go/src/cmd/compile/internal/gc/sinit.go
Russ Cox 26b66fd60b [dev.regabi] cmd/compile: introduce cmd/compile/internal/base [generated]
Move Flag, Debug, Ctxt, Exit, and error messages to
new package cmd/compile/internal/base.

These are the core functionality that everything in gc uses
and which otherwise prevent splitting any other code
out of gc into different packages.

A minor milestone: the compiler source code
no longer contains the string "yy".

[git-generate]
cd src/cmd/compile/internal/gc
rf '
        mv atExit AtExit
        mv Ctxt atExitFuncs AtExit Exit base.go

        mv lineno Pos
        mv linestr FmtPos
        mv flusherrors FlushErrors
        mv yyerror Errorf
        mv yyerrorl ErrorfAt
        mv yyerrorv ErrorfVers
        mv noder.yyerrorpos noder.errorAt
        mv Warnl WarnfAt
        mv errorexit ErrorExit

        mv base.go debug.go flag.go print.go cmd/compile/internal/base
'

: # update comments
sed -i '' 's/yyerrorl/ErrorfAt/g; s/yyerror/Errorf/g' *.go

: # bootstrap.go is not built by default so invisible to rf
sed -i '' 's/Fatalf/base.Fatalf/' bootstrap.go
goimports -w bootstrap.go

: # update cmd/dist to add internal/base
cd ../../../dist
sed -i '' '/internal.amd64/a\
	"cmd/compile/internal/base",
' buildtool.go
gofmt -w buildtool.go

Change-Id: I59903c7084222d6eaee38823fd222159ba24a31a
Reviewed-on: https://go-review.googlesource.com/c/go/+/272250
Trust: Russ Cox <rsc@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-11-25 16:39:54 +00:00

1175 lines
26 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/base"
"cmd/compile/internal/types"
"cmd/internal/obj"
"fmt"
"go/constant"
)
type InitEntry struct {
Xoffset int64 // struct, array only
Expr *Node // bytes of run-time computed expressions
}
type InitPlan struct {
E []InitEntry
}
// An InitSchedule is used to decompose assignment statements into
// static and dynamic initialization parts. Static initializations are
// handled by populating variables' linker symbol data, while dynamic
// initializations are accumulated to be executed in order.
type InitSchedule struct {
// out is the ordered list of dynamic initialization
// statements.
out []*Node
initplans map[*Node]*InitPlan
inittemps map[*Node]*Node
}
func (s *InitSchedule) append(n *Node) {
s.out = append(s.out, n)
}
// staticInit adds an initialization statement n to the schedule.
func (s *InitSchedule) staticInit(n *Node) {
if !s.tryStaticInit(n) {
if base.Flag.Percent != 0 {
Dump("nonstatic", n)
}
s.append(n)
}
}
// tryStaticInit attempts to statically execute an initialization
// statement and reports whether it succeeded.
func (s *InitSchedule) tryStaticInit(n *Node) bool {
// Only worry about simple "l = r" assignments. Multiple
// variable/expression OAS2 assignments have already been
// replaced by multiple simple OAS assignments, and the other
// OAS2* assignments mostly necessitate dynamic execution
// anyway.
if n.Op != OAS {
return false
}
if n.Left.isBlank() && candiscard(n.Right) {
return true
}
lno := setlineno(n)
defer func() { base.Pos = lno }()
return s.staticassign(n.Left, n.Right)
}
// like staticassign but we are copying an already
// initialized value r.
func (s *InitSchedule) staticcopy(l *Node, r *Node) bool {
if r.Op != ONAME && r.Op != OMETHEXPR {
return false
}
if r.Class() == PFUNC {
pfuncsym(l, r)
return true
}
if r.Class() != PEXTERN || r.Sym.Pkg != localpkg {
return false
}
if r.Name.Defn == nil { // probably zeroed but perhaps supplied externally and of unknown value
return false
}
if r.Name.Defn.Op != OAS {
return false
}
if r.Type.IsString() { // perhaps overwritten by cmd/link -X (#34675)
return false
}
orig := r
r = r.Name.Defn.Right
for r.Op == OCONVNOP && !types.Identical(r.Type, l.Type) {
r = r.Left
}
switch r.Op {
case ONAME, OMETHEXPR:
if s.staticcopy(l, r) {
return true
}
// We may have skipped past one or more OCONVNOPs, so
// use conv to ensure r is assignable to l (#13263).
s.append(nod(OAS, l, conv(r, l.Type)))
return true
case ONIL:
return true
case OLITERAL:
if isZero(r) {
return true
}
litsym(l, r, int(l.Type.Width))
return true
case OADDR:
if a := r.Left; a.Op == ONAME {
addrsym(l, a)
return true
}
case OPTRLIT:
switch r.Left.Op {
case OARRAYLIT, OSLICELIT, OSTRUCTLIT, OMAPLIT:
// copy pointer
addrsym(l, s.inittemps[r])
return true
}
case OSLICELIT:
// copy slice
a := s.inittemps[r]
slicesym(l, a, r.Right.Int64Val())
return true
case OARRAYLIT, OSTRUCTLIT:
p := s.initplans[r]
n := l.copy()
for i := range p.E {
e := &p.E[i]
n.Xoffset = l.Xoffset + e.Xoffset
n.Type = e.Expr.Type
if e.Expr.Op == OLITERAL || e.Expr.Op == ONIL {
litsym(n, e.Expr, int(n.Type.Width))
continue
}
ll := n.sepcopy()
if s.staticcopy(ll, e.Expr) {
continue
}
// Requires computation, but we're
// copying someone else's computation.
rr := orig.sepcopy()
rr.Type = ll.Type
rr.Xoffset += e.Xoffset
setlineno(rr)
s.append(nod(OAS, ll, rr))
}
return true
}
return false
}
func (s *InitSchedule) staticassign(l *Node, r *Node) bool {
for r.Op == OCONVNOP {
r = r.Left
}
switch r.Op {
case ONAME, OMETHEXPR:
return s.staticcopy(l, r)
case ONIL:
return true
case OLITERAL:
if isZero(r) {
return true
}
litsym(l, r, int(l.Type.Width))
return true
case OADDR:
if nam := stataddr(r.Left); nam != nil {
addrsym(l, nam)
return true
}
fallthrough
case OPTRLIT:
switch r.Left.Op {
case OARRAYLIT, OSLICELIT, OMAPLIT, OSTRUCTLIT:
// Init pointer.
a := staticname(r.Left.Type)
s.inittemps[r] = a
addrsym(l, a)
// Init underlying literal.
if !s.staticassign(a, r.Left) {
s.append(nod(OAS, a, r.Left))
}
return true
}
//dump("not static ptrlit", r);
case OSTR2BYTES:
if l.Class() == PEXTERN && r.Left.Op == OLITERAL {
sval := r.Left.StringVal()
slicebytes(l, sval)
return true
}
case OSLICELIT:
s.initplan(r)
// Init slice.
bound := r.Right.Int64Val()
ta := types.NewArray(r.Type.Elem(), bound)
ta.SetNoalg(true)
a := staticname(ta)
s.inittemps[r] = a
slicesym(l, a, bound)
// Fall through to init underlying array.
l = a
fallthrough
case OARRAYLIT, OSTRUCTLIT:
s.initplan(r)
p := s.initplans[r]
n := l.copy()
for i := range p.E {
e := &p.E[i]
n.Xoffset = l.Xoffset + e.Xoffset
n.Type = e.Expr.Type
if e.Expr.Op == OLITERAL || e.Expr.Op == ONIL {
litsym(n, e.Expr, int(n.Type.Width))
continue
}
setlineno(e.Expr)
a := n.sepcopy()
if !s.staticassign(a, e.Expr) {
s.append(nod(OAS, a, e.Expr))
}
}
return true
case OMAPLIT:
break
case OCLOSURE:
if hasemptycvars(r) {
if base.Debug.Closure > 0 {
base.WarnfAt(r.Pos, "closure converted to global")
}
// Closures with no captured variables are globals,
// so the assignment can be done at link time.
pfuncsym(l, r.Func.Nname)
return true
}
closuredebugruntimecheck(r)
case OCONVIFACE:
// This logic is mirrored in isStaticCompositeLiteral.
// If you change something here, change it there, and vice versa.
// Determine the underlying concrete type and value we are converting from.
val := r
for val.Op == OCONVIFACE {
val = val.Left
}
if val.Type.IsInterface() {
// val is an interface type.
// If val is nil, we can statically initialize l;
// both words are zero and so there no work to do, so report success.
// If val is non-nil, we have no concrete type to record,
// and we won't be able to statically initialize its value, so report failure.
return val.Op == ONIL
}
markTypeUsedInInterface(val.Type, l.Sym.Linksym())
var itab *Node
if l.Type.IsEmptyInterface() {
itab = typename(val.Type)
} else {
itab = itabname(val.Type, l.Type)
}
// Create a copy of l to modify while we emit data.
n := l.copy()
// Emit itab, advance offset.
addrsym(n, itab.Left) // itab is an OADDR node
n.Xoffset += int64(Widthptr)
// Emit data.
if isdirectiface(val.Type) {
if val.Op == ONIL {
// Nil is zero, nothing to do.
return true
}
// Copy val directly into n.
n.Type = val.Type
setlineno(val)
a := n.sepcopy()
if !s.staticassign(a, val) {
s.append(nod(OAS, a, val))
}
} else {
// Construct temp to hold val, write pointer to temp into n.
a := staticname(val.Type)
s.inittemps[val] = a
if !s.staticassign(a, val) {
s.append(nod(OAS, a, val))
}
addrsym(n, a)
}
return true
}
//dump("not static", r);
return false
}
// initContext is the context in which static data is populated.
// It is either in an init function or in any other function.
// Static data populated in an init function will be written either
// zero times (as a readonly, static data symbol) or
// one time (during init function execution).
// Either way, there is no opportunity for races or further modification,
// so the data can be written to a (possibly readonly) data symbol.
// Static data populated in any other function needs to be local to
// that function to allow multiple instances of that function
// to execute concurrently without clobbering each others' data.
type initContext uint8
const (
inInitFunction initContext = iota
inNonInitFunction
)
func (c initContext) String() string {
if c == inInitFunction {
return "inInitFunction"
}
return "inNonInitFunction"
}
// from here down is the walk analysis
// of composite literals.
// most of the work is to generate
// data statements for the constant
// part of the composite literal.
var statuniqgen int // name generator for static temps
// staticname returns a name backed by a (writable) static data symbol.
// Use readonlystaticname for read-only node.
func staticname(t *types.Type) *Node {
// Don't use lookupN; it interns the resulting string, but these are all unique.
n := newname(lookup(fmt.Sprintf("%s%d", obj.StaticNamePref, statuniqgen)))
statuniqgen++
addvar(n, t, PEXTERN)
n.Sym.Linksym().Set(obj.AttrLocal, true)
return n
}
// readonlystaticname returns a name backed by a (writable) static data symbol.
func readonlystaticname(t *types.Type) *Node {
n := staticname(t)
n.MarkReadonly()
n.Sym.Linksym().Set(obj.AttrContentAddressable, true)
return n
}
func (n *Node) isSimpleName() bool {
return (n.Op == ONAME || n.Op == OMETHEXPR) && n.Class() != PAUTOHEAP && n.Class() != PEXTERN
}
func litas(l *Node, r *Node, init *Nodes) {
a := nod(OAS, l, r)
a = typecheck(a, ctxStmt)
a = walkexpr(a, init)
init.Append(a)
}
// initGenType is a bitmap indicating the types of generation that will occur for a static value.
type initGenType uint8
const (
initDynamic initGenType = 1 << iota // contains some dynamic values, for which init code will be generated
initConst // contains some constant values, which may be written into data symbols
)
// getdyn calculates the initGenType for n.
// If top is false, getdyn is recursing.
func getdyn(n *Node, top bool) initGenType {
switch n.Op {
default:
if n.isGoConst() {
return initConst
}
return initDynamic
case OSLICELIT:
if !top {
return initDynamic
}
if n.Right.Int64Val()/4 > int64(n.List.Len()) {
// <25% of entries have explicit values.
// Very rough estimation, it takes 4 bytes of instructions
// to initialize 1 byte of result. So don't use a static
// initializer if the dynamic initialization code would be
// smaller than the static value.
// See issue 23780.
return initDynamic
}
case OARRAYLIT, OSTRUCTLIT:
}
var mode initGenType
for _, n1 := range n.List.Slice() {
switch n1.Op {
case OKEY:
n1 = n1.Right
case OSTRUCTKEY:
n1 = n1.Left
}
mode |= getdyn(n1, false)
if mode == initDynamic|initConst {
break
}
}
return mode
}
// isStaticCompositeLiteral reports whether n is a compile-time constant.
func isStaticCompositeLiteral(n *Node) bool {
switch n.Op {
case OSLICELIT:
return false
case OARRAYLIT:
for _, r := range n.List.Slice() {
if r.Op == OKEY {
r = r.Right
}
if !isStaticCompositeLiteral(r) {
return false
}
}
return true
case OSTRUCTLIT:
for _, r := range n.List.Slice() {
if r.Op != OSTRUCTKEY {
base.Fatalf("isStaticCompositeLiteral: rhs not OSTRUCTKEY: %v", r)
}
if !isStaticCompositeLiteral(r.Left) {
return false
}
}
return true
case OLITERAL, ONIL:
return true
case OCONVIFACE:
// See staticassign's OCONVIFACE case for comments.
val := n
for val.Op == OCONVIFACE {
val = val.Left
}
if val.Type.IsInterface() {
return val.Op == ONIL
}
if isdirectiface(val.Type) && val.Op == ONIL {
return true
}
return isStaticCompositeLiteral(val)
}
return false
}
// initKind is a kind of static initialization: static, dynamic, or local.
// Static initialization represents literals and
// literal components of composite literals.
// Dynamic initialization represents non-literals and
// non-literal components of composite literals.
// LocalCode initialization represents initialization
// that occurs purely in generated code local to the function of use.
// Initialization code is sometimes generated in passes,
// first static then dynamic.
type initKind uint8
const (
initKindStatic initKind = iota + 1
initKindDynamic
initKindLocalCode
)
// fixedlit handles struct, array, and slice literals.
// TODO: expand documentation.
func fixedlit(ctxt initContext, kind initKind, n *Node, var_ *Node, init *Nodes) {
isBlank := var_ == nblank
var splitnode func(*Node) (a *Node, value *Node)
switch n.Op {
case OARRAYLIT, OSLICELIT:
var k int64
splitnode = func(r *Node) (*Node, *Node) {
if r.Op == OKEY {
k = indexconst(r.Left)
if k < 0 {
base.Fatalf("fixedlit: invalid index %v", r.Left)
}
r = r.Right
}
a := nod(OINDEX, var_, nodintconst(k))
k++
if isBlank {
a = nblank
}
return a, r
}
case OSTRUCTLIT:
splitnode = func(r *Node) (*Node, *Node) {
if r.Op != OSTRUCTKEY {
base.Fatalf("fixedlit: rhs not OSTRUCTKEY: %v", r)
}
if r.Sym.IsBlank() || isBlank {
return nblank, r.Left
}
setlineno(r)
return nodSym(ODOT, var_, r.Sym), r.Left
}
default:
base.Fatalf("fixedlit bad op: %v", n.Op)
}
for _, r := range n.List.Slice() {
a, value := splitnode(r)
if a == nblank && candiscard(value) {
continue
}
switch value.Op {
case OSLICELIT:
if (kind == initKindStatic && ctxt == inNonInitFunction) || (kind == initKindDynamic && ctxt == inInitFunction) {
slicelit(ctxt, value, a, init)
continue
}
case OARRAYLIT, OSTRUCTLIT:
fixedlit(ctxt, kind, value, a, init)
continue
}
islit := value.isGoConst()
if (kind == initKindStatic && !islit) || (kind == initKindDynamic && islit) {
continue
}
// build list of assignments: var[index] = expr
setlineno(a)
a = nod(OAS, a, value)
a = typecheck(a, ctxStmt)
switch kind {
case initKindStatic:
genAsStatic(a)
case initKindDynamic, initKindLocalCode:
a = orderStmtInPlace(a, map[string][]*Node{})
a = walkstmt(a)
init.Append(a)
default:
base.Fatalf("fixedlit: bad kind %d", kind)
}
}
}
func isSmallSliceLit(n *Node) bool {
if n.Op != OSLICELIT {
return false
}
r := n.Right
return smallintconst(r) && (n.Type.Elem().Width == 0 || r.Int64Val() <= smallArrayBytes/n.Type.Elem().Width)
}
func slicelit(ctxt initContext, n *Node, var_ *Node, init *Nodes) {
// make an array type corresponding the number of elements we have
t := types.NewArray(n.Type.Elem(), n.Right.Int64Val())
dowidth(t)
if ctxt == inNonInitFunction {
// put everything into static array
vstat := staticname(t)
fixedlit(ctxt, initKindStatic, n, vstat, init)
fixedlit(ctxt, initKindDynamic, n, vstat, init)
// copy static to slice
var_ = typecheck(var_, ctxExpr|ctxAssign)
nam := stataddr(var_)
if nam == nil || nam.Class() != PEXTERN {
base.Fatalf("slicelit: %v", var_)
}
slicesym(nam, vstat, t.NumElem())
return
}
// recipe for var = []t{...}
// 1. make a static array
// var vstat [...]t
// 2. assign (data statements) the constant part
// vstat = constpart{}
// 3. make an auto pointer to array and allocate heap to it
// var vauto *[...]t = new([...]t)
// 4. copy the static array to the auto array
// *vauto = vstat
// 5. for each dynamic part assign to the array
// vauto[i] = dynamic part
// 6. assign slice of allocated heap to var
// var = vauto[:]
//
// an optimization is done if there is no constant part
// 3. var vauto *[...]t = new([...]t)
// 5. vauto[i] = dynamic part
// 6. var = vauto[:]
// if the literal contains constants,
// make static initialized array (1),(2)
var vstat *Node
mode := getdyn(n, true)
if mode&initConst != 0 && !isSmallSliceLit(n) {
if ctxt == inInitFunction {
vstat = readonlystaticname(t)
} else {
vstat = staticname(t)
}
fixedlit(ctxt, initKindStatic, n, vstat, init)
}
// make new auto *array (3 declare)
vauto := temp(types.NewPtr(t))
// set auto to point at new temp or heap (3 assign)
var a *Node
if x := prealloc[n]; x != nil {
// temp allocated during order.go for dddarg
if !types.Identical(t, x.Type) {
panic("dotdotdot base type does not match order's assigned type")
}
if vstat == nil {
a = nod(OAS, x, nil)
a = typecheck(a, ctxStmt)
init.Append(a) // zero new temp
} else {
// Declare that we're about to initialize all of x.
// (Which happens at the *vauto = vstat below.)
init.Append(nod(OVARDEF, x, nil))
}
a = nod(OADDR, x, nil)
} else if n.Esc == EscNone {
a = temp(t)
if vstat == nil {
a = nod(OAS, temp(t), nil)
a = typecheck(a, ctxStmt)
init.Append(a) // zero new temp
a = a.Left
} else {
init.Append(nod(OVARDEF, a, nil))
}
a = nod(OADDR, a, nil)
} else {
a = nod(ONEW, nil, nil)
a.List.Set1(typenod(t))
}
a = nod(OAS, vauto, a)
a = typecheck(a, ctxStmt)
a = walkexpr(a, init)
init.Append(a)
if vstat != nil {
// copy static to heap (4)
a = nod(ODEREF, vauto, nil)
a = nod(OAS, a, vstat)
a = typecheck(a, ctxStmt)
a = walkexpr(a, init)
init.Append(a)
}
// put dynamics into array (5)
var index int64
for _, value := range n.List.Slice() {
if value.Op == OKEY {
index = indexconst(value.Left)
if index < 0 {
base.Fatalf("slicelit: invalid index %v", value.Left)
}
value = value.Right
}
a := nod(OINDEX, vauto, nodintconst(index))
a.SetBounded(true)
index++
// TODO need to check bounds?
switch value.Op {
case OSLICELIT:
break
case OARRAYLIT, OSTRUCTLIT:
k := initKindDynamic
if vstat == nil {
// Generate both static and dynamic initializations.
// See issue #31987.
k = initKindLocalCode
}
fixedlit(ctxt, k, value, a, init)
continue
}
if vstat != nil && value.isGoConst() { // already set by copy from static value
continue
}
// build list of vauto[c] = expr
setlineno(value)
a = nod(OAS, a, value)
a = typecheck(a, ctxStmt)
a = orderStmtInPlace(a, map[string][]*Node{})
a = walkstmt(a)
init.Append(a)
}
// make slice out of heap (6)
a = nod(OAS, var_, nod(OSLICE, vauto, nil))
a = typecheck(a, ctxStmt)
a = orderStmtInPlace(a, map[string][]*Node{})
a = walkstmt(a)
init.Append(a)
}
func maplit(n *Node, m *Node, init *Nodes) {
// make the map var
a := nod(OMAKE, nil, nil)
a.Esc = n.Esc
a.List.Set2(typenod(n.Type), nodintconst(int64(n.List.Len())))
litas(m, a, init)
entries := n.List.Slice()
// The order pass already removed any dynamic (runtime-computed) entries.
// All remaining entries are static. Double-check that.
for _, r := range entries {
if !isStaticCompositeLiteral(r.Left) || !isStaticCompositeLiteral(r.Right) {
base.Fatalf("maplit: entry is not a literal: %v", r)
}
}
if len(entries) > 25 {
// For a large number of entries, put them in an array and loop.
// build types [count]Tindex and [count]Tvalue
tk := types.NewArray(n.Type.Key(), int64(len(entries)))
te := types.NewArray(n.Type.Elem(), int64(len(entries)))
tk.SetNoalg(true)
te.SetNoalg(true)
dowidth(tk)
dowidth(te)
// make and initialize static arrays
vstatk := readonlystaticname(tk)
vstate := readonlystaticname(te)
datak := nod(OARRAYLIT, nil, nil)
datae := nod(OARRAYLIT, nil, nil)
for _, r := range entries {
datak.List.Append(r.Left)
datae.List.Append(r.Right)
}
fixedlit(inInitFunction, initKindStatic, datak, vstatk, init)
fixedlit(inInitFunction, initKindStatic, datae, vstate, init)
// loop adding structure elements to map
// for i = 0; i < len(vstatk); i++ {
// map[vstatk[i]] = vstate[i]
// }
i := temp(types.Types[TINT])
rhs := nod(OINDEX, vstate, i)
rhs.SetBounded(true)
kidx := nod(OINDEX, vstatk, i)
kidx.SetBounded(true)
lhs := nod(OINDEX, m, kidx)
zero := nod(OAS, i, nodintconst(0))
cond := nod(OLT, i, nodintconst(tk.NumElem()))
incr := nod(OAS, i, nod(OADD, i, nodintconst(1)))
body := nod(OAS, lhs, rhs)
loop := nod(OFOR, cond, incr)
loop.Nbody.Set1(body)
loop.Ninit.Set1(zero)
loop = typecheck(loop, ctxStmt)
loop = walkstmt(loop)
init.Append(loop)
return
}
// For a small number of entries, just add them directly.
// Build list of var[c] = expr.
// Use temporaries so that mapassign1 can have addressable key, elem.
// TODO(josharian): avoid map key temporaries for mapfast_* assignments with literal keys.
tmpkey := temp(m.Type.Key())
tmpelem := temp(m.Type.Elem())
for _, r := range entries {
index, elem := r.Left, r.Right
setlineno(index)
a := nod(OAS, tmpkey, index)
a = typecheck(a, ctxStmt)
a = walkstmt(a)
init.Append(a)
setlineno(elem)
a = nod(OAS, tmpelem, elem)
a = typecheck(a, ctxStmt)
a = walkstmt(a)
init.Append(a)
setlineno(tmpelem)
a = nod(OAS, nod(OINDEX, m, tmpkey), tmpelem)
a = typecheck(a, ctxStmt)
a = walkstmt(a)
init.Append(a)
}
a = nod(OVARKILL, tmpkey, nil)
a = typecheck(a, ctxStmt)
init.Append(a)
a = nod(OVARKILL, tmpelem, nil)
a = typecheck(a, ctxStmt)
init.Append(a)
}
func anylit(n *Node, var_ *Node, init *Nodes) {
t := n.Type
switch n.Op {
default:
base.Fatalf("anylit: not lit, op=%v node=%v", n.Op, n)
case ONAME, OMETHEXPR:
a := nod(OAS, var_, n)
a = typecheck(a, ctxStmt)
init.Append(a)
case OPTRLIT:
if !t.IsPtr() {
base.Fatalf("anylit: not ptr")
}
var r *Node
if n.Right != nil {
// n.Right is stack temporary used as backing store.
init.Append(nod(OAS, n.Right, nil)) // zero backing store, just in case (#18410)
r = nod(OADDR, n.Right, nil)
r = typecheck(r, ctxExpr)
} else {
r = nod(ONEW, nil, nil)
r.SetTypecheck(1)
r.Type = t
r.Esc = n.Esc
}
r = walkexpr(r, init)
a := nod(OAS, var_, r)
a = typecheck(a, ctxStmt)
init.Append(a)
var_ = nod(ODEREF, var_, nil)
var_ = typecheck(var_, ctxExpr|ctxAssign)
anylit(n.Left, var_, init)
case OSTRUCTLIT, OARRAYLIT:
if !t.IsStruct() && !t.IsArray() {
base.Fatalf("anylit: not struct/array")
}
if var_.isSimpleName() && n.List.Len() > 4 {
// lay out static data
vstat := readonlystaticname(t)
ctxt := inInitFunction
if n.Op == OARRAYLIT {
ctxt = inNonInitFunction
}
fixedlit(ctxt, initKindStatic, n, vstat, init)
// copy static to var
a := nod(OAS, var_, vstat)
a = typecheck(a, ctxStmt)
a = walkexpr(a, init)
init.Append(a)
// add expressions to automatic
fixedlit(inInitFunction, initKindDynamic, n, var_, init)
break
}
var components int64
if n.Op == OARRAYLIT {
components = t.NumElem()
} else {
components = int64(t.NumFields())
}
// initialization of an array or struct with unspecified components (missing fields or arrays)
if var_.isSimpleName() || int64(n.List.Len()) < components {
a := nod(OAS, var_, nil)
a = typecheck(a, ctxStmt)
a = walkexpr(a, init)
init.Append(a)
}
fixedlit(inInitFunction, initKindLocalCode, n, var_, init)
case OSLICELIT:
slicelit(inInitFunction, n, var_, init)
case OMAPLIT:
if !t.IsMap() {
base.Fatalf("anylit: not map")
}
maplit(n, var_, init)
}
}
func oaslit(n *Node, init *Nodes) bool {
if n.Left == nil || n.Right == nil {
// not a special composite literal assignment
return false
}
if n.Left.Type == nil || n.Right.Type == nil {
// not a special composite literal assignment
return false
}
if !n.Left.isSimpleName() {
// not a special composite literal assignment
return false
}
if !types.Identical(n.Left.Type, n.Right.Type) {
// not a special composite literal assignment
return false
}
switch n.Right.Op {
default:
// not a special composite literal assignment
return false
case OSTRUCTLIT, OARRAYLIT, OSLICELIT, OMAPLIT:
if vmatch1(n.Left, n.Right) {
// not a special composite literal assignment
return false
}
anylit(n.Right, n.Left, init)
}
n.Op = OEMPTY
n.Right = nil
return true
}
func getlit(lit *Node) int {
if smallintconst(lit) {
return int(lit.Int64Val())
}
return -1
}
// stataddr returns the static address of n, if n has one, or else nil.
func stataddr(n *Node) *Node {
if n == nil {
return nil
}
switch n.Op {
case ONAME, OMETHEXPR:
return n.sepcopy()
case ODOT:
nam := stataddr(n.Left)
if nam == nil {
break
}
nam.Xoffset += n.Xoffset
nam.Type = n.Type
return nam
case OINDEX:
if n.Left.Type.IsSlice() {
break
}
nam := stataddr(n.Left)
if nam == nil {
break
}
l := getlit(n.Right)
if l < 0 {
break
}
// Check for overflow.
if n.Type.Width != 0 && thearch.MAXWIDTH/n.Type.Width <= int64(l) {
break
}
nam.Xoffset += int64(l) * n.Type.Width
nam.Type = n.Type
return nam
}
return nil
}
func (s *InitSchedule) initplan(n *Node) {
if s.initplans[n] != nil {
return
}
p := new(InitPlan)
s.initplans[n] = p
switch n.Op {
default:
base.Fatalf("initplan")
case OARRAYLIT, OSLICELIT:
var k int64
for _, a := range n.List.Slice() {
if a.Op == OKEY {
k = indexconst(a.Left)
if k < 0 {
base.Fatalf("initplan arraylit: invalid index %v", a.Left)
}
a = a.Right
}
s.addvalue(p, k*n.Type.Elem().Width, a)
k++
}
case OSTRUCTLIT:
for _, a := range n.List.Slice() {
if a.Op != OSTRUCTKEY {
base.Fatalf("initplan structlit")
}
if a.Sym.IsBlank() {
continue
}
s.addvalue(p, a.Xoffset, a.Left)
}
case OMAPLIT:
for _, a := range n.List.Slice() {
if a.Op != OKEY {
base.Fatalf("initplan maplit")
}
s.addvalue(p, -1, a.Right)
}
}
}
func (s *InitSchedule) addvalue(p *InitPlan, xoffset int64, n *Node) {
// special case: zero can be dropped entirely
if isZero(n) {
return
}
// special case: inline struct and array (not slice) literals
if isvaluelit(n) {
s.initplan(n)
q := s.initplans[n]
for _, qe := range q.E {
// qe is a copy; we are not modifying entries in q.E
qe.Xoffset += xoffset
p.E = append(p.E, qe)
}
return
}
// add to plan
p.E = append(p.E, InitEntry{Xoffset: xoffset, Expr: n})
}
func isZero(n *Node) bool {
switch n.Op {
case ONIL:
return true
case OLITERAL:
switch u := n.Val(); u.Kind() {
case constant.String:
return constant.StringVal(u) == ""
case constant.Bool:
return !constant.BoolVal(u)
default:
return constant.Sign(u) == 0
}
case OARRAYLIT:
for _, n1 := range n.List.Slice() {
if n1.Op == OKEY {
n1 = n1.Right
}
if !isZero(n1) {
return false
}
}
return true
case OSTRUCTLIT:
for _, n1 := range n.List.Slice() {
if !isZero(n1.Left) {
return false
}
}
return true
}
return false
}
func isvaluelit(n *Node) bool {
return n.Op == OARRAYLIT || n.Op == OSTRUCTLIT
}
func genAsStatic(as *Node) {
if as.Left.Type == nil {
base.Fatalf("genAsStatic as.Left not typechecked")
}
nam := stataddr(as.Left)
if nam == nil || (nam.Class() != PEXTERN && as.Left != nblank) {
base.Fatalf("genAsStatic: lhs %v", as.Left)
}
switch {
case as.Right.Op == OLITERAL:
litsym(nam, as.Right, int(as.Right.Type.Width))
case (as.Right.Op == ONAME || as.Right.Op == OMETHEXPR) && as.Right.Class() == PFUNC:
pfuncsym(nam, as.Right)
default:
base.Fatalf("genAsStatic: rhs %v", as.Right)
}
}