mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
It's currently hard to automate refactorings around the Value.Aux field, because we don't have any static typing information for it. Adding a tag interface will make subsequent CLs easier and safer. Passes buildall w/ toolstash -cmp. Updates #42982. Change-Id: I41ae8e411a66bda3195a0957b60c2fe8a8002893 Reviewed-on: https://go-review.googlesource.com/c/go/+/275756 Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Keith Randall <khr@golang.org> Trust: Matthew Dempsky <mdempsky@google.com>
808 lines
23 KiB
Go
808 lines
23 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// “Abstract” syntax representation.
|
|
|
|
package ir
|
|
|
|
import (
|
|
"fmt"
|
|
"go/constant"
|
|
"sort"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/src"
|
|
)
|
|
|
|
// A Node is the abstract interface to an IR node.
|
|
type Node interface {
|
|
// Formatting
|
|
Format(s fmt.State, verb rune)
|
|
String() string
|
|
|
|
// Source position.
|
|
Pos() src.XPos
|
|
SetPos(x src.XPos)
|
|
|
|
// For making copies. For Copy and SepCopy.
|
|
copy() Node
|
|
|
|
doChildren(func(Node) error) error
|
|
editChildren(func(Node) Node)
|
|
|
|
// Abstract graph structure, for generic traversals.
|
|
Op() Op
|
|
SetOp(x Op)
|
|
SubOp() Op
|
|
SetSubOp(x Op)
|
|
Left() Node
|
|
SetLeft(x Node)
|
|
Right() Node
|
|
SetRight(x Node)
|
|
Init() Nodes
|
|
PtrInit() *Nodes
|
|
SetInit(x Nodes)
|
|
Body() Nodes
|
|
PtrBody() *Nodes
|
|
SetBody(x Nodes)
|
|
List() Nodes
|
|
SetList(x Nodes)
|
|
PtrList() *Nodes
|
|
Rlist() Nodes
|
|
SetRlist(x Nodes)
|
|
PtrRlist() *Nodes
|
|
|
|
// Fields specific to certain Ops only.
|
|
Type() *types.Type
|
|
SetType(t *types.Type)
|
|
Func() *Func
|
|
Name() *Name
|
|
Sym() *types.Sym
|
|
SetSym(x *types.Sym)
|
|
Offset() int64
|
|
SetOffset(x int64)
|
|
Class() Class
|
|
SetClass(x Class)
|
|
Likely() bool
|
|
SetLikely(x bool)
|
|
SliceBounds() (low, high, max Node)
|
|
SetSliceBounds(low, high, max Node)
|
|
Iota() int64
|
|
SetIota(x int64)
|
|
Colas() bool
|
|
SetColas(x bool)
|
|
NoInline() bool
|
|
SetNoInline(x bool)
|
|
Transient() bool
|
|
SetTransient(x bool)
|
|
Implicit() bool
|
|
SetImplicit(x bool)
|
|
IsDDD() bool
|
|
SetIsDDD(x bool)
|
|
IndexMapLValue() bool
|
|
SetIndexMapLValue(x bool)
|
|
ResetAux()
|
|
HasBreak() bool
|
|
SetHasBreak(x bool)
|
|
MarkReadonly()
|
|
Val() constant.Value
|
|
SetVal(v constant.Value)
|
|
|
|
// Storage for analysis passes.
|
|
Esc() uint16
|
|
SetEsc(x uint16)
|
|
Walkdef() uint8
|
|
SetWalkdef(x uint8)
|
|
Opt() interface{}
|
|
SetOpt(x interface{})
|
|
Diag() bool
|
|
SetDiag(x bool)
|
|
Bounded() bool
|
|
SetBounded(x bool)
|
|
Typecheck() uint8
|
|
SetTypecheck(x uint8)
|
|
Initorder() uint8
|
|
SetInitorder(x uint8)
|
|
NonNil() bool
|
|
MarkNonNil()
|
|
HasCall() bool
|
|
SetHasCall(x bool)
|
|
|
|
// Only for SSA and should be removed when SSA starts
|
|
// using a more specific type than Node.
|
|
CanBeAnSSASym()
|
|
CanBeAnSSAAux()
|
|
}
|
|
|
|
// Line returns n's position as a string. If n has been inlined,
|
|
// it uses the outermost position where n has been inlined.
|
|
func Line(n Node) string {
|
|
return base.FmtPos(n.Pos())
|
|
}
|
|
|
|
func IsSynthetic(n Node) bool {
|
|
name := n.Sym().Name
|
|
return name[0] == '.' || name[0] == '~'
|
|
}
|
|
|
|
// IsAutoTmp indicates if n was created by the compiler as a temporary,
|
|
// based on the setting of the .AutoTemp flag in n's Name.
|
|
func IsAutoTmp(n Node) bool {
|
|
if n == nil || n.Op() != ONAME {
|
|
return false
|
|
}
|
|
return n.Name().AutoTemp()
|
|
}
|
|
|
|
// mayBeShared reports whether n may occur in multiple places in the AST.
|
|
// Extra care must be taken when mutating such a node.
|
|
func MayBeShared(n Node) bool {
|
|
switch n.Op() {
|
|
case ONAME, OLITERAL, ONIL, OTYPE:
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
//go:generate stringer -type=Op -trimprefix=O
|
|
|
|
type Op uint8
|
|
|
|
// Node ops.
|
|
const (
|
|
OXXX Op = iota
|
|
|
|
// names
|
|
ONAME // var or func name
|
|
// Unnamed arg or return value: f(int, string) (int, error) { etc }
|
|
// Also used for a qualified package identifier that hasn't been resolved yet.
|
|
ONONAME
|
|
OTYPE // type name
|
|
OPACK // import
|
|
OLITERAL // literal
|
|
ONIL // nil
|
|
|
|
// expressions
|
|
OADD // Left + Right
|
|
OSUB // Left - Right
|
|
OOR // Left | Right
|
|
OXOR // Left ^ Right
|
|
OADDSTR // +{List} (string addition, list elements are strings)
|
|
OADDR // &Left
|
|
OANDAND // Left && Right
|
|
OAPPEND // append(List); after walk, Left may contain elem type descriptor
|
|
OBYTES2STR // Type(Left) (Type is string, Left is a []byte)
|
|
OBYTES2STRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
|
|
ORUNES2STR // Type(Left) (Type is string, Left is a []rune)
|
|
OSTR2BYTES // Type(Left) (Type is []byte, Left is a string)
|
|
OSTR2BYTESTMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
|
|
OSTR2RUNES // Type(Left) (Type is []rune, Left is a string)
|
|
// Left = Right or (if Colas=true) Left := Right
|
|
// If Colas, then Ninit includes a DCL node for Left.
|
|
OAS
|
|
// List = Rlist (x, y, z = a, b, c) or (if Colas=true) List := Rlist
|
|
// If Colas, then Ninit includes DCL nodes for List
|
|
OAS2
|
|
OAS2DOTTYPE // List = Right (x, ok = I.(int))
|
|
OAS2FUNC // List = Right (x, y = f())
|
|
OAS2MAPR // List = Right (x, ok = m["foo"])
|
|
OAS2RECV // List = Right (x, ok = <-c)
|
|
OASOP // Left Etype= Right (x += y)
|
|
OCALL // Left(List) (function call, method call or type conversion)
|
|
|
|
// OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure.
|
|
// Prior to walk, they are: Left(List), where List is all regular arguments.
|
|
// After walk, List is a series of assignments to temporaries,
|
|
// and Rlist is an updated set of arguments.
|
|
// Nbody is all OVARLIVE nodes that are attached to OCALLxxx.
|
|
// TODO(josharian/khr): Use Ninit instead of List for the assignments to temporaries. See CL 114797.
|
|
OCALLFUNC // Left(List/Rlist) (function call f(args))
|
|
OCALLMETH // Left(List/Rlist) (direct method call x.Method(args))
|
|
OCALLINTER // Left(List/Rlist) (interface method call x.Method(args))
|
|
OCALLPART // Left.Right (method expression x.Method, not called)
|
|
OCAP // cap(Left)
|
|
OCLOSE // close(Left)
|
|
OCLOSURE // func Type { Func.Closure.Nbody } (func literal)
|
|
OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form)
|
|
OMAPLIT // Type{List} (composite literal, Type is map)
|
|
OSTRUCTLIT // Type{List} (composite literal, Type is struct)
|
|
OARRAYLIT // Type{List} (composite literal, Type is array)
|
|
OSLICELIT // Type{List} (composite literal, Type is slice) Right.Int64() = slice length.
|
|
OPTRLIT // &Left (left is composite literal)
|
|
OCONV // Type(Left) (type conversion)
|
|
OCONVIFACE // Type(Left) (type conversion, to interface)
|
|
OCONVNOP // Type(Left) (type conversion, no effect)
|
|
OCOPY // copy(Left, Right)
|
|
ODCL // var Left (declares Left of type Left.Type)
|
|
|
|
// Used during parsing but don't last.
|
|
ODCLFUNC // func f() or func (r) f()
|
|
ODCLCONST // const pi = 3.14
|
|
ODCLTYPE // type Int int or type Int = int
|
|
|
|
ODELETE // delete(List)
|
|
ODOT // Left.Sym (Left is of struct type)
|
|
ODOTPTR // Left.Sym (Left is of pointer to struct type)
|
|
ODOTMETH // Left.Sym (Left is non-interface, Right is method name)
|
|
ODOTINTER // Left.Sym (Left is interface, Right is method name)
|
|
OXDOT // Left.Sym (before rewrite to one of the preceding)
|
|
ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor
|
|
ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor
|
|
OEQ // Left == Right
|
|
ONE // Left != Right
|
|
OLT // Left < Right
|
|
OLE // Left <= Right
|
|
OGE // Left >= Right
|
|
OGT // Left > Right
|
|
ODEREF // *Left
|
|
OINDEX // Left[Right] (index of array or slice)
|
|
OINDEXMAP // Left[Right] (index of map)
|
|
OKEY // Left:Right (key:value in struct/array/map literal)
|
|
OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking)
|
|
OLEN // len(Left)
|
|
OMAKE // make(List) (before type checking converts to one of the following)
|
|
OMAKECHAN // make(Type, Left) (type is chan)
|
|
OMAKEMAP // make(Type, Left) (type is map)
|
|
OMAKESLICE // make(Type, Left, Right) (type is slice)
|
|
OMAKESLICECOPY // makeslicecopy(Type, Left, Right) (type is slice; Left is length and Right is the copied from slice)
|
|
// OMAKESLICECOPY is created by the order pass and corresponds to:
|
|
// s = make(Type, Left); copy(s, Right)
|
|
//
|
|
// Bounded can be set on the node when Left == len(Right) is known at compile time.
|
|
//
|
|
// This node is created so the walk pass can optimize this pattern which would
|
|
// otherwise be hard to detect after the order pass.
|
|
OMUL // Left * Right
|
|
ODIV // Left / Right
|
|
OMOD // Left % Right
|
|
OLSH // Left << Right
|
|
ORSH // Left >> Right
|
|
OAND // Left & Right
|
|
OANDNOT // Left &^ Right
|
|
ONEW // new(Left); corresponds to calls to new in source code
|
|
ONEWOBJ // runtime.newobject(n.Type); introduced by walk; Left is type descriptor
|
|
ONOT // !Left
|
|
OBITNOT // ^Left
|
|
OPLUS // +Left
|
|
ONEG // -Left
|
|
OOROR // Left || Right
|
|
OPANIC // panic(Left)
|
|
OPRINT // print(List)
|
|
OPRINTN // println(List)
|
|
OPAREN // (Left)
|
|
OSEND // Left <- Right
|
|
OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice)
|
|
OSLICEARR // Left[List[0] : List[1]] (Left is array)
|
|
OSLICESTR // Left[List[0] : List[1]] (Left is string)
|
|
OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
|
|
OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array)
|
|
OSLICEHEADER // sliceheader{Left, List[0], List[1]} (Left is unsafe.Pointer, List[0] is length, List[1] is capacity)
|
|
ORECOVER // recover()
|
|
ORECV // <-Left
|
|
ORUNESTR // Type(Left) (Type is string, Left is rune)
|
|
OSELRECV // like OAS: Left = Right where Right.Op = ORECV (appears as .Left of OCASE)
|
|
OSELRECV2 // like OAS2: List = Rlist where len(List)=2, len(Rlist)=1, Rlist[0].Op = ORECV (appears as .Left of OCASE)
|
|
OIOTA // iota
|
|
OREAL // real(Left)
|
|
OIMAG // imag(Left)
|
|
OCOMPLEX // complex(Left, Right) or complex(List[0]) where List[0] is a 2-result function call
|
|
OALIGNOF // unsafe.Alignof(Left)
|
|
OOFFSETOF // unsafe.Offsetof(Left)
|
|
OSIZEOF // unsafe.Sizeof(Left)
|
|
OMETHEXPR // method expression
|
|
OSTMTEXPR // statement expression (Init; Left)
|
|
|
|
// statements
|
|
OBLOCK // { List } (block of code)
|
|
OBREAK // break [Sym]
|
|
// OCASE: case List: Nbody (List==nil means default)
|
|
// For OTYPESW, List is a OTYPE node for the specified type (or OLITERAL
|
|
// for nil), and, if a type-switch variable is specified, Rlist is an
|
|
// ONAME for the version of the type-switch variable with the specified
|
|
// type.
|
|
OCASE
|
|
OCONTINUE // continue [Sym]
|
|
ODEFER // defer Left (Left must be call)
|
|
OFALL // fallthrough
|
|
OFOR // for Ninit; Left; Right { Nbody }
|
|
// OFORUNTIL is like OFOR, but the test (Left) is applied after the body:
|
|
// Ninit
|
|
// top: { Nbody } // Execute the body at least once
|
|
// cont: Right
|
|
// if Left { // And then test the loop condition
|
|
// List // Before looping to top, execute List
|
|
// goto top
|
|
// }
|
|
// OFORUNTIL is created by walk. There's no way to write this in Go code.
|
|
OFORUNTIL
|
|
OGOTO // goto Sym
|
|
OIF // if Ninit; Left { Nbody } else { Rlist }
|
|
OLABEL // Sym:
|
|
OGO // go Left (Left must be call)
|
|
ORANGE // for List = range Right { Nbody }
|
|
ORETURN // return List
|
|
OSELECT // select { List } (List is list of OCASE)
|
|
OSWITCH // switch Ninit; Left { List } (List is a list of OCASE)
|
|
// OTYPESW: Left := Right.(type) (appears as .Left of OSWITCH)
|
|
// Left is nil if there is no type-switch variable
|
|
OTYPESW
|
|
|
|
// types
|
|
OTCHAN // chan int
|
|
OTMAP // map[string]int
|
|
OTSTRUCT // struct{}
|
|
OTINTER // interface{}
|
|
// OTFUNC: func() - Left is receiver field, List is list of param fields, Rlist is
|
|
// list of result fields.
|
|
OTFUNC
|
|
OTARRAY // [8]int or [...]int
|
|
OTSLICE // []int
|
|
|
|
// misc
|
|
OINLCALL // intermediary representation of an inlined call.
|
|
OEFACE // itable and data words of an empty-interface value.
|
|
OITAB // itable word of an interface value.
|
|
OIDATA // data word of an interface value in Left
|
|
OSPTR // base pointer of a slice or string.
|
|
OCLOSUREREAD // read from inside closure struct at beginning of closure function
|
|
OCFUNC // reference to c function pointer (not go func value)
|
|
OCHECKNIL // emit code to ensure pointer/interface not nil
|
|
OVARDEF // variable is about to be fully initialized
|
|
OVARKILL // variable is dead
|
|
OVARLIVE // variable is alive
|
|
ORESULT // result of a function call; Xoffset is stack offset
|
|
OINLMARK // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree.
|
|
|
|
// arch-specific opcodes
|
|
ORETJMP // return to other function
|
|
OGETG // runtime.getg() (read g pointer)
|
|
|
|
OEND
|
|
)
|
|
|
|
// Nodes is a pointer to a slice of *Node.
|
|
// For fields that are not used in most nodes, this is used instead of
|
|
// a slice to save space.
|
|
type Nodes struct{ slice *[]Node }
|
|
|
|
// immutableEmptyNodes is an immutable, empty Nodes list.
|
|
// The methods that would modify it panic instead.
|
|
var immutableEmptyNodes = Nodes{}
|
|
|
|
// asNodes returns a slice of *Node as a Nodes value.
|
|
func AsNodes(s []Node) Nodes {
|
|
return Nodes{&s}
|
|
}
|
|
|
|
// Slice returns the entries in Nodes as a slice.
|
|
// Changes to the slice entries (as in s[i] = n) will be reflected in
|
|
// the Nodes.
|
|
func (n Nodes) Slice() []Node {
|
|
if n.slice == nil {
|
|
return nil
|
|
}
|
|
return *n.slice
|
|
}
|
|
|
|
// Len returns the number of entries in Nodes.
|
|
func (n Nodes) Len() int {
|
|
if n.slice == nil {
|
|
return 0
|
|
}
|
|
return len(*n.slice)
|
|
}
|
|
|
|
// Index returns the i'th element of Nodes.
|
|
// It panics if n does not have at least i+1 elements.
|
|
func (n Nodes) Index(i int) Node {
|
|
return (*n.slice)[i]
|
|
}
|
|
|
|
// First returns the first element of Nodes (same as n.Index(0)).
|
|
// It panics if n has no elements.
|
|
func (n Nodes) First() Node {
|
|
return (*n.slice)[0]
|
|
}
|
|
|
|
// Second returns the second element of Nodes (same as n.Index(1)).
|
|
// It panics if n has fewer than two elements.
|
|
func (n Nodes) Second() Node {
|
|
return (*n.slice)[1]
|
|
}
|
|
|
|
func (n *Nodes) mutate() {
|
|
if n == &immutableEmptyNodes {
|
|
panic("immutable Nodes.Set")
|
|
}
|
|
}
|
|
|
|
// Set sets n to a slice.
|
|
// This takes ownership of the slice.
|
|
func (n *Nodes) Set(s []Node) {
|
|
if n == &immutableEmptyNodes {
|
|
if len(s) == 0 {
|
|
// Allow immutableEmptyNodes.Set(nil) (a no-op).
|
|
return
|
|
}
|
|
n.mutate()
|
|
}
|
|
if len(s) == 0 {
|
|
n.slice = nil
|
|
} else {
|
|
// Copy s and take address of t rather than s to avoid
|
|
// allocation in the case where len(s) == 0 (which is
|
|
// over 3x more common, dynamically, for make.bash).
|
|
t := s
|
|
n.slice = &t
|
|
}
|
|
}
|
|
|
|
// Set1 sets n to a slice containing a single node.
|
|
func (n *Nodes) Set1(n1 Node) {
|
|
n.mutate()
|
|
n.slice = &[]Node{n1}
|
|
}
|
|
|
|
// Set2 sets n to a slice containing two nodes.
|
|
func (n *Nodes) Set2(n1, n2 Node) {
|
|
n.mutate()
|
|
n.slice = &[]Node{n1, n2}
|
|
}
|
|
|
|
// Set3 sets n to a slice containing three nodes.
|
|
func (n *Nodes) Set3(n1, n2, n3 Node) {
|
|
n.mutate()
|
|
n.slice = &[]Node{n1, n2, n3}
|
|
}
|
|
|
|
// MoveNodes sets n to the contents of n2, then clears n2.
|
|
func (n *Nodes) MoveNodes(n2 *Nodes) {
|
|
n.mutate()
|
|
n.slice = n2.slice
|
|
n2.slice = nil
|
|
}
|
|
|
|
// SetIndex sets the i'th element of Nodes to node.
|
|
// It panics if n does not have at least i+1 elements.
|
|
func (n Nodes) SetIndex(i int, node Node) {
|
|
(*n.slice)[i] = node
|
|
}
|
|
|
|
// SetFirst sets the first element of Nodes to node.
|
|
// It panics if n does not have at least one elements.
|
|
func (n Nodes) SetFirst(node Node) {
|
|
(*n.slice)[0] = node
|
|
}
|
|
|
|
// SetSecond sets the second element of Nodes to node.
|
|
// It panics if n does not have at least two elements.
|
|
func (n Nodes) SetSecond(node Node) {
|
|
(*n.slice)[1] = node
|
|
}
|
|
|
|
// Addr returns the address of the i'th element of Nodes.
|
|
// It panics if n does not have at least i+1 elements.
|
|
func (n Nodes) Addr(i int) *Node {
|
|
return &(*n.slice)[i]
|
|
}
|
|
|
|
// Append appends entries to Nodes.
|
|
func (n *Nodes) Append(a ...Node) {
|
|
if len(a) == 0 {
|
|
return
|
|
}
|
|
n.mutate()
|
|
if n.slice == nil {
|
|
s := make([]Node, len(a))
|
|
copy(s, a)
|
|
n.slice = &s
|
|
return
|
|
}
|
|
*n.slice = append(*n.slice, a...)
|
|
}
|
|
|
|
// Prepend prepends entries to Nodes.
|
|
// If a slice is passed in, this will take ownership of it.
|
|
func (n *Nodes) Prepend(a ...Node) {
|
|
if len(a) == 0 {
|
|
return
|
|
}
|
|
n.mutate()
|
|
if n.slice == nil {
|
|
n.slice = &a
|
|
} else {
|
|
*n.slice = append(a, *n.slice...)
|
|
}
|
|
}
|
|
|
|
// AppendNodes appends the contents of *n2 to n, then clears n2.
|
|
func (n *Nodes) AppendNodes(n2 *Nodes) {
|
|
n.mutate()
|
|
switch {
|
|
case n2.slice == nil:
|
|
case n.slice == nil:
|
|
n.slice = n2.slice
|
|
default:
|
|
*n.slice = append(*n.slice, *n2.slice...)
|
|
}
|
|
n2.slice = nil
|
|
}
|
|
|
|
// Copy returns a copy of the content of the slice.
|
|
func (n Nodes) Copy() Nodes {
|
|
var c Nodes
|
|
if n.slice == nil {
|
|
return c
|
|
}
|
|
c.slice = new([]Node)
|
|
if *n.slice == nil {
|
|
return c
|
|
}
|
|
*c.slice = make([]Node, n.Len())
|
|
copy(*c.slice, n.Slice())
|
|
return c
|
|
}
|
|
|
|
// NameQueue is a FIFO queue of *Name. The zero value of NameQueue is
|
|
// a ready-to-use empty queue.
|
|
type NameQueue struct {
|
|
ring []*Name
|
|
head, tail int
|
|
}
|
|
|
|
// Empty reports whether q contains no Names.
|
|
func (q *NameQueue) Empty() bool {
|
|
return q.head == q.tail
|
|
}
|
|
|
|
// PushRight appends n to the right of the queue.
|
|
func (q *NameQueue) PushRight(n *Name) {
|
|
if len(q.ring) == 0 {
|
|
q.ring = make([]*Name, 16)
|
|
} else if q.head+len(q.ring) == q.tail {
|
|
// Grow the ring.
|
|
nring := make([]*Name, len(q.ring)*2)
|
|
// Copy the old elements.
|
|
part := q.ring[q.head%len(q.ring):]
|
|
if q.tail-q.head <= len(part) {
|
|
part = part[:q.tail-q.head]
|
|
copy(nring, part)
|
|
} else {
|
|
pos := copy(nring, part)
|
|
copy(nring[pos:], q.ring[:q.tail%len(q.ring)])
|
|
}
|
|
q.ring, q.head, q.tail = nring, 0, q.tail-q.head
|
|
}
|
|
|
|
q.ring[q.tail%len(q.ring)] = n
|
|
q.tail++
|
|
}
|
|
|
|
// PopLeft pops a Name from the left of the queue. It panics if q is
|
|
// empty.
|
|
func (q *NameQueue) PopLeft() *Name {
|
|
if q.Empty() {
|
|
panic("dequeue empty")
|
|
}
|
|
n := q.ring[q.head%len(q.ring)]
|
|
q.head++
|
|
return n
|
|
}
|
|
|
|
// NameSet is a set of Names.
|
|
type NameSet map[*Name]struct{}
|
|
|
|
// Has reports whether s contains n.
|
|
func (s NameSet) Has(n *Name) bool {
|
|
_, isPresent := s[n]
|
|
return isPresent
|
|
}
|
|
|
|
// Add adds n to s.
|
|
func (s *NameSet) Add(n *Name) {
|
|
if *s == nil {
|
|
*s = make(map[*Name]struct{})
|
|
}
|
|
(*s)[n] = struct{}{}
|
|
}
|
|
|
|
// Sorted returns s sorted according to less.
|
|
func (s NameSet) Sorted(less func(*Name, *Name) bool) []*Name {
|
|
var res []*Name
|
|
for n := range s {
|
|
res = append(res, n)
|
|
}
|
|
sort.Slice(res, func(i, j int) bool { return less(res[i], res[j]) })
|
|
return res
|
|
}
|
|
|
|
type PragmaFlag int16
|
|
|
|
const (
|
|
// Func pragmas.
|
|
Nointerface PragmaFlag = 1 << iota
|
|
Noescape // func parameters don't escape
|
|
Norace // func must not have race detector annotations
|
|
Nosplit // func should not execute on separate stack
|
|
Noinline // func should not be inlined
|
|
NoCheckPtr // func should not be instrumented by checkptr
|
|
CgoUnsafeArgs // treat a pointer to one arg as a pointer to them all
|
|
UintptrEscapes // pointers converted to uintptr escape
|
|
|
|
// Runtime-only func pragmas.
|
|
// See ../../../../runtime/README.md for detailed descriptions.
|
|
Systemstack // func must run on system stack
|
|
Nowritebarrier // emit compiler error instead of write barrier
|
|
Nowritebarrierrec // error on write barrier in this or recursive callees
|
|
Yeswritebarrierrec // cancels Nowritebarrierrec in this function and callees
|
|
|
|
// Runtime and cgo type pragmas
|
|
NotInHeap // values of this type must not be heap allocated
|
|
|
|
// Go command pragmas
|
|
GoBuildPragma
|
|
)
|
|
|
|
func AsNode(n types.Object) Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
return n.(Node)
|
|
}
|
|
|
|
var BlankNode Node
|
|
|
|
func IsConst(n Node, ct constant.Kind) bool {
|
|
return ConstType(n) == ct
|
|
}
|
|
|
|
// isNil reports whether n represents the universal untyped zero value "nil".
|
|
func IsNil(n Node) bool {
|
|
// Check n.Orig because constant propagation may produce typed nil constants,
|
|
// which don't exist in the Go spec.
|
|
return n != nil && Orig(n).Op() == ONIL
|
|
}
|
|
|
|
func IsBlank(n Node) bool {
|
|
if n == nil {
|
|
return false
|
|
}
|
|
return n.Sym().IsBlank()
|
|
}
|
|
|
|
// IsMethod reports whether n is a method.
|
|
// n must be a function or a method.
|
|
func IsMethod(n Node) bool {
|
|
return n.Type().Recv() != nil
|
|
}
|
|
|
|
func Nod(op Op, nleft, nright Node) Node {
|
|
return NodAt(base.Pos, op, nleft, nright)
|
|
}
|
|
|
|
func NodAt(pos src.XPos, op Op, nleft, nright Node) Node {
|
|
switch op {
|
|
default:
|
|
panic("NodAt " + op.String())
|
|
case OADD, OAND, OANDAND, OANDNOT, ODIV, OEQ, OGE, OGT, OLE,
|
|
OLSH, OLT, OMOD, OMUL, ONE, OOR, OOROR, ORSH, OSUB, OXOR,
|
|
OCOPY, OCOMPLEX,
|
|
OEFACE:
|
|
return NewBinaryExpr(pos, op, nleft, nright)
|
|
case OADDR, OPTRLIT:
|
|
return NewAddrExpr(pos, nleft)
|
|
case OADDSTR:
|
|
return NewAddStringExpr(pos, nil)
|
|
case OARRAYLIT, OCOMPLIT, OMAPLIT, OSTRUCTLIT, OSLICELIT:
|
|
var typ Ntype
|
|
if nright != nil {
|
|
typ = nright.(Ntype)
|
|
}
|
|
n := NewCompLitExpr(pos, typ, nil)
|
|
n.SetOp(op)
|
|
return n
|
|
case OAS, OSELRECV:
|
|
n := NewAssignStmt(pos, nleft, nright)
|
|
n.SetOp(op)
|
|
return n
|
|
case OAS2, OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV, OSELRECV2:
|
|
n := NewAssignListStmt(pos, nil, nil)
|
|
n.SetOp(op)
|
|
return n
|
|
case OASOP:
|
|
return NewAssignOpStmt(pos, OXXX, nleft, nright)
|
|
case OBITNOT, ONEG, ONOT, OPLUS, ORECV,
|
|
OALIGNOF, OCAP, OCLOSE, OIMAG, OLEN, ONEW, ONEWOBJ,
|
|
OOFFSETOF, OPANIC, OREAL, OSIZEOF,
|
|
OCHECKNIL, OCFUNC, OIDATA, OITAB, OSPTR, OVARDEF, OVARKILL, OVARLIVE:
|
|
if nright != nil {
|
|
panic("unary nright")
|
|
}
|
|
return NewUnaryExpr(pos, op, nleft)
|
|
case OBLOCK:
|
|
return NewBlockStmt(pos, nil)
|
|
case OBREAK, OCONTINUE, OFALL, OGOTO, ORETJMP:
|
|
return NewBranchStmt(pos, op, nil)
|
|
case OCALL, OCALLFUNC, OCALLINTER, OCALLMETH,
|
|
OAPPEND, ODELETE, OGETG, OMAKE, OPRINT, OPRINTN, ORECOVER:
|
|
n := NewCallExpr(pos, nleft, nil)
|
|
n.SetOp(op)
|
|
return n
|
|
case OCASE:
|
|
return NewCaseStmt(pos, nil, nil)
|
|
case OCONV, OCONVIFACE, OCONVNOP, ORUNESTR:
|
|
return NewConvExpr(pos, op, nil, nleft)
|
|
case ODCL, ODCLCONST, ODCLTYPE:
|
|
return NewDecl(pos, op, nleft)
|
|
case ODCLFUNC:
|
|
return NewFunc(pos)
|
|
case ODEFER:
|
|
return NewDeferStmt(pos, nleft)
|
|
case ODEREF:
|
|
return NewStarExpr(pos, nleft)
|
|
case ODOT, ODOTPTR, ODOTMETH, ODOTINTER, OXDOT:
|
|
n := NewSelectorExpr(pos, nleft, nil)
|
|
n.SetOp(op)
|
|
return n
|
|
case ODOTTYPE, ODOTTYPE2:
|
|
var typ Ntype
|
|
if nright != nil {
|
|
typ = nright.(Ntype)
|
|
}
|
|
n := NewTypeAssertExpr(pos, nleft, typ)
|
|
n.SetOp(op)
|
|
return n
|
|
case OFOR:
|
|
return NewForStmt(pos, nil, nleft, nright, nil)
|
|
case OGO:
|
|
return NewGoStmt(pos, nleft)
|
|
case OIF:
|
|
return NewIfStmt(pos, nleft, nil, nil)
|
|
case OINDEX, OINDEXMAP:
|
|
n := NewIndexExpr(pos, nleft, nright)
|
|
n.SetOp(op)
|
|
return n
|
|
case OINLMARK:
|
|
return NewInlineMarkStmt(pos, types.BADWIDTH)
|
|
case OKEY, OSTRUCTKEY:
|
|
n := NewKeyExpr(pos, nleft, nright)
|
|
n.SetOp(op)
|
|
return n
|
|
case OLABEL:
|
|
return NewLabelStmt(pos, nil)
|
|
case OLITERAL, OTYPE, OIOTA:
|
|
return newNameAt(pos, op, nil)
|
|
case OMAKECHAN, OMAKEMAP, OMAKESLICE, OMAKESLICECOPY:
|
|
return NewMakeExpr(pos, op, nleft, nright)
|
|
case OMETHEXPR:
|
|
return NewMethodExpr(pos, op, nleft, nright)
|
|
case ONIL:
|
|
return NewNilExpr(pos)
|
|
case OPACK:
|
|
return NewPkgName(pos, nil, nil)
|
|
case OPAREN:
|
|
return NewParenExpr(pos, nleft)
|
|
case ORANGE:
|
|
return NewRangeStmt(pos, nil, nright, nil)
|
|
case ORESULT:
|
|
return NewResultExpr(pos, nil, types.BADWIDTH)
|
|
case ORETURN:
|
|
return NewReturnStmt(pos, nil)
|
|
case OSELECT:
|
|
return NewSelectStmt(pos, nil)
|
|
case OSEND:
|
|
return NewSendStmt(pos, nleft, nright)
|
|
case OSLICE, OSLICEARR, OSLICESTR, OSLICE3, OSLICE3ARR:
|
|
return NewSliceExpr(pos, op, nleft)
|
|
case OSLICEHEADER:
|
|
return NewSliceHeaderExpr(pos, nil, nleft, nil, nil)
|
|
case OSWITCH:
|
|
return NewSwitchStmt(pos, nleft, nil)
|
|
case OTYPESW:
|
|
return NewTypeSwitchGuard(pos, nleft, nright)
|
|
case OINLCALL:
|
|
return NewInlinedCallExpr(pos, nil, nil)
|
|
}
|
|
}
|