStmt {
if trace {
defer p.trace("simpleStmt")()
}
if keyword == _For && p.tok == _Range {
// _Range expr
if debug && lhs != nil {
panic("invalid call of simpleStmt")
}
return p.newRangeClause(nil, false)
}
if lhs == nil {
lhs = p.exprList()
}
if _, ok := lhs.(*ListExpr); !ok && p.tok != _Assign && p.tok != _Define {
// expr
pos := p.pos()
switch p.tok {
case _AssignOp:
// lhs op= rhs
op := p.op
p.next()
return p.newAssignStmt(pos, op, lhs, p.expr())
case _IncOp:
// lhs++ or lhs--
op := p.op
p.next()
return p.newAssignStmt(pos, op, lhs, nil)
case _Arrow:
// lhs <- rhs
s := new(SendStmt)
s.pos = pos
p.next()
s.Chan = lhs
s.Value = p.expr()
return s
default:
// expr
s := new(ExprStmt)
s.pos = lhs.Pos()
s.X = lhs
return s
}
}
// expr_list
switch p.tok {
case _Assign, _Define:
pos := p.pos()
var op Operator
if p.tok == _Define {
op = Def
}
p.next()
if keyword == _For && p.tok == _Range {
// expr_list op= _Range expr
return p.newRangeClause(lhs, op == Def)
}
// expr_list op= expr_list
rhs := p.exprList()
if x, ok := rhs.(*TypeSwitchGuard); ok && keyword == _Switch && op == Def {
if lhs, ok := lhs.(*Name); ok {
// switch … lhs := rhs.(type)
x.Lhs = lhs
s := new(ExprStmt)
s.pos = x.Pos()
s.X = x
return s
}
}
return p.newAssignStmt(pos, op, lhs, rhs)
default:
p.syntaxError("expecting := or = or comma")
p.advance(_Semi, _Rbrace)
// make the best of what we have
if x, ok := lhs.(*ListExpr); ok {
lhs = x.ElemList[0]
}
s := new(ExprStmt)
s.pos = lhs.Pos()
s.X = lhs
return s
}
}
func (p *parser) newRangeClause(lhs Expr, def bool) *RangeClause {
r := new(RangeClause)
r.pos = p.pos()
p.next() // consume _Range
r.Lhs = lhs
r.Def = def
r.X = p.expr()
return r
}
func (p *parser) newAssignStmt(pos Pos, op Operator, lhs, rhs Expr) *AssignStmt {
a := new(AssignStmt)
a.pos = pos
a.Op = op
a.Lhs = lhs
a.Rhs = rhs
return a
}
func (p *parser) labeledStmtOrNil(label *Name) Stmt {
if trace {
defer p.trace("labeledStmt")()
}
s := new(LabeledStmt)
s.pos = p.pos()
s.Label = label
p.want(_Colon)
if p.tok == _Rbrace {
// We expect a statement (incl. an empty statement), which must be
// terminated by a semicolon. Because semicolons may be omitted before
// an _Rbrace, seeing an _Rbrace implies an empty statement.
e := new(EmptyStmt)
e.pos = p.pos()
s.Stmt = e
return s
}
s.Stmt = p.stmtOrNil()
if s.Stmt != nil {
return s
}
// report error at line of ':' token
p.syntaxErrorAt(s.pos, "missing statement after label")
// we are already at the end of the labeled statement - no need to advance
return nil // avoids follow-on errors (see e.g., fixedbugs/bug274.go)
}
// context must be a non-empty string unless we know that p.tok == _Lbrace.
func (p *parser) blockStmt(context string) *BlockStmt {
if trace {
defer p.trace("blockStmt")()
}
s := new(BlockStmt)
s.pos = p.pos()
// people coming from C may forget that braces are mandatory in Go
if !p.got(_Lbrace) {
p.syntaxError("expecting { after " + context)
p.advance(_Name, _Rbrace)
s.Rbrace = p.pos() // in case we found "}"
if p.got(_Rbrace) {
return s
}
}
s.List = p.stmtList()
s.Rbrace = p.pos()
p.want(_Rbrace)
return s
}
func (p *parser) declStmt(f func(*Group) Decl) *DeclStmt {
if trace {
defer p.trace("declStmt")()
}
s := new(DeclStmt)
s.pos = p.pos()
p.next() // _Const, _Type, or _Var
s.DeclList = p.appendGroup(nil, f)
return s
}
func (p *parser) forStmt() Stmt {
if trace {
defer p.trace("forStmt")()
}
s := new(ForStmt)
s.pos = p.pos()
s.Init, s.Cond, s.Post = p.header(_For)
s.Body = p.blockStmt("for clause")
return s
}
func (p *parser) header(keyword token) (init SimpleStmt, cond Expr, post SimpleStmt) {
p.want(keyword)
if p.tok == _Lbrace {
if keyword == _If {
p.syntaxError("missing condition in if statement")
cond = p.badExpr()
}
return
}
// p.tok != _Lbrace
outer := p.xnest
p.xnest = -1
if p.tok != _Semi {
// accept potential varDecl but complain
if p.got(_Var) {
p.syntaxError(fmt.Sprintf("var declaration not allowed in %s initializer", keyword.String()))
}
init = p.simpleStmt(nil, keyword)
// If we have a range clause, we are done (can only happen for keyword == _For).
if _, ok := init.(*RangeClause); ok {
p.xnest = outer
return
}
}
var condStmt SimpleStmt
var semi struct {
pos Pos
lit string // valid if pos.IsKnown()
}
if p.tok != _Lbrace {
if p.tok == _Semi {
semi.pos = p.pos()
semi.lit = p.lit
p.next()
} else {
// asking for a '{' rather than a ';' here leads to a better error message
p.want(_Lbrace)
if p.tok != _Lbrace {
p.advance(_Lbrace, _Rbrace) // for better synchronization (e.g., issue #22581)
}
}
if keyword == _For {
if p.tok != _Semi {
if p.tok == _Lbrace {
p.syntaxError("expecting for loop condition")
goto done
}
condStmt = p.simpleStmt(nil, 0 /* range not permitted */)
}
p.want(_Semi)
if p.tok != _Lbrace {
post = p.simpleStmt(nil, 0 /* range not permitted */)
if a, _ := post.(*AssignStmt); a != nil && a.Op == Def {
p.syntaxErrorAt(a.Pos(), "cannot declare in post statement of for loop")
}
}
} else if p.tok != _Lbrace {
condStmt = p.simpleStmt(nil, keyword)
}
} else {
condStmt = init
init = nil
}
done:
// unpack condStmt
switch s := condStmt.(type) {
case nil:
if keyword == _If && semi.pos.IsKnown() {
if semi.lit != "semicolon" {
p.syntaxErrorAt(semi.pos, fmt.Sprintf("unexpected %s, expecting { after if clause", semi.lit))
} else {
p.syntaxErrorAt(semi.pos, "missing condition in if statement")
}
b := new(BadExpr)
b.pos = semi.pos
cond = b
}
case *ExprStmt:
cond = s.X
default:
// A common syntax error is to write '=' instead of '==',
// which turns an expression into an assignment. Provide
// a more explicit error message in that case to prevent
// further confusion.
var str string
if as, ok := s.(*AssignStmt); ok && as.Op == 0 {
// Emphasize Lhs and Rhs of assignment with parentheses to highlight '='.
// Do it always - it's not worth going through the trouble of doing it
// only for "complex" left and right sides.
str = "assignment (" + String(as.Lhs) + ") = (" + String(as.Rhs) + ")"
} else {
str = String(s)
}
p.syntaxErrorAt(s.Pos(), fmt.Sprintf("cannot use %s as value", str))
}
p.xnest = outer
return
}
func (p *parser) ifStmt() *IfStmt {
if trace {
defer p.trace("ifStmt")()
}
s := new(IfStmt)
s.pos = p.pos()
s.Init, s.Cond, _ = p.header(_If)
s.Then = p.blockStmt("if clause")
if p.got(_Else) {
switch p.tok {
case _If:
s.Else = p.ifStmt()
case _Lbrace:
s.Else = p.blockStmt("")
default:
p.syntaxError("else must be followed by if or statement block")
p.advance(_Name, _Rbrace)
}
}
return s
}
func (p *parser) switchStmt() *SwitchStmt {
if trace {
defer p.trace("switchStmt")()
}
s := new(SwitchStmt)
s.pos = p.pos()
s.Init, s.Tag, _ = p.header(_Switch)
if !p.got(_Lbrace) {
p.syntaxError("missing { after switch clause")
p.advance(_Case, _Default, _Rbrace)
}
for p.tok != _EOF && p.tok != _Rbrace {
s.Body = append(s.Body, p.caseClause())
}
s.Rbrace = p.pos()
p.want(_Rbrace)
return s
}
func (p *parser) selectStmt() *SelectStmt {
if trace {
defer p.trace("selectStmt")()
}
s := new(SelectStmt)
s.pos = p.pos()
p.want(_Select)
if !p.got(_Lbrace) {
p.syntaxError("missing { after select clause")
p.advance(_Case, _Default, _Rbrace)
}
for p.tok != _EOF && p.tok != _Rbrace {
s.Body = append(s.Body, p.commClause())
}
s.Rbrace = p.pos()
p.want(_Rbrace)
return s
}
func (p *parser) caseClause() *CaseClause {
if trace {
defer p.trace("caseClause")()
}
c := new(CaseClause)
c.pos = p.pos()
switch p.tok {
case _Case:
p.next()
c.Cases = p.exprList()
case _Default:
p.next()
default:
p.syntaxError("expecting case or default or }")
p.advance(_Colon, _Case, _Default, _Rbrace)
}
c.Colon = p.pos()
p.want(_Colon)
c.Body = p.stmtList()
return c
}
func (p *parser) commClause() *CommClause {
if trace {
defer p.trace("commClause")()
}
c := new(CommClause)
c.pos = p.pos()
switch p.tok {
case _Case:
p.next()
c.Comm = p.simpleStmt(nil, 0)
// The syntax restricts the possible simple statements here to:
//
// lhs <- x (send statement)
// <-x
// lhs = <-x
// lhs := <-x
//
// All these (and more) are recognized by simpleStmt and invalid
// syntax trees are flagged later, during type checking.
// TODO(gri) eventually may want to restrict valid syntax trees
// here.
case _Default:
p.next()
default:
p.syntaxError("expecting case or default or }")
p.advance(_Colon, _Case, _Default, _Rbrace)
}
c.Colon = p.pos()
p.want(_Colon)
c.Body = p.stmtList()
return c
}
// Statement =
// Declaration | LabeledStmt | SimpleStmt |
// GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
// FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
// DeferStmt .
func (p *parser) stmtOrNil() Stmt {
if trace {
defer p.trace("stmt " + p.tok.String())()
}
// Most statements (assignments) start with an identifier;
// look for it first before doing anything more expensive.
if p.tok == _Name {
p.clearPragma()
lhs := p.exprList()
if label, ok := lhs.(*Name); ok && p.tok == _Colon {
return p.labeledStmtOrNil(label)
}
return p.simpleStmt(lhs, 0)
}
switch p.tok {
case _Var:
return p.declStmt(p.varDecl)
case _Const:
return p.declStmt(p.constDecl)
case _Type:
return p.declStmt(p.typeDecl)
}
p.clearPragma()
switch p.tok {
case _Lbrace:
return p.blockStmt("")
case _Operator, _Star:
switch p.op {
case Add, Sub, Mul, And, Xor, Not:
return p.simpleStmt(nil, 0) // unary operators
}
case _Literal, _Func, _Lparen, // operands
_Lbrack, _Struct, _Map, _Chan, _Interface, // composite types
_Arrow: // receive operator
return p.simpleStmt(nil, 0)
case _For:
return p.forStmt()
case _Switch:
return p.switchStmt()
case _Select:
return p.selectStmt()
case _If:
return p.ifStmt()
case _Fallthrough:
s := new(BranchStmt)
s.pos = p.pos()
p.next()
s.Tok = _Fallthrough
return s
case _Break, _Continue:
s := new(BranchStmt)
s.pos = p.pos()
s.Tok = p.tok
p.next()
if p.tok == _Name {
s.Label = p.name()
}
return s
case _Go, _Defer:
return p.callStmt()
case _Goto:
s := new(BranchStmt)
s.pos = p.pos()
s.Tok = _Goto
p.next()
s.Label = p.name()
return s
case _Return:
s := new(ReturnStmt)
s.pos = p.pos()
p.next()
if p.tok != _Semi && p.tok != _Rbrace {
s.Results = p.exprList()
}
return s
case _Semi:
s := new(EmptyStmt)
s.pos = p.pos()
return s
}
return nil
}
// StatementList = { Statement ";" } .
func (p *parser) stmtList() (l []Stmt) {
if trace {
defer p.trace("stmtList")()
}
for p.tok != _EOF && p.tok != _Rbrace && p.tok != _Case && p.tok != _Default {
s := p.stmtOrNil()
p.clearPragma()
if s == nil {
break
}
l = append(l, s)
// ";" is optional before "}"
if !p.got(_Semi) && p.tok != _Rbrace {
p.syntaxError("at end of statement")
p.advance(_Semi, _Rbrace, _Case, _Default)
p.got(_Semi) // avoid spurious empty statement
}
}
return
}
// argList parses a possibly empty, comma-separated list of arguments,
// optionally followed by a comma (if not empty), and closed by ")".
// The last argument may be followed by "...".
//
// argList = [ arg { "," arg } [ "..." ] [ "," ] ] ")" .
func (p *parser) argList() (list []Expr, hasDots bool) {
if trace {
defer p.trace("argList")()
}
p.xnest++
p.list(_Comma, _Rparen, func() bool {
list = append(list, p.expr())
hasDots = p.got(_DotDotDot)
return hasDots
})
p.xnest--
return
}
// ----------------------------------------------------------------------------
// Common productions
func (p *parser) name() *Name {
// no tracing to avoid overly verbose output
if p.tok == _Name {
n := NewName(p.pos(), p.lit)
p.next()
return n
}
n := NewName(p.pos(), "_")
p.syntaxError("expecting name")
p.advance()
return n
}
// IdentifierList = identifier { "," identifier } .
// The first name must be provided.
func (p *parser) nameList(first *Name) []*Name {
if trace {
defer p.trace("nameList")()
}
if debug && first == nil {
panic("first name not provided")
}
l := []*Name{first}
for p.got(_Comma) {
l = append(l, p.name())
}
return l
}
// The first name may be provided, or nil.
func (p *parser) qualifiedName(name *Name) Expr {
if trace {
defer p.trace("qualifiedName")()
}
var x Expr
switch {
case name != nil:
x = name
case p.tok == _Name:
x = p.name()
default:
x = NewName(p.pos(), "_")
p.syntaxError("expecting name")
p.advance(_Dot, _Semi, _Rbrace)
}
if p.tok == _Dot {
s := new(SelectorExpr)
s.pos = p.pos()
p.next()
s.X = x
s.Sel = p.name()
x = s
}
if p.mode&AllowGenerics != 0 && p.tok == _Lbrack {
x = p.typeInstance(x)
}
return x
}
// ExpressionList = Expression { "," Expression } .
func (p *parser) exprList() Expr {
if trace {
defer p.trace("exprList")()
}
x := p.expr()
if p.got(_Comma) {
list := []Expr{x, p.expr()}
for p.got(_Comma) {
list = append(list, p.expr())
}
t := new(ListExpr)
t.pos = x.Pos()
t.ElemList = list
x = t
}
return x
}
// typeList parses a non-empty, comma-separated list of expressions,
// optionally followed by a comma. The first list element may be any
// expression, all other list elements must be type expressions.
// If there is more than one argument, the result is a *ListExpr.
// The comma result indicates whether there was a (separating or
// trailing) comma.
//
// typeList = arg { "," arg } [ "," ] .
func (p *parser) typeList() (x Expr, comma bool) {
if trace {
defer p.trace("typeList")()
}
p.xnest++
x = p.expr()
if p.got(_Comma) {
comma = true
if t := p.typeOrNil(); t != nil {
list := []Expr{x, t}
for p.got(_Comma) {
if t = p.typeOrNil(); t == nil {
break
}
list = append(list, t)
}
l := new(ListExpr)
l.pos = x.Pos() // == list[0].Pos()
l.ElemList = list
x = l
}
}
p.xnest--
return
}
// unparen removes all parentheses around an expression.
func unparen(x Expr) Expr {
for {
p, ok := x.(*ParenExpr)
if !ok {
break
}
x = p.X
}
return x
}