go/src/runtime/malloc.go
Michael Anthony Knyszek 24ea1aa25c runtime: only update freeIndexForScan outside of the mark phase
Currently, it's possible for asynchronous preemption to observe a
partially initialized object. The sequence of events goes like this:
- The GC is in the mark phase.
- Thread T1 is allocating object O1.
- Thread T1 zeroes the allocation, runs the publication barrier, and
  updates freeIndexForScan. It has not yet updated the mark bit on O1.
- Thread T2 is conservatively scanning some stack frame.
  That stack frame has a dead pointer with the same address as O1.
- T2 picks up the pointer, checks isFree (which checks
  freeIndexForScan without an import barrier), and sees that O1 is
  allocated. It marks and queues O1.
- T2 then goes to scan O1, and observes uninitialized memory.

Although a publication barrier was executed, T2 did not have an import
barrier. T2 may thus observe T1's writes to zero the object out-of-order
with the write to freeIndexForScan.

Normally this would be impossible if T2 got a pointer to O1 from
somewhere written by T1. The publication barrier guarantees that if the
read side is data-dependent on the write side then we'd necessarily
observe all writes to O1 before T1 published it. However, T2 got the
pointer 'out of thin air' by scanning a stack frame with a dead pointer
on it.

One fix to this problem would be to add the import barrier in the
conservative scanner. We would then also need to put freeIndexForScan
behind the publication barrier, or make the write to freeIndexForScan
exactly that barrier.

However, there's a simpler way. We don't actually care if conservative
scanning observes a stale freeIndexForScan during the mark phase.
Newly-allocated memory is always marked at the point of allocation (the
allocate-black policy part of the GC's design). So it doesn't actually
matter that if the garbage collector scans that memory or not.

This change modifies the allocator to only update freeIndexForScan
outside the mark phase. This means freeIndexForScan is essentially
a snapshot of freeindex at the point the mark phase started. Because
there's no more race between conservative scanning and newly-allocated
objects, the complicated scenario above is no longer a possibility.

One thing we do have to be careful of is other callers of isFree.
Previously freeIndexForScan would always track freeindex, now it no
longer does. This change thus introduces isFreeOrNewlyAllocated which is
used by the conservative scanner, and uses freeIndexForScan. Meanwhile
isFree goes back to using freeindex like it used to. This change also
documents the requirement on isFree that the caller must have obtained
the pointer not 'out of thin air' but after the object was published.
isFree is not currently used anywhere particularly sensitive (heap dump
and checkmark mode, where the world is stopped in both cases) so using
freeindex is both conceptually simple and also safe.

Change-Id: If66b8c536b775971203fb4358c17d711c2944723
Reviewed-on: https://go-review.googlesource.com/c/go/+/672340
Reviewed-by: David Chase <drchase@google.com>
Reviewed-by: Cherry Mui <cherryyz@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
2025-05-20 08:39:26 -07:00

2062 lines
71 KiB
Go

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Memory allocator.
//
// This was originally based on tcmalloc, but has diverged quite a bit.
// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
// The main allocator works in runs of pages.
// Small allocation sizes (up to and including 32 kB) are
// rounded to one of about 70 size classes, each of which
// has its own free set of objects of exactly that size.
// Any free page of memory can be split into a set of objects
// of one size class, which are then managed using a free bitmap.
//
// The allocator's data structures are:
//
// fixalloc: a free-list allocator for fixed-size off-heap objects,
// used to manage storage used by the allocator.
// mheap: the malloc heap, managed at page (8192-byte) granularity.
// mspan: a run of in-use pages managed by the mheap.
// mcentral: collects all spans of a given size class.
// mcache: a per-P cache of mspans with free space.
// mstats: allocation statistics.
//
// Allocating a small object proceeds up a hierarchy of caches:
//
// 1. Round the size up to one of the small size classes
// and look in the corresponding mspan in this P's mcache.
// Scan the mspan's free bitmap to find a free slot.
// If there is a free slot, allocate it.
// This can all be done without acquiring a lock.
//
// 2. If the mspan has no free slots, obtain a new mspan
// from the mcentral's list of mspans of the required size
// class that have free space.
// Obtaining a whole span amortizes the cost of locking
// the mcentral.
//
// 3. If the mcentral's mspan list is empty, obtain a run
// of pages from the mheap to use for the mspan.
//
// 4. If the mheap is empty or has no page runs large enough,
// allocate a new group of pages (at least 1MB) from the
// operating system. Allocating a large run of pages
// amortizes the cost of talking to the operating system.
//
// Sweeping an mspan and freeing objects on it proceeds up a similar
// hierarchy:
//
// 1. If the mspan is being swept in response to allocation, it
// is returned to the mcache to satisfy the allocation.
//
// 2. Otherwise, if the mspan still has allocated objects in it,
// it is placed on the mcentral free list for the mspan's size
// class.
//
// 3. Otherwise, if all objects in the mspan are free, the mspan's
// pages are returned to the mheap and the mspan is now dead.
//
// Allocating and freeing a large object uses the mheap
// directly, bypassing the mcache and mcentral.
//
// If mspan.needzero is false, then free object slots in the mspan are
// already zeroed. Otherwise if needzero is true, objects are zeroed as
// they are allocated. There are various benefits to delaying zeroing
// this way:
//
// 1. Stack frame allocation can avoid zeroing altogether.
//
// 2. It exhibits better temporal locality, since the program is
// probably about to write to the memory.
//
// 3. We don't zero pages that never get reused.
// Virtual memory layout
//
// The heap consists of a set of arenas, which are 64MB on 64-bit and
// 4MB on 32-bit (heapArenaBytes). Each arena's start address is also
// aligned to the arena size.
//
// Each arena has an associated heapArena object that stores the
// metadata for that arena: the heap bitmap for all words in the arena
// and the span map for all pages in the arena. heapArena objects are
// themselves allocated off-heap.
//
// Since arenas are aligned, the address space can be viewed as a
// series of arena frames. The arena map (mheap_.arenas) maps from
// arena frame number to *heapArena, or nil for parts of the address
// space not backed by the Go heap. The arena map is structured as a
// two-level array consisting of a "L1" arena map and many "L2" arena
// maps; however, since arenas are large, on many architectures, the
// arena map consists of a single, large L2 map.
//
// The arena map covers the entire possible address space, allowing
// the Go heap to use any part of the address space. The allocator
// attempts to keep arenas contiguous so that large spans (and hence
// large objects) can cross arenas.
package runtime
import (
"internal/goarch"
"internal/goos"
"internal/runtime/atomic"
"internal/runtime/gc"
"internal/runtime/math"
"internal/runtime/sys"
"unsafe"
)
const (
maxTinySize = _TinySize
tinySizeClass = _TinySizeClass
maxSmallSize = gc.MaxSmallSize
pageSize = 1 << gc.PageShift
pageMask = pageSize - 1
// Unused. Left for viewcore.
_PageSize = pageSize
minSizeForMallocHeader = gc.MinSizeForMallocHeader
mallocHeaderSize = gc.MallocHeaderSize
// _64bit = 1 on 64-bit systems, 0 on 32-bit systems
_64bit = 1 << (^uintptr(0) >> 63) / 2
// Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
_TinySize = 16
_TinySizeClass = int8(2)
_FixAllocChunk = 16 << 10 // Chunk size for FixAlloc
// Per-P, per order stack segment cache size.
_StackCacheSize = 32 * 1024
// Number of orders that get caching. Order 0 is FixedStack
// and each successive order is twice as large.
// We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks
// will be allocated directly.
// Since FixedStack is different on different systems, we
// must vary NumStackOrders to keep the same maximum cached size.
// OS | FixedStack | NumStackOrders
// -----------------+------------+---------------
// linux/darwin/bsd | 2KB | 4
// windows/32 | 4KB | 3
// windows/64 | 8KB | 2
// plan9 | 4KB | 3
_NumStackOrders = 4 - goarch.PtrSize/4*goos.IsWindows - 1*goos.IsPlan9
// heapAddrBits is the number of bits in a heap address. On
// amd64, addresses are sign-extended beyond heapAddrBits. On
// other arches, they are zero-extended.
//
// On most 64-bit platforms, we limit this to 48 bits based on a
// combination of hardware and OS limitations.
//
// amd64 hardware limits addresses to 48 bits, sign-extended
// to 64 bits. Addresses where the top 16 bits are not either
// all 0 or all 1 are "non-canonical" and invalid. Because of
// these "negative" addresses, we offset addresses by 1<<47
// (arenaBaseOffset) on amd64 before computing indexes into
// the heap arenas index. In 2017, amd64 hardware added
// support for 57 bit addresses; however, currently only Linux
// supports this extension and the kernel will never choose an
// address above 1<<47 unless mmap is called with a hint
// address above 1<<47 (which we never do).
//
// arm64 hardware (as of ARMv8) limits user addresses to 48
// bits, in the range [0, 1<<48).
//
// ppc64, mips64, and s390x support arbitrary 64 bit addresses
// in hardware. On Linux, Go leans on stricter OS limits. Based
// on Linux's processor.h, the user address space is limited as
// follows on 64-bit architectures:
//
// Architecture Name Maximum Value (exclusive)
// ---------------------------------------------------------------------
// amd64 TASK_SIZE_MAX 0x007ffffffff000 (47 bit addresses)
// arm64 TASK_SIZE_64 0x01000000000000 (48 bit addresses)
// ppc64{,le} TASK_SIZE_USER64 0x00400000000000 (46 bit addresses)
// mips64{,le} TASK_SIZE64 0x00010000000000 (40 bit addresses)
// s390x TASK_SIZE 1<<64 (64 bit addresses)
//
// These limits may increase over time, but are currently at
// most 48 bits except on s390x. On all architectures, Linux
// starts placing mmap'd regions at addresses that are
// significantly below 48 bits, so even if it's possible to
// exceed Go's 48 bit limit, it's extremely unlikely in
// practice.
//
// On 32-bit platforms, we accept the full 32-bit address
// space because doing so is cheap.
// mips32 only has access to the low 2GB of virtual memory, so
// we further limit it to 31 bits.
//
// On ios/arm64, although 64-bit pointers are presumably
// available, pointers are truncated to 33 bits in iOS <14.
// Furthermore, only the top 4 GiB of the address space are
// actually available to the application. In iOS >=14, more
// of the address space is available, and the OS can now
// provide addresses outside of those 33 bits. Pick 40 bits
// as a reasonable balance between address space usage by the
// page allocator, and flexibility for what mmap'd regions
// we'll accept for the heap. We can't just move to the full
// 48 bits because this uses too much address space for older
// iOS versions.
// TODO(mknyszek): Once iOS <14 is deprecated, promote ios/arm64
// to a 48-bit address space like every other arm64 platform.
//
// WebAssembly currently has a limit of 4GB linear memory.
heapAddrBits = (_64bit*(1-goarch.IsWasm)*(1-goos.IsIos*goarch.IsArm64))*48 + (1-_64bit+goarch.IsWasm)*(32-(goarch.IsMips+goarch.IsMipsle)) + 40*goos.IsIos*goarch.IsArm64
// maxAlloc is the maximum size of an allocation. On 64-bit,
// it's theoretically possible to allocate 1<<heapAddrBits bytes. On
// 32-bit, however, this is one less than 1<<32 because the
// number of bytes in the address space doesn't actually fit
// in a uintptr.
maxAlloc = (1 << heapAddrBits) - (1-_64bit)*1
// The number of bits in a heap address, the size of heap
// arenas, and the L1 and L2 arena map sizes are related by
//
// (1 << addr bits) = arena size * L1 entries * L2 entries
//
// Currently, we balance these as follows:
//
// Platform Addr bits Arena size L1 entries L2 entries
// -------------- --------- ---------- ---------- -----------
// */64-bit 48 64MB 1 4M (32MB)
// windows/64-bit 48 4MB 64 1M (8MB)
// ios/arm64 40 4MB 1 256K (2MB)
// */32-bit 32 4MB 1 1024 (4KB)
// */mips(le) 31 4MB 1 512 (2KB)
// heapArenaBytes is the size of a heap arena. The heap
// consists of mappings of size heapArenaBytes, aligned to
// heapArenaBytes. The initial heap mapping is one arena.
//
// This is currently 64MB on 64-bit non-Windows and 4MB on
// 32-bit and on Windows. We use smaller arenas on Windows
// because all committed memory is charged to the process,
// even if it's not touched. Hence, for processes with small
// heaps, the mapped arena space needs to be commensurate.
// This is particularly important with the race detector,
// since it significantly amplifies the cost of committed
// memory.
heapArenaBytes = 1 << logHeapArenaBytes
heapArenaWords = heapArenaBytes / goarch.PtrSize
// logHeapArenaBytes is log_2 of heapArenaBytes. For clarity,
// prefer using heapArenaBytes where possible (we need the
// constant to compute some other constants).
logHeapArenaBytes = (6+20)*(_64bit*(1-goos.IsWindows)*(1-goarch.IsWasm)*(1-goos.IsIos*goarch.IsArm64)) + (2+20)*(_64bit*goos.IsWindows) + (2+20)*(1-_64bit) + (2+20)*goarch.IsWasm + (2+20)*goos.IsIos*goarch.IsArm64
// heapArenaBitmapWords is the size of each heap arena's bitmap in uintptrs.
heapArenaBitmapWords = heapArenaWords / (8 * goarch.PtrSize)
pagesPerArena = heapArenaBytes / pageSize
// arenaL1Bits is the number of bits of the arena number
// covered by the first level arena map.
//
// This number should be small, since the first level arena
// map requires PtrSize*(1<<arenaL1Bits) of space in the
// binary's BSS. It can be zero, in which case the first level
// index is effectively unused. There is a performance benefit
// to this, since the generated code can be more efficient,
// but comes at the cost of having a large L2 mapping.
//
// We use the L1 map on 64-bit Windows because the arena size
// is small, but the address space is still 48 bits, and
// there's a high cost to having a large L2.
arenaL1Bits = 6 * (_64bit * goos.IsWindows)
// arenaL2Bits is the number of bits of the arena number
// covered by the second level arena index.
//
// The size of each arena map allocation is proportional to
// 1<<arenaL2Bits, so it's important that this not be too
// large. 48 bits leads to 32MB arena index allocations, which
// is about the practical threshold.
arenaL2Bits = heapAddrBits - logHeapArenaBytes - arenaL1Bits
// arenaL1Shift is the number of bits to shift an arena frame
// number by to compute an index into the first level arena map.
arenaL1Shift = arenaL2Bits
// arenaBits is the total bits in a combined arena map index.
// This is split between the index into the L1 arena map and
// the L2 arena map.
arenaBits = arenaL1Bits + arenaL2Bits
// arenaBaseOffset is the pointer value that corresponds to
// index 0 in the heap arena map.
//
// On amd64, the address space is 48 bits, sign extended to 64
// bits. This offset lets us handle "negative" addresses (or
// high addresses if viewed as unsigned).
//
// On aix/ppc64, this offset allows to keep the heapAddrBits to
// 48. Otherwise, it would be 60 in order to handle mmap addresses
// (in range 0x0a00000000000000 - 0x0afffffffffffff). But in this
// case, the memory reserved in (s *pageAlloc).init for chunks
// is causing important slowdowns.
//
// On other platforms, the user address space is contiguous
// and starts at 0, so no offset is necessary.
arenaBaseOffset = 0xffff800000000000*goarch.IsAmd64 + 0x0a00000000000000*goos.IsAix
// A typed version of this constant that will make it into DWARF (for viewcore).
arenaBaseOffsetUintptr = uintptr(arenaBaseOffset)
// Max number of threads to run garbage collection.
// 2, 3, and 4 are all plausible maximums depending
// on the hardware details of the machine. The garbage
// collector scales well to 32 cpus.
_MaxGcproc = 32
// minLegalPointer is the smallest possible legal pointer.
// This is the smallest possible architectural page size,
// since we assume that the first page is never mapped.
//
// This should agree with minZeroPage in the compiler.
minLegalPointer uintptr = 4096
// minHeapForMetadataHugePages sets a threshold on when certain kinds of
// heap metadata, currently the arenas map L2 entries and page alloc bitmap
// mappings, are allowed to be backed by huge pages. If the heap goal ever
// exceeds this threshold, then huge pages are enabled.
//
// These numbers are chosen with the assumption that huge pages are on the
// order of a few MiB in size.
//
// The kind of metadata this applies to has a very low overhead when compared
// to address space used, but their constant overheads for small heaps would
// be very high if they were to be backed by huge pages (e.g. a few MiB makes
// a huge difference for an 8 MiB heap, but barely any difference for a 1 GiB
// heap). The benefit of huge pages is also not worth it for small heaps,
// because only a very, very small part of the metadata is used for small heaps.
//
// N.B. If the heap goal exceeds the threshold then shrinks to a very small size
// again, then huge pages will still be enabled for this mapping. The reason is that
// there's no point unless we're also returning the physical memory for these
// metadata mappings back to the OS. That would be quite complex to do in general
// as the heap is likely fragmented after a reduction in heap size.
minHeapForMetadataHugePages = 1 << 30
)
// physPageSize is the size in bytes of the OS's physical pages.
// Mapping and unmapping operations must be done at multiples of
// physPageSize.
//
// This must be set by the OS init code (typically in osinit) before
// mallocinit.
var physPageSize uintptr
// physHugePageSize is the size in bytes of the OS's default physical huge
// page size whose allocation is opaque to the application. It is assumed
// and verified to be a power of two.
//
// If set, this must be set by the OS init code (typically in osinit) before
// mallocinit. However, setting it at all is optional, and leaving the default
// value is always safe (though potentially less efficient).
//
// Since physHugePageSize is always assumed to be a power of two,
// physHugePageShift is defined as physHugePageSize == 1 << physHugePageShift.
// The purpose of physHugePageShift is to avoid doing divisions in
// performance critical functions.
var (
physHugePageSize uintptr
physHugePageShift uint
)
func mallocinit() {
if gc.SizeClassToSize[tinySizeClass] != maxTinySize {
throw("bad TinySizeClass")
}
if heapArenaBitmapWords&(heapArenaBitmapWords-1) != 0 {
// heapBits expects modular arithmetic on bitmap
// addresses to work.
throw("heapArenaBitmapWords not a power of 2")
}
// Check physPageSize.
if physPageSize == 0 {
// The OS init code failed to fetch the physical page size.
throw("failed to get system page size")
}
if physPageSize > maxPhysPageSize {
print("system page size (", physPageSize, ") is larger than maximum page size (", maxPhysPageSize, ")\n")
throw("bad system page size")
}
if physPageSize < minPhysPageSize {
print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n")
throw("bad system page size")
}
if physPageSize&(physPageSize-1) != 0 {
print("system page size (", physPageSize, ") must be a power of 2\n")
throw("bad system page size")
}
if physHugePageSize&(physHugePageSize-1) != 0 {
print("system huge page size (", physHugePageSize, ") must be a power of 2\n")
throw("bad system huge page size")
}
if physHugePageSize > maxPhysHugePageSize {
// physHugePageSize is greater than the maximum supported huge page size.
// Don't throw here, like in the other cases, since a system configured
// in this way isn't wrong, we just don't have the code to support them.
// Instead, silently set the huge page size to zero.
physHugePageSize = 0
}
if physHugePageSize != 0 {
// Since physHugePageSize is a power of 2, it suffices to increase
// physHugePageShift until 1<<physHugePageShift == physHugePageSize.
for 1<<physHugePageShift != physHugePageSize {
physHugePageShift++
}
}
if pagesPerArena%pagesPerSpanRoot != 0 {
print("pagesPerArena (", pagesPerArena, ") is not divisible by pagesPerSpanRoot (", pagesPerSpanRoot, ")\n")
throw("bad pagesPerSpanRoot")
}
if pagesPerArena%pagesPerReclaimerChunk != 0 {
print("pagesPerArena (", pagesPerArena, ") is not divisible by pagesPerReclaimerChunk (", pagesPerReclaimerChunk, ")\n")
throw("bad pagesPerReclaimerChunk")
}
// Check that the minimum size (exclusive) for a malloc header is also
// a size class boundary. This is important to making sure checks align
// across different parts of the runtime.
//
// While we're here, also check to make sure all these size classes'
// span sizes are one page. Some code relies on this.
minSizeForMallocHeaderIsSizeClass := false
sizeClassesUpToMinSizeForMallocHeaderAreOnePage := true
for i := 0; i < len(gc.SizeClassToSize); i++ {
if gc.SizeClassToNPages[i] > 1 {
sizeClassesUpToMinSizeForMallocHeaderAreOnePage = false
}
if gc.MinSizeForMallocHeader == uintptr(gc.SizeClassToSize[i]) {
minSizeForMallocHeaderIsSizeClass = true
break
}
}
if !minSizeForMallocHeaderIsSizeClass {
throw("min size of malloc header is not a size class boundary")
}
if !sizeClassesUpToMinSizeForMallocHeaderAreOnePage {
throw("expected all size classes up to min size for malloc header to fit in one-page spans")
}
// Check that the pointer bitmap for all small sizes without a malloc header
// fits in a word.
if gc.MinSizeForMallocHeader/goarch.PtrSize > 8*goarch.PtrSize {
throw("max pointer/scan bitmap size for headerless objects is too large")
}
if minTagBits > tagBits {
throw("tagBits too small")
}
// Initialize the heap.
mheap_.init()
mcache0 = allocmcache()
lockInit(&gcBitsArenas.lock, lockRankGcBitsArenas)
lockInit(&profInsertLock, lockRankProfInsert)
lockInit(&profBlockLock, lockRankProfBlock)
lockInit(&profMemActiveLock, lockRankProfMemActive)
for i := range profMemFutureLock {
lockInit(&profMemFutureLock[i], lockRankProfMemFuture)
}
lockInit(&globalAlloc.mutex, lockRankGlobalAlloc)
// Create initial arena growth hints.
if isSbrkPlatform {
// Don't generate hints on sbrk platforms. We can
// only grow the break sequentially.
} else if goarch.PtrSize == 8 {
// On a 64-bit machine, we pick the following hints
// because:
//
// 1. Starting from the middle of the address space
// makes it easier to grow out a contiguous range
// without running in to some other mapping.
//
// 2. This makes Go heap addresses more easily
// recognizable when debugging.
//
// 3. Stack scanning in gccgo is still conservative,
// so it's important that addresses be distinguishable
// from other data.
//
// Starting at 0x00c0 means that the valid memory addresses
// will begin 0x00c0, 0x00c1, ...
// In little-endian, that's c0 00, c1 00, ... None of those are valid
// UTF-8 sequences, and they are otherwise as far away from
// ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
// addresses. An earlier attempt to use 0x11f8 caused out of memory errors
// on OS X during thread allocations. 0x00c0 causes conflicts with
// AddressSanitizer which reserves all memory up to 0x0100.
// These choices reduce the odds of a conservative garbage collector
// not collecting memory because some non-pointer block of memory
// had a bit pattern that matched a memory address.
//
// However, on arm64, we ignore all this advice above and slam the
// allocation at 0x40 << 32 because when using 4k pages with 3-level
// translation buffers, the user address space is limited to 39 bits
// On ios/arm64, the address space is even smaller.
//
// On AIX, mmaps starts at 0x0A00000000000000 for 64-bit.
// processes.
//
// Space mapped for user arenas comes immediately after the range
// originally reserved for the regular heap when race mode is not
// enabled because user arena chunks can never be used for regular heap
// allocations and we want to avoid fragmenting the address space.
//
// In race mode we have no choice but to just use the same hints because
// the race detector requires that the heap be mapped contiguously.
for i := 0x7f; i >= 0; i-- {
var p uintptr
switch {
case raceenabled:
// The TSAN runtime requires the heap
// to be in the range [0x00c000000000,
// 0x00e000000000).
p = uintptr(i)<<32 | uintptrMask&(0x00c0<<32)
if p >= uintptrMask&0x00e000000000 {
continue
}
case GOARCH == "arm64" && GOOS == "ios":
p = uintptr(i)<<40 | uintptrMask&(0x0013<<28)
case GOARCH == "arm64":
p = uintptr(i)<<40 | uintptrMask&(0x0040<<32)
case GOOS == "aix":
if i == 0 {
// We don't use addresses directly after 0x0A00000000000000
// to avoid collisions with others mmaps done by non-go programs.
continue
}
p = uintptr(i)<<40 | uintptrMask&(0xa0<<52)
default:
p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
}
// Switch to generating hints for user arenas if we've gone
// through about half the hints. In race mode, take only about
// a quarter; we don't have very much space to work with.
hintList := &mheap_.arenaHints
if (!raceenabled && i > 0x3f) || (raceenabled && i > 0x5f) {
hintList = &mheap_.userArena.arenaHints
}
hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc())
hint.addr = p
hint.next, *hintList = *hintList, hint
}
} else {
// On a 32-bit machine, we're much more concerned
// about keeping the usable heap contiguous.
// Hence:
//
// 1. We reserve space for all heapArenas up front so
// they don't get interleaved with the heap. They're
// ~258MB, so this isn't too bad. (We could reserve a
// smaller amount of space up front if this is a
// problem.)
//
// 2. We hint the heap to start right above the end of
// the binary so we have the best chance of keeping it
// contiguous.
//
// 3. We try to stake out a reasonably large initial
// heap reservation.
const arenaMetaSize = (1 << arenaBits) * unsafe.Sizeof(heapArena{})
meta := uintptr(sysReserve(nil, arenaMetaSize, "heap reservation"))
if meta != 0 {
mheap_.heapArenaAlloc.init(meta, arenaMetaSize, true)
}
// We want to start the arena low, but if we're linked
// against C code, it's possible global constructors
// have called malloc and adjusted the process' brk.
// Query the brk so we can avoid trying to map the
// region over it (which will cause the kernel to put
// the region somewhere else, likely at a high
// address).
procBrk := sbrk0()
// If we ask for the end of the data segment but the
// operating system requires a little more space
// before we can start allocating, it will give out a
// slightly higher pointer. Except QEMU, which is
// buggy, as usual: it won't adjust the pointer
// upward. So adjust it upward a little bit ourselves:
// 1/4 MB to get away from the running binary image.
p := firstmoduledata.end
if p < procBrk {
p = procBrk
}
if mheap_.heapArenaAlloc.next <= p && p < mheap_.heapArenaAlloc.end {
p = mheap_.heapArenaAlloc.end
}
p = alignUp(p+(256<<10), heapArenaBytes)
// Because we're worried about fragmentation on
// 32-bit, we try to make a large initial reservation.
arenaSizes := []uintptr{
512 << 20,
256 << 20,
128 << 20,
}
for _, arenaSize := range arenaSizes {
a, size := sysReserveAligned(unsafe.Pointer(p), arenaSize, heapArenaBytes, "heap reservation")
if a != nil {
mheap_.arena.init(uintptr(a), size, false)
p = mheap_.arena.end // For hint below
break
}
}
hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc())
hint.addr = p
hint.next, mheap_.arenaHints = mheap_.arenaHints, hint
// Place the hint for user arenas just after the large reservation.
//
// While this potentially competes with the hint above, in practice we probably
// aren't going to be getting this far anyway on 32-bit platforms.
userArenaHint := (*arenaHint)(mheap_.arenaHintAlloc.alloc())
userArenaHint.addr = p
userArenaHint.next, mheap_.userArena.arenaHints = mheap_.userArena.arenaHints, userArenaHint
}
// Initialize the memory limit here because the allocator is going to look at it
// but we haven't called gcinit yet and we're definitely going to allocate memory before then.
gcController.memoryLimit.Store(math.MaxInt64)
}
// sysAlloc allocates heap arena space for at least n bytes. The
// returned pointer is always heapArenaBytes-aligned and backed by
// h.arenas metadata. The returned size is always a multiple of
// heapArenaBytes. sysAlloc returns nil on failure.
// There is no corresponding free function.
//
// hintList is a list of hint addresses for where to allocate new
// heap arenas. It must be non-nil.
//
// sysAlloc returns a memory region in the Reserved state. This region must
// be transitioned to Prepared and then Ready before use.
//
// arenaList is the list the arena should be added to.
//
// h must be locked.
func (h *mheap) sysAlloc(n uintptr, hintList **arenaHint, arenaList *[]arenaIdx) (v unsafe.Pointer, size uintptr) {
assertLockHeld(&h.lock)
n = alignUp(n, heapArenaBytes)
if hintList == &h.arenaHints {
// First, try the arena pre-reservation.
// Newly-used mappings are considered released.
//
// Only do this if we're using the regular heap arena hints.
// This behavior is only for the heap.
v = h.arena.alloc(n, heapArenaBytes, &gcController.heapReleased, "heap")
if v != nil {
size = n
goto mapped
}
}
// Try to grow the heap at a hint address.
for *hintList != nil {
hint := *hintList
p := hint.addr
if hint.down {
p -= n
}
if p+n < p {
// We can't use this, so don't ask.
v = nil
} else if arenaIndex(p+n-1) >= 1<<arenaBits {
// Outside addressable heap. Can't use.
v = nil
} else {
v = sysReserve(unsafe.Pointer(p), n, "heap reservation")
}
if p == uintptr(v) {
// Success. Update the hint.
if !hint.down {
p += n
}
hint.addr = p
size = n
break
}
// Failed. Discard this hint and try the next.
//
// TODO: This would be cleaner if sysReserve could be
// told to only return the requested address. In
// particular, this is already how Windows behaves, so
// it would simplify things there.
if v != nil {
sysFreeOS(v, n)
}
*hintList = hint.next
h.arenaHintAlloc.free(unsafe.Pointer(hint))
}
if size == 0 {
if raceenabled {
// The race detector assumes the heap lives in
// [0x00c000000000, 0x00e000000000), but we
// just ran out of hints in this region. Give
// a nice failure.
throw("too many address space collisions for -race mode")
}
// All of the hints failed, so we'll take any
// (sufficiently aligned) address the kernel will give
// us.
v, size = sysReserveAligned(nil, n, heapArenaBytes, "heap")
if v == nil {
return nil, 0
}
// Create new hints for extending this region.
hint := (*arenaHint)(h.arenaHintAlloc.alloc())
hint.addr, hint.down = uintptr(v), true
hint.next, mheap_.arenaHints = mheap_.arenaHints, hint
hint = (*arenaHint)(h.arenaHintAlloc.alloc())
hint.addr = uintptr(v) + size
hint.next, mheap_.arenaHints = mheap_.arenaHints, hint
}
// Check for bad pointers or pointers we can't use.
{
var bad string
p := uintptr(v)
if p+size < p {
bad = "region exceeds uintptr range"
} else if arenaIndex(p) >= 1<<arenaBits {
bad = "base outside usable address space"
} else if arenaIndex(p+size-1) >= 1<<arenaBits {
bad = "end outside usable address space"
}
if bad != "" {
// This should be impossible on most architectures,
// but it would be really confusing to debug.
print("runtime: memory allocated by OS [", hex(p), ", ", hex(p+size), ") not in usable address space: ", bad, "\n")
throw("memory reservation exceeds address space limit")
}
}
if uintptr(v)&(heapArenaBytes-1) != 0 {
throw("misrounded allocation in sysAlloc")
}
mapped:
// Create arena metadata.
for ri := arenaIndex(uintptr(v)); ri <= arenaIndex(uintptr(v)+size-1); ri++ {
l2 := h.arenas[ri.l1()]
if l2 == nil {
// Allocate an L2 arena map.
//
// Use sysAllocOS instead of sysAlloc or persistentalloc because there's no
// statistic we can comfortably account for this space in. With this structure,
// we rely on demand paging to avoid large overheads, but tracking which memory
// is paged in is too expensive. Trying to account for the whole region means
// that it will appear like an enormous memory overhead in statistics, even though
// it is not.
l2 = (*[1 << arenaL2Bits]*heapArena)(sysAllocOS(unsafe.Sizeof(*l2), "heap index"))
if l2 == nil {
throw("out of memory allocating heap arena map")
}
if h.arenasHugePages {
sysHugePage(unsafe.Pointer(l2), unsafe.Sizeof(*l2))
} else {
sysNoHugePage(unsafe.Pointer(l2), unsafe.Sizeof(*l2))
}
atomic.StorepNoWB(unsafe.Pointer(&h.arenas[ri.l1()]), unsafe.Pointer(l2))
}
if l2[ri.l2()] != nil {
throw("arena already initialized")
}
var r *heapArena
r = (*heapArena)(h.heapArenaAlloc.alloc(unsafe.Sizeof(*r), goarch.PtrSize, &memstats.gcMiscSys, "heap metadata"))
if r == nil {
r = (*heapArena)(persistentalloc(unsafe.Sizeof(*r), goarch.PtrSize, &memstats.gcMiscSys))
if r == nil {
throw("out of memory allocating heap arena metadata")
}
}
// Register the arena in allArenas if requested.
if len((*arenaList)) == cap((*arenaList)) {
size := 2 * uintptr(cap((*arenaList))) * goarch.PtrSize
if size == 0 {
size = physPageSize
}
newArray := (*notInHeap)(persistentalloc(size, goarch.PtrSize, &memstats.gcMiscSys))
if newArray == nil {
throw("out of memory allocating allArenas")
}
oldSlice := (*arenaList)
*(*notInHeapSlice)(unsafe.Pointer(&(*arenaList))) = notInHeapSlice{newArray, len((*arenaList)), int(size / goarch.PtrSize)}
copy((*arenaList), oldSlice)
// Do not free the old backing array because
// there may be concurrent readers. Since we
// double the array each time, this can lead
// to at most 2x waste.
}
(*arenaList) = (*arenaList)[:len((*arenaList))+1]
(*arenaList)[len((*arenaList))-1] = ri
// Store atomically just in case an object from the
// new heap arena becomes visible before the heap lock
// is released (which shouldn't happen, but there's
// little downside to this).
atomic.StorepNoWB(unsafe.Pointer(&l2[ri.l2()]), unsafe.Pointer(r))
}
// Tell the race detector about the new heap memory.
if raceenabled {
racemapshadow(v, size)
}
return
}
// sysReserveAligned is like sysReserve, but the returned pointer is
// aligned to align bytes. It may reserve either n or n+align bytes,
// so it returns the size that was reserved.
func sysReserveAligned(v unsafe.Pointer, size, align uintptr, vmaName string) (unsafe.Pointer, uintptr) {
if isSbrkPlatform {
if v != nil {
throw("unexpected heap arena hint on sbrk platform")
}
return sysReserveAlignedSbrk(size, align)
}
// Since the alignment is rather large in uses of this
// function, we're not likely to get it by chance, so we ask
// for a larger region and remove the parts we don't need.
retries := 0
retry:
p := uintptr(sysReserve(v, size+align, vmaName))
switch {
case p == 0:
return nil, 0
case p&(align-1) == 0:
return unsafe.Pointer(p), size + align
case GOOS == "windows":
// On Windows we can't release pieces of a
// reservation, so we release the whole thing and
// re-reserve the aligned sub-region. This may race,
// so we may have to try again.
sysFreeOS(unsafe.Pointer(p), size+align)
p = alignUp(p, align)
p2 := sysReserve(unsafe.Pointer(p), size, vmaName)
if p != uintptr(p2) {
// Must have raced. Try again.
sysFreeOS(p2, size)
if retries++; retries == 100 {
throw("failed to allocate aligned heap memory; too many retries")
}
goto retry
}
// Success.
return p2, size
default:
// Trim off the unaligned parts.
pAligned := alignUp(p, align)
sysFreeOS(unsafe.Pointer(p), pAligned-p)
end := pAligned + size
endLen := (p + size + align) - end
if endLen > 0 {
sysFreeOS(unsafe.Pointer(end), endLen)
}
return unsafe.Pointer(pAligned), size
}
}
// enableMetadataHugePages enables huge pages for various sources of heap metadata.
//
// A note on latency: for sufficiently small heaps (<10s of GiB) this function will take constant
// time, but may take time proportional to the size of the mapped heap beyond that.
//
// This function is idempotent.
//
// The heap lock must not be held over this operation, since it will briefly acquire
// the heap lock.
//
// Must be called on the system stack because it acquires the heap lock.
//
//go:systemstack
func (h *mheap) enableMetadataHugePages() {
// Enable huge pages for page structure.
h.pages.enableChunkHugePages()
// Grab the lock and set arenasHugePages if it's not.
//
// Once arenasHugePages is set, all new L2 entries will be eligible for
// huge pages. We'll set all the old entries after we release the lock.
lock(&h.lock)
if h.arenasHugePages {
unlock(&h.lock)
return
}
h.arenasHugePages = true
unlock(&h.lock)
// N.B. The arenas L1 map is quite small on all platforms, so it's fine to
// just iterate over the whole thing.
for i := range h.arenas {
l2 := (*[1 << arenaL2Bits]*heapArena)(atomic.Loadp(unsafe.Pointer(&h.arenas[i])))
if l2 == nil {
continue
}
sysHugePage(unsafe.Pointer(l2), unsafe.Sizeof(*l2))
}
}
// base address for all 0-byte allocations
var zerobase uintptr
// nextFreeFast returns the next free object if one is quickly available.
// Otherwise it returns 0.
func nextFreeFast(s *mspan) gclinkptr {
theBit := sys.TrailingZeros64(s.allocCache) // Is there a free object in the allocCache?
if theBit < 64 {
result := s.freeindex + uint16(theBit)
if result < s.nelems {
freeidx := result + 1
if freeidx%64 == 0 && freeidx != s.nelems {
return 0
}
s.allocCache >>= uint(theBit + 1)
s.freeindex = freeidx
s.allocCount++
return gclinkptr(uintptr(result)*s.elemsize + s.base())
}
}
return 0
}
// nextFree returns the next free object from the cached span if one is available.
// Otherwise it refills the cache with a span with an available object and
// returns that object along with a flag indicating that this was a heavy
// weight allocation. If it is a heavy weight allocation the caller must
// determine whether a new GC cycle needs to be started or if the GC is active
// whether this goroutine needs to assist the GC.
//
// Must run in a non-preemptible context since otherwise the owner of
// c could change.
func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, checkGCTrigger bool) {
s = c.alloc[spc]
checkGCTrigger = false
freeIndex := s.nextFreeIndex()
if freeIndex == s.nelems {
// The span is full.
if s.allocCount != s.nelems {
println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
throw("s.allocCount != s.nelems && freeIndex == s.nelems")
}
c.refill(spc)
checkGCTrigger = true
s = c.alloc[spc]
freeIndex = s.nextFreeIndex()
}
if freeIndex >= s.nelems {
throw("freeIndex is not valid")
}
v = gclinkptr(uintptr(freeIndex)*s.elemsize + s.base())
s.allocCount++
if s.allocCount > s.nelems {
println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
throw("s.allocCount > s.nelems")
}
return
}
// doubleCheckMalloc enables a bunch of extra checks to malloc to double-check
// that various invariants are upheld.
//
// We might consider turning these on by default; many of them previously were.
// They account for a few % of mallocgc's cost though, which does matter somewhat
// at scale.
const doubleCheckMalloc = false
// Allocate an object of size bytes.
// Small objects are allocated from the per-P cache's free lists.
// Large objects (> 32 kB) are allocated straight from the heap.
//
// mallocgc should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
// - github.com/bytedance/gopkg
// - github.com/bytedance/sonic
// - github.com/cloudwego/frugal
// - github.com/cockroachdb/cockroach
// - github.com/cockroachdb/pebble
// - github.com/ugorji/go/codec
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname mallocgc
func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
if doubleCheckMalloc {
if gcphase == _GCmarktermination {
throw("mallocgc called with gcphase == _GCmarktermination")
}
}
// Short-circuit zero-sized allocation requests.
if size == 0 {
return unsafe.Pointer(&zerobase)
}
// It's possible for any malloc to trigger sweeping, which may in
// turn queue finalizers. Record this dynamic lock edge.
// N.B. Compiled away if lockrank experiment is not enabled.
lockRankMayQueueFinalizer()
// Pre-malloc debug hooks.
if debug.malloc {
if x := preMallocgcDebug(size, typ); x != nil {
return x
}
}
// For ASAN, we allocate extra memory around each allocation called the "redzone."
// These "redzones" are marked as unaddressable.
var asanRZ uintptr
if asanenabled {
asanRZ = redZoneSize(size)
size += asanRZ
}
// Assist the GC if needed.
if gcBlackenEnabled != 0 {
deductAssistCredit(size)
}
// Actually do the allocation.
var x unsafe.Pointer
var elemsize uintptr
if size <= maxSmallSize-gc.MallocHeaderSize {
if typ == nil || !typ.Pointers() {
if size < maxTinySize {
x, elemsize = mallocgcTiny(size, typ)
} else {
x, elemsize = mallocgcSmallNoscan(size, typ, needzero)
}
} else {
if !needzero {
throw("objects with pointers must be zeroed")
}
if heapBitsInSpan(size) {
x, elemsize = mallocgcSmallScanNoHeader(size, typ)
} else {
x, elemsize = mallocgcSmallScanHeader(size, typ)
}
}
} else {
x, elemsize = mallocgcLarge(size, typ, needzero)
}
// Notify sanitizers, if enabled.
if raceenabled {
racemalloc(x, size-asanRZ)
}
if msanenabled {
msanmalloc(x, size-asanRZ)
}
if asanenabled {
// Poison the space between the end of the requested size of x
// and the end of the slot. Unpoison the requested allocation.
frag := elemsize - size
if typ != nil && typ.Pointers() && !heapBitsInSpan(elemsize) && size <= maxSmallSize-gc.MallocHeaderSize {
frag -= gc.MallocHeaderSize
}
asanpoison(unsafe.Add(x, size-asanRZ), asanRZ)
asanunpoison(x, size-asanRZ)
}
// Adjust our GC assist debt to account for internal fragmentation.
if gcBlackenEnabled != 0 && elemsize != 0 {
if assistG := getg().m.curg; assistG != nil {
assistG.gcAssistBytes -= int64(elemsize - size)
}
}
// Post-malloc debug hooks.
if debug.malloc {
postMallocgcDebug(x, elemsize, typ)
}
return x
}
func mallocgcTiny(size uintptr, typ *_type) (unsafe.Pointer, uintptr) {
// Set mp.mallocing to keep from being preempted by GC.
mp := acquirem()
if doubleCheckMalloc {
if mp.mallocing != 0 {
throw("malloc deadlock")
}
if mp.gsignal == getg() {
throw("malloc during signal")
}
if typ != nil && typ.Pointers() {
throw("expected noscan for tiny alloc")
}
}
mp.mallocing = 1
// Tiny allocator.
//
// Tiny allocator combines several tiny allocation requests
// into a single memory block. The resulting memory block
// is freed when all subobjects are unreachable. The subobjects
// must be noscan (don't have pointers), this ensures that
// the amount of potentially wasted memory is bounded.
//
// Size of the memory block used for combining (maxTinySize) is tunable.
// Current setting is 16 bytes, which relates to 2x worst case memory
// wastage (when all but one subobjects are unreachable).
// 8 bytes would result in no wastage at all, but provides less
// opportunities for combining.
// 32 bytes provides more opportunities for combining,
// but can lead to 4x worst case wastage.
// The best case winning is 8x regardless of block size.
//
// Objects obtained from tiny allocator must not be freed explicitly.
// So when an object will be freed explicitly, we ensure that
// its size >= maxTinySize.
//
// SetFinalizer has a special case for objects potentially coming
// from tiny allocator, it such case it allows to set finalizers
// for an inner byte of a memory block.
//
// The main targets of tiny allocator are small strings and
// standalone escaping variables. On a json benchmark
// the allocator reduces number of allocations by ~12% and
// reduces heap size by ~20%.
c := getMCache(mp)
off := c.tinyoffset
// Align tiny pointer for required (conservative) alignment.
if size&7 == 0 {
off = alignUp(off, 8)
} else if goarch.PtrSize == 4 && size == 12 {
// Conservatively align 12-byte objects to 8 bytes on 32-bit
// systems so that objects whose first field is a 64-bit
// value is aligned to 8 bytes and does not cause a fault on
// atomic access. See issue 37262.
// TODO(mknyszek): Remove this workaround if/when issue 36606
// is resolved.
off = alignUp(off, 8)
} else if size&3 == 0 {
off = alignUp(off, 4)
} else if size&1 == 0 {
off = alignUp(off, 2)
}
if off+size <= maxTinySize && c.tiny != 0 {
// The object fits into existing tiny block.
x := unsafe.Pointer(c.tiny + off)
c.tinyoffset = off + size
c.tinyAllocs++
mp.mallocing = 0
releasem(mp)
return x, 0
}
// Allocate a new maxTinySize block.
checkGCTrigger := false
span := c.alloc[tinySpanClass]
v := nextFreeFast(span)
if v == 0 {
v, span, checkGCTrigger = c.nextFree(tinySpanClass)
}
x := unsafe.Pointer(v)
(*[2]uint64)(x)[0] = 0 // Always zero
(*[2]uint64)(x)[1] = 0
// See if we need to replace the existing tiny block with the new one
// based on amount of remaining free space.
if !raceenabled && (size < c.tinyoffset || c.tiny == 0) {
// Note: disabled when race detector is on, see comment near end of this function.
c.tiny = uintptr(x)
c.tinyoffset = size
}
// Ensure that the stores above that initialize x to
// type-safe memory and set the heap bits occur before
// the caller can make x observable to the garbage
// collector. Otherwise, on weakly ordered machines,
// the garbage collector could follow a pointer to x,
// but see uninitialized memory or stale heap bits.
publicationBarrier()
if writeBarrier.enabled {
// Allocate black during GC.
// All slots hold nil so no scanning is needed.
// This may be racing with GC so do it atomically if there can be
// a race marking the bit.
gcmarknewobject(span, uintptr(x))
} else {
// Track the last free index before the mark phase. This field
// is only used by the garbage collector. During the mark phase
// this is used by the conservative scanner to filter out objects
// that are both free and recently-allocated. It's safe to do that
// because we allocate-black if the GC is enabled. The conservative
// scanner produces pointers out of thin air, so without additional
// synchronization it might otherwise observe a partially-initialized
// object, which could crash the program.
span.freeIndexForScan = span.freeindex
}
// Note cache c only valid while m acquired; see #47302
//
// N.B. Use the full size because that matches how the GC
// will update the mem profile on the "free" side.
//
// TODO(mknyszek): We should really count the header as part
// of gc_sys or something. The code below just pretends it is
// internal fragmentation and matches the GC's accounting by
// using the whole allocation slot.
c.nextSample -= int64(span.elemsize)
if c.nextSample < 0 || MemProfileRate != c.memProfRate {
profilealloc(mp, x, span.elemsize)
}
mp.mallocing = 0
releasem(mp)
if checkGCTrigger {
if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
gcStart(t)
}
}
if raceenabled {
// Pad tinysize allocations so they are aligned with the end
// of the tinyalloc region. This ensures that any arithmetic
// that goes off the top end of the object will be detectable
// by checkptr (issue 38872).
// Note that we disable tinyalloc when raceenabled for this to work.
// TODO: This padding is only performed when the race detector
// is enabled. It would be nice to enable it if any package
// was compiled with checkptr, but there's no easy way to
// detect that (especially at compile time).
// TODO: enable this padding for all allocations, not just
// tinyalloc ones. It's tricky because of pointer maps.
// Maybe just all noscan objects?
x = add(x, span.elemsize-size)
}
return x, span.elemsize
}
func mallocgcSmallNoscan(size uintptr, typ *_type, needzero bool) (unsafe.Pointer, uintptr) {
// Set mp.mallocing to keep from being preempted by GC.
mp := acquirem()
if doubleCheckMalloc {
if mp.mallocing != 0 {
throw("malloc deadlock")
}
if mp.gsignal == getg() {
throw("malloc during signal")
}
if typ != nil && typ.Pointers() {
throw("expected noscan type for noscan alloc")
}
}
mp.mallocing = 1
checkGCTrigger := false
c := getMCache(mp)
var sizeclass uint8
if size <= gc.SmallSizeMax-8 {
sizeclass = gc.SizeToSizeClass8[divRoundUp(size, gc.SmallSizeDiv)]
} else {
sizeclass = gc.SizeToSizeClass128[divRoundUp(size-gc.SmallSizeMax, gc.LargeSizeDiv)]
}
size = uintptr(gc.SizeClassToSize[sizeclass])
spc := makeSpanClass(sizeclass, true)
span := c.alloc[spc]
v := nextFreeFast(span)
if v == 0 {
v, span, checkGCTrigger = c.nextFree(spc)
}
x := unsafe.Pointer(v)
if needzero && span.needzero != 0 {
memclrNoHeapPointers(x, size)
}
// Ensure that the stores above that initialize x to
// type-safe memory and set the heap bits occur before
// the caller can make x observable to the garbage
// collector. Otherwise, on weakly ordered machines,
// the garbage collector could follow a pointer to x,
// but see uninitialized memory or stale heap bits.
publicationBarrier()
if writeBarrier.enabled {
// Allocate black during GC.
// All slots hold nil so no scanning is needed.
// This may be racing with GC so do it atomically if there can be
// a race marking the bit.
gcmarknewobject(span, uintptr(x))
} else {
// Track the last free index before the mark phase. This field
// is only used by the garbage collector. During the mark phase
// this is used by the conservative scanner to filter out objects
// that are both free and recently-allocated. It's safe to do that
// because we allocate-black if the GC is enabled. The conservative
// scanner produces pointers out of thin air, so without additional
// synchronization it might otherwise observe a partially-initialized
// object, which could crash the program.
span.freeIndexForScan = span.freeindex
}
// Note cache c only valid while m acquired; see #47302
//
// N.B. Use the full size because that matches how the GC
// will update the mem profile on the "free" side.
//
// TODO(mknyszek): We should really count the header as part
// of gc_sys or something. The code below just pretends it is
// internal fragmentation and matches the GC's accounting by
// using the whole allocation slot.
c.nextSample -= int64(size)
if c.nextSample < 0 || MemProfileRate != c.memProfRate {
profilealloc(mp, x, size)
}
mp.mallocing = 0
releasem(mp)
if checkGCTrigger {
if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
gcStart(t)
}
}
return x, size
}
func mallocgcSmallScanNoHeader(size uintptr, typ *_type) (unsafe.Pointer, uintptr) {
// Set mp.mallocing to keep from being preempted by GC.
mp := acquirem()
if doubleCheckMalloc {
if mp.mallocing != 0 {
throw("malloc deadlock")
}
if mp.gsignal == getg() {
throw("malloc during signal")
}
if typ == nil || !typ.Pointers() {
throw("noscan allocated in scan-only path")
}
if !heapBitsInSpan(size) {
throw("heap bits in not in span for non-header-only path")
}
}
mp.mallocing = 1
checkGCTrigger := false
c := getMCache(mp)
sizeclass := gc.SizeToSizeClass8[divRoundUp(size, gc.SmallSizeDiv)]
spc := makeSpanClass(sizeclass, false)
span := c.alloc[spc]
v := nextFreeFast(span)
if v == 0 {
v, span, checkGCTrigger = c.nextFree(spc)
}
x := unsafe.Pointer(v)
if span.needzero != 0 {
memclrNoHeapPointers(x, size)
}
if goarch.PtrSize == 8 && sizeclass == 1 {
// initHeapBits already set the pointer bits for the 8-byte sizeclass
// on 64-bit platforms.
c.scanAlloc += 8
} else {
c.scanAlloc += heapSetTypeNoHeader(uintptr(x), size, typ, span)
}
size = uintptr(gc.SizeClassToSize[sizeclass])
// Ensure that the stores above that initialize x to
// type-safe memory and set the heap bits occur before
// the caller can make x observable to the garbage
// collector. Otherwise, on weakly ordered machines,
// the garbage collector could follow a pointer to x,
// but see uninitialized memory or stale heap bits.
publicationBarrier()
if writeBarrier.enabled {
// Allocate black during GC.
// All slots hold nil so no scanning is needed.
// This may be racing with GC so do it atomically if there can be
// a race marking the bit.
gcmarknewobject(span, uintptr(x))
} else {
// Track the last free index before the mark phase. This field
// is only used by the garbage collector. During the mark phase
// this is used by the conservative scanner to filter out objects
// that are both free and recently-allocated. It's safe to do that
// because we allocate-black if the GC is enabled. The conservative
// scanner produces pointers out of thin air, so without additional
// synchronization it might otherwise observe a partially-initialized
// object, which could crash the program.
span.freeIndexForScan = span.freeindex
}
// Note cache c only valid while m acquired; see #47302
//
// N.B. Use the full size because that matches how the GC
// will update the mem profile on the "free" side.
//
// TODO(mknyszek): We should really count the header as part
// of gc_sys or something. The code below just pretends it is
// internal fragmentation and matches the GC's accounting by
// using the whole allocation slot.
c.nextSample -= int64(size)
if c.nextSample < 0 || MemProfileRate != c.memProfRate {
profilealloc(mp, x, size)
}
mp.mallocing = 0
releasem(mp)
if checkGCTrigger {
if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
gcStart(t)
}
}
return x, size
}
func mallocgcSmallScanHeader(size uintptr, typ *_type) (unsafe.Pointer, uintptr) {
// Set mp.mallocing to keep from being preempted by GC.
mp := acquirem()
if doubleCheckMalloc {
if mp.mallocing != 0 {
throw("malloc deadlock")
}
if mp.gsignal == getg() {
throw("malloc during signal")
}
if typ == nil || !typ.Pointers() {
throw("noscan allocated in scan-only path")
}
if heapBitsInSpan(size) {
throw("heap bits in span for header-only path")
}
}
mp.mallocing = 1
checkGCTrigger := false
c := getMCache(mp)
size += gc.MallocHeaderSize
var sizeclass uint8
if size <= gc.SmallSizeMax-8 {
sizeclass = gc.SizeToSizeClass8[divRoundUp(size, gc.SmallSizeDiv)]
} else {
sizeclass = gc.SizeToSizeClass128[divRoundUp(size-gc.SmallSizeMax, gc.LargeSizeDiv)]
}
size = uintptr(gc.SizeClassToSize[sizeclass])
spc := makeSpanClass(sizeclass, false)
span := c.alloc[spc]
v := nextFreeFast(span)
if v == 0 {
v, span, checkGCTrigger = c.nextFree(spc)
}
x := unsafe.Pointer(v)
if span.needzero != 0 {
memclrNoHeapPointers(x, size)
}
header := (**_type)(x)
x = add(x, gc.MallocHeaderSize)
c.scanAlloc += heapSetTypeSmallHeader(uintptr(x), size-gc.MallocHeaderSize, typ, header, span)
// Ensure that the stores above that initialize x to
// type-safe memory and set the heap bits occur before
// the caller can make x observable to the garbage
// collector. Otherwise, on weakly ordered machines,
// the garbage collector could follow a pointer to x,
// but see uninitialized memory or stale heap bits.
publicationBarrier()
if writeBarrier.enabled {
// Allocate black during GC.
// All slots hold nil so no scanning is needed.
// This may be racing with GC so do it atomically if there can be
// a race marking the bit.
gcmarknewobject(span, uintptr(x))
} else {
// Track the last free index before the mark phase. This field
// is only used by the garbage collector. During the mark phase
// this is used by the conservative scanner to filter out objects
// that are both free and recently-allocated. It's safe to do that
// because we allocate-black if the GC is enabled. The conservative
// scanner produces pointers out of thin air, so without additional
// synchronization it might otherwise observe a partially-initialized
// object, which could crash the program.
span.freeIndexForScan = span.freeindex
}
// Note cache c only valid while m acquired; see #47302
//
// N.B. Use the full size because that matches how the GC
// will update the mem profile on the "free" side.
//
// TODO(mknyszek): We should really count the header as part
// of gc_sys or something. The code below just pretends it is
// internal fragmentation and matches the GC's accounting by
// using the whole allocation slot.
c.nextSample -= int64(size)
if c.nextSample < 0 || MemProfileRate != c.memProfRate {
profilealloc(mp, x, size)
}
mp.mallocing = 0
releasem(mp)
if checkGCTrigger {
if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
gcStart(t)
}
}
return x, size
}
func mallocgcLarge(size uintptr, typ *_type, needzero bool) (unsafe.Pointer, uintptr) {
// Set mp.mallocing to keep from being preempted by GC.
mp := acquirem()
if doubleCheckMalloc {
if mp.mallocing != 0 {
throw("malloc deadlock")
}
if mp.gsignal == getg() {
throw("malloc during signal")
}
}
mp.mallocing = 1
c := getMCache(mp)
// For large allocations, keep track of zeroed state so that
// bulk zeroing can be happen later in a preemptible context.
span := c.allocLarge(size, typ == nil || !typ.Pointers())
span.freeindex = 1
span.allocCount = 1
span.largeType = nil // Tell the GC not to look at this yet.
size = span.elemsize
x := unsafe.Pointer(span.base())
// Ensure that the stores above that initialize x to
// type-safe memory and set the heap bits occur before
// the caller can make x observable to the garbage
// collector. Otherwise, on weakly ordered machines,
// the garbage collector could follow a pointer to x,
// but see uninitialized memory or stale heap bits.
publicationBarrier()
if writeBarrier.enabled {
// Allocate black during GC.
// All slots hold nil so no scanning is needed.
// This may be racing with GC so do it atomically if there can be
// a race marking the bit.
gcmarknewobject(span, uintptr(x))
} else {
// Track the last free index before the mark phase. This field
// is only used by the garbage collector. During the mark phase
// this is used by the conservative scanner to filter out objects
// that are both free and recently-allocated. It's safe to do that
// because we allocate-black if the GC is enabled. The conservative
// scanner produces pointers out of thin air, so without additional
// synchronization it might otherwise observe a partially-initialized
// object, which could crash the program.
span.freeIndexForScan = span.freeindex
}
// Note cache c only valid while m acquired; see #47302
//
// N.B. Use the full size because that matches how the GC
// will update the mem profile on the "free" side.
//
// TODO(mknyszek): We should really count the header as part
// of gc_sys or something. The code below just pretends it is
// internal fragmentation and matches the GC's accounting by
// using the whole allocation slot.
c.nextSample -= int64(size)
if c.nextSample < 0 || MemProfileRate != c.memProfRate {
profilealloc(mp, x, size)
}
mp.mallocing = 0
releasem(mp)
// Check to see if we need to trigger the GC.
if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
gcStart(t)
}
// Objects can be zeroed late in a context where preemption can occur.
// If the object contains pointers, its pointer data must be cleared
// or otherwise indicate that the GC shouldn't scan it.
// x will keep the memory alive.
if noscan := typ == nil || !typ.Pointers(); !noscan || (needzero && span.needzero != 0) {
// N.B. size == fullSize always in this case.
memclrNoHeapPointersChunked(size, x) // This is a possible preemption point: see #47302
// Finish storing the type information for this case.
mp := acquirem()
if !noscan {
getMCache(mp).scanAlloc += heapSetTypeLarge(uintptr(x), size, typ, span)
}
// Publish the object with the now-zeroed memory.
publicationBarrier()
releasem(mp)
}
return x, size
}
func preMallocgcDebug(size uintptr, typ *_type) unsafe.Pointer {
if debug.sbrk != 0 {
align := uintptr(16)
if typ != nil {
// TODO(austin): This should be just
// align = uintptr(typ.align)
// but that's only 4 on 32-bit platforms,
// even if there's a uint64 field in typ (see #599).
// This causes 64-bit atomic accesses to panic.
// Hence, we use stricter alignment that matches
// the normal allocator better.
if size&7 == 0 {
align = 8
} else if size&3 == 0 {
align = 4
} else if size&1 == 0 {
align = 2
} else {
align = 1
}
}
return persistentalloc(size, align, &memstats.other_sys)
}
if inittrace.active && inittrace.id == getg().goid {
// Init functions are executed sequentially in a single goroutine.
inittrace.allocs += 1
}
return nil
}
func postMallocgcDebug(x unsafe.Pointer, elemsize uintptr, typ *_type) {
if inittrace.active && inittrace.id == getg().goid {
// Init functions are executed sequentially in a single goroutine.
inittrace.bytes += uint64(elemsize)
}
if traceAllocFreeEnabled() {
trace := traceAcquire()
if trace.ok() {
trace.HeapObjectAlloc(uintptr(x), typ)
traceRelease(trace)
}
}
}
// deductAssistCredit reduces the current G's assist credit
// by size bytes, and assists the GC if necessary.
//
// Caller must be preemptible.
//
// Returns the G for which the assist credit was accounted.
func deductAssistCredit(size uintptr) {
// Charge the current user G for this allocation.
assistG := getg()
if assistG.m.curg != nil {
assistG = assistG.m.curg
}
// Charge the allocation against the G. We'll account
// for internal fragmentation at the end of mallocgc.
assistG.gcAssistBytes -= int64(size)
if assistG.gcAssistBytes < 0 {
// This G is in debt. Assist the GC to correct
// this before allocating. This must happen
// before disabling preemption.
gcAssistAlloc(assistG)
}
}
// memclrNoHeapPointersChunked repeatedly calls memclrNoHeapPointers
// on chunks of the buffer to be zeroed, with opportunities for preemption
// along the way. memclrNoHeapPointers contains no safepoints and also
// cannot be preemptively scheduled, so this provides a still-efficient
// block copy that can also be preempted on a reasonable granularity.
//
// Use this with care; if the data being cleared is tagged to contain
// pointers, this allows the GC to run before it is all cleared.
func memclrNoHeapPointersChunked(size uintptr, x unsafe.Pointer) {
v := uintptr(x)
// got this from benchmarking. 128k is too small, 512k is too large.
const chunkBytes = 256 * 1024
vsize := v + size
for voff := v; voff < vsize; voff = voff + chunkBytes {
if getg().preempt {
// may hold locks, e.g., profiling
goschedguarded()
}
// clear min(avail, lump) bytes
n := vsize - voff
if n > chunkBytes {
n = chunkBytes
}
memclrNoHeapPointers(unsafe.Pointer(voff), n)
}
}
// implementation of new builtin
// compiler (both frontend and SSA backend) knows the signature
// of this function.
func newobject(typ *_type) unsafe.Pointer {
return mallocgc(typ.Size_, typ, true)
}
//go:linkname maps_newobject internal/runtime/maps.newobject
func maps_newobject(typ *_type) unsafe.Pointer {
return newobject(typ)
}
// reflect_unsafe_New is meant for package reflect,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
// - gitee.com/quant1x/gox
// - github.com/goccy/json
// - github.com/modern-go/reflect2
// - github.com/v2pro/plz
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname reflect_unsafe_New reflect.unsafe_New
func reflect_unsafe_New(typ *_type) unsafe.Pointer {
return mallocgc(typ.Size_, typ, true)
}
//go:linkname reflectlite_unsafe_New internal/reflectlite.unsafe_New
func reflectlite_unsafe_New(typ *_type) unsafe.Pointer {
return mallocgc(typ.Size_, typ, true)
}
// newarray allocates an array of n elements of type typ.
//
// newarray should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
// - github.com/RomiChan/protobuf
// - github.com/segmentio/encoding
// - github.com/ugorji/go/codec
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname newarray
func newarray(typ *_type, n int) unsafe.Pointer {
if n == 1 {
return mallocgc(typ.Size_, typ, true)
}
mem, overflow := math.MulUintptr(typ.Size_, uintptr(n))
if overflow || mem > maxAlloc || n < 0 {
panic(plainError("runtime: allocation size out of range"))
}
return mallocgc(mem, typ, true)
}
// reflect_unsafe_NewArray is meant for package reflect,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
// - gitee.com/quant1x/gox
// - github.com/bytedance/sonic
// - github.com/goccy/json
// - github.com/modern-go/reflect2
// - github.com/segmentio/encoding
// - github.com/segmentio/kafka-go
// - github.com/v2pro/plz
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer {
return newarray(typ, n)
}
//go:linkname maps_newarray internal/runtime/maps.newarray
func maps_newarray(typ *_type, n int) unsafe.Pointer {
return newarray(typ, n)
}
// profilealloc resets the current mcache's nextSample counter and
// records a memory profile sample.
//
// The caller must be non-preemptible and have a P.
func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
c := getMCache(mp)
if c == nil {
throw("profilealloc called without a P or outside bootstrapping")
}
c.memProfRate = MemProfileRate
c.nextSample = nextSample()
mProf_Malloc(mp, x, size)
}
// nextSample returns the next sampling point for heap profiling. The goal is
// to sample allocations on average every MemProfileRate bytes, but with a
// completely random distribution over the allocation timeline; this
// corresponds to a Poisson process with parameter MemProfileRate. In Poisson
// processes, the distance between two samples follows the exponential
// distribution (exp(MemProfileRate)), so the best return value is a random
// number taken from an exponential distribution whose mean is MemProfileRate.
func nextSample() int64 {
if MemProfileRate == 0 {
// Basically never sample.
return math.MaxInt64
}
if MemProfileRate == 1 {
// Sample immediately.
return 0
}
return int64(fastexprand(MemProfileRate))
}
// fastexprand returns a random number from an exponential distribution with
// the specified mean.
func fastexprand(mean int) int32 {
// Avoid overflow. Maximum possible step is
// -ln(1/(1<<randomBitCount)) * mean, approximately 20 * mean.
switch {
case mean > 0x7000000:
mean = 0x7000000
case mean == 0:
return 0
}
// Take a random sample of the exponential distribution exp(-mean*x).
// The probability distribution function is mean*exp(-mean*x), so the CDF is
// p = 1 - exp(-mean*x), so
// q = 1 - p == exp(-mean*x)
// log_e(q) = -mean*x
// -log_e(q)/mean = x
// x = -log_e(q) * mean
// x = log_2(q) * (-log_e(2)) * mean ; Using log_2 for efficiency
const randomBitCount = 26
q := cheaprandn(1<<randomBitCount) + 1
qlog := fastlog2(float64(q)) - randomBitCount
if qlog > 0 {
qlog = 0
}
const minusLog2 = -0.6931471805599453 // -ln(2)
return int32(qlog*(minusLog2*float64(mean))) + 1
}
type persistentAlloc struct {
base *notInHeap
off uintptr
}
var globalAlloc struct {
mutex
persistentAlloc
}
// persistentChunkSize is the number of bytes we allocate when we grow
// a persistentAlloc.
const persistentChunkSize = 256 << 10
// persistentChunks is a list of all the persistent chunks we have
// allocated. The list is maintained through the first word in the
// persistent chunk. This is updated atomically.
var persistentChunks *notInHeap
// Wrapper around sysAlloc that can allocate small chunks.
// There is no associated free operation.
// Intended for things like function/type/debug-related persistent data.
// If align is 0, uses default align (currently 8).
// The returned memory will be zeroed.
// sysStat must be non-nil.
//
// Consider marking persistentalloc'd types not in heap by embedding
// internal/runtime/sys.NotInHeap.
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nosplit
func persistentalloc(size, align uintptr, sysStat *sysMemStat) unsafe.Pointer {
var p *notInHeap
systemstack(func() {
p = persistentalloc1(size, align, sysStat)
})
return unsafe.Pointer(p)
}
// Must run on system stack because stack growth can (re)invoke it.
// See issue 9174.
//
//go:systemstack
func persistentalloc1(size, align uintptr, sysStat *sysMemStat) *notInHeap {
const (
maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
)
if size == 0 {
throw("persistentalloc: size == 0")
}
if align != 0 {
if align&(align-1) != 0 {
throw("persistentalloc: align is not a power of 2")
}
if align > pageSize {
throw("persistentalloc: align is too large")
}
} else {
align = 8
}
if size >= maxBlock {
return (*notInHeap)(sysAlloc(size, sysStat, "immortal metadata"))
}
mp := acquirem()
var persistent *persistentAlloc
if mp != nil && mp.p != 0 {
persistent = &mp.p.ptr().palloc
} else {
lock(&globalAlloc.mutex)
persistent = &globalAlloc.persistentAlloc
}
persistent.off = alignUp(persistent.off, align)
if persistent.off+size > persistentChunkSize || persistent.base == nil {
persistent.base = (*notInHeap)(sysAlloc(persistentChunkSize, &memstats.other_sys, "immortal metadata"))
if persistent.base == nil {
if persistent == &globalAlloc.persistentAlloc {
unlock(&globalAlloc.mutex)
}
throw("runtime: cannot allocate memory")
}
// Add the new chunk to the persistentChunks list.
for {
chunks := uintptr(unsafe.Pointer(persistentChunks))
*(*uintptr)(unsafe.Pointer(persistent.base)) = chunks
if atomic.Casuintptr((*uintptr)(unsafe.Pointer(&persistentChunks)), chunks, uintptr(unsafe.Pointer(persistent.base))) {
break
}
}
persistent.off = alignUp(goarch.PtrSize, align)
}
p := persistent.base.add(persistent.off)
persistent.off += size
releasem(mp)
if persistent == &globalAlloc.persistentAlloc {
unlock(&globalAlloc.mutex)
}
if sysStat != &memstats.other_sys {
sysStat.add(int64(size))
memstats.other_sys.add(-int64(size))
}
return p
}
// inPersistentAlloc reports whether p points to memory allocated by
// persistentalloc. This must be nosplit because it is called by the
// cgo checker code, which is called by the write barrier code.
//
//go:nosplit
func inPersistentAlloc(p uintptr) bool {
chunk := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&persistentChunks)))
for chunk != 0 {
if p >= chunk && p < chunk+persistentChunkSize {
return true
}
chunk = *(*uintptr)(unsafe.Pointer(chunk))
}
return false
}
// linearAlloc is a simple linear allocator that pre-reserves a region
// of memory and then optionally maps that region into the Ready state
// as needed.
//
// The caller is responsible for locking.
type linearAlloc struct {
next uintptr // next free byte
mapped uintptr // one byte past end of mapped space
end uintptr // end of reserved space
mapMemory bool // transition memory from Reserved to Ready if true
}
func (l *linearAlloc) init(base, size uintptr, mapMemory bool) {
if base+size < base {
// Chop off the last byte. The runtime isn't prepared
// to deal with situations where the bounds could overflow.
// Leave that memory reserved, though, so we don't map it
// later.
size -= 1
}
l.next, l.mapped = base, base
l.end = base + size
l.mapMemory = mapMemory
}
func (l *linearAlloc) alloc(size, align uintptr, sysStat *sysMemStat, vmaName string) unsafe.Pointer {
p := alignUp(l.next, align)
if p+size > l.end {
return nil
}
l.next = p + size
if pEnd := alignUp(l.next-1, physPageSize); pEnd > l.mapped {
if l.mapMemory {
// Transition from Reserved to Prepared to Ready.
n := pEnd - l.mapped
sysMap(unsafe.Pointer(l.mapped), n, sysStat, vmaName)
sysUsed(unsafe.Pointer(l.mapped), n, n)
}
l.mapped = pEnd
}
return unsafe.Pointer(p)
}
// notInHeap is off-heap memory allocated by a lower-level allocator
// like sysAlloc or persistentAlloc.
//
// In general, it's better to use real types which embed
// internal/runtime/sys.NotInHeap, but this serves as a generic type
// for situations where that isn't possible (like in the allocators).
//
// TODO: Use this as the return type of sysAlloc, persistentAlloc, etc?
type notInHeap struct{ _ sys.NotInHeap }
func (p *notInHeap) add(bytes uintptr) *notInHeap {
return (*notInHeap)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + bytes))
}
// redZoneSize computes the size of the redzone for a given allocation.
// Refer to the implementation of the compiler-rt.
func redZoneSize(userSize uintptr) uintptr {
switch {
case userSize <= (64 - 16):
return 16 << 0
case userSize <= (128 - 32):
return 16 << 1
case userSize <= (512 - 64):
return 16 << 2
case userSize <= (4096 - 128):
return 16 << 3
case userSize <= (1<<14)-256:
return 16 << 4
case userSize <= (1<<15)-512:
return 16 << 5
case userSize <= (1<<16)-1024:
return 16 << 6
default:
return 16 << 7
}
}