go/src/cmd/compile/internal/noder/expr.go
Dan Scales 1c783dc148 [dev.typeparams] Add optional sub-dict entry for typeparam bound calls
In the case that a generic function/method f does a method call on a
type param allowed by its bound, an instantiation of f may do a direct
method call of a concrete type or a method call defined on a generic
type, depending on whether the passed type in a concrete type or an
instantiated type with the appropriate method defined. See the test case
boundmethod.go added to this change.

In order to keep the dictionary format the same for all instantiations
of a generic function/method, I decided to have an optional
sub-dictionary entry for "bounds" calls. At the point that we are
creating the actual dictionary, we can then fill in the needed
sub-dictionary, if the type arg is an instantiated type, or a zeroed
dictionary entry, if type arg is not instantiated and the method will be
on a concrete type.

In order to implement this, I now fill in n.Selection for "bounds"
method calls in generic functions as well. Also, I need to calculate
n.Selection correctly during import for the case where it is now set -
method calls on generic types, and bounds calls on typeparams.

With this change, the dictionaries/sub-dictionaries are correct for
absdiff.go. The new test boundmethod.go illustrates the case where the
bound sub-dict entry is not used for a dictionary for stringify[myint],
but is used for a dictionary for stringify[StringInt[myint]].

Change-Id: Ie2bcb971b7019a9f1da68c97eb03da2333327457
Reviewed-on: https://go-review.googlesource.com/c/go/+/333456
Run-TryBot: Dan Scales <danscales@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Trust: Dan Scales <danscales@google.com>
2021-07-12 16:09:57 +00:00

472 lines
14 KiB
Go

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"fmt"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
func (g *irgen) expr(expr syntax.Expr) ir.Node {
expr = unparen(expr) // skip parens; unneeded after parse+typecheck
if expr == nil {
return nil
}
if expr, ok := expr.(*syntax.Name); ok && expr.Value == "_" {
return ir.BlankNode
}
tv, ok := g.info.Types[expr]
if !ok {
base.FatalfAt(g.pos(expr), "missing type for %v (%T)", expr, expr)
}
switch {
case tv.IsBuiltin():
// Qualified builtins, such as unsafe.Add and unsafe.Slice.
if expr, ok := expr.(*syntax.SelectorExpr); ok {
if name, ok := expr.X.(*syntax.Name); ok {
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
return g.use(expr.Sel)
}
}
}
return g.use(expr.(*syntax.Name))
case tv.IsType():
return ir.TypeNode(g.typ(tv.Type))
case tv.IsValue(), tv.IsVoid():
// ok
default:
base.FatalfAt(g.pos(expr), "unrecognized type-checker result")
}
// The gc backend expects all expressions to have a concrete type, and
// types2 mostly satisfies this expectation already. But there are a few
// cases where the Go spec doesn't require converting to concrete type,
// and so types2 leaves them untyped. So we need to fix those up here.
typ := tv.Type
if basic, ok := typ.(*types2.Basic); ok && basic.Info()&types2.IsUntyped != 0 {
switch basic.Kind() {
case types2.UntypedNil:
// ok; can appear in type switch case clauses
// TODO(mdempsky): Handle as part of type switches instead?
case types2.UntypedBool:
typ = types2.Typ[types2.Bool] // expression in "if" or "for" condition
case types2.UntypedString:
typ = types2.Typ[types2.String] // argument to "append" or "copy" calls
default:
base.FatalfAt(g.pos(expr), "unexpected untyped type: %v", basic)
}
}
// Constant expression.
if tv.Value != nil {
typ := g.typ(typ)
value := FixValue(typ, tv.Value)
return OrigConst(g.pos(expr), typ, value, constExprOp(expr), syntax.String(expr))
}
n := g.expr0(typ, expr)
if n.Typecheck() != 1 && n.Typecheck() != 3 {
base.FatalfAt(g.pos(expr), "missed typecheck: %+v", n)
}
if !g.match(n.Type(), typ, tv.HasOk()) {
base.FatalfAt(g.pos(expr), "expected %L to have type %v", n, typ)
}
return n
}
func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
pos := g.pos(expr)
switch expr := expr.(type) {
case *syntax.Name:
if _, isNil := g.info.Uses[expr].(*types2.Nil); isNil {
return Nil(pos, g.typ(typ))
}
return g.use(expr)
case *syntax.CompositeLit:
return g.compLit(typ, expr)
case *syntax.FuncLit:
return g.funcLit(typ, expr)
case *syntax.AssertExpr:
return Assert(pos, g.expr(expr.X), g.typeExpr(expr.Type))
case *syntax.CallExpr:
fun := g.expr(expr.Fun)
// The key for the Inferred map is the CallExpr (if inferring
// types required the function arguments) or the IndexExpr below
// (if types could be inferred without the function arguments).
if inferred, ok := g.info.Inferred[expr]; ok && len(inferred.TArgs) > 0 {
// This is the case where inferring types required the
// types of the function arguments.
targs := make([]ir.Node, len(inferred.TArgs))
for i, targ := range inferred.TArgs {
targs[i] = ir.TypeNode(g.typ(targ))
}
if fun.Op() == ir.OFUNCINST {
// Replace explicit type args with the full list that
// includes the additional inferred type args
fun.(*ir.InstExpr).Targs = targs
} else {
// Create a function instantiation here, given
// there are only inferred type args (e.g.
// min(5,6), where min is a generic function)
inst := ir.NewInstExpr(pos, ir.OFUNCINST, fun, targs)
typed(fun.Type(), inst)
fun = inst
}
}
return Call(pos, g.typ(typ), fun, g.exprs(expr.ArgList), expr.HasDots)
case *syntax.IndexExpr:
var targs []ir.Node
if inferred, ok := g.info.Inferred[expr]; ok && len(inferred.TArgs) > 0 {
// This is the partial type inference case where the types
// can be inferred from other type arguments without using
// the types of the function arguments.
targs = make([]ir.Node, len(inferred.TArgs))
for i, targ := range inferred.TArgs {
targs[i] = ir.TypeNode(g.typ(targ))
}
} else if _, ok := expr.Index.(*syntax.ListExpr); ok {
targs = g.exprList(expr.Index)
} else {
index := g.expr(expr.Index)
if index.Op() != ir.OTYPE {
// This is just a normal index expression
return Index(pos, g.typ(typ), g.expr(expr.X), index)
}
// This is generic function instantiation with a single type
targs = []ir.Node{index}
}
// This is a generic function instantiation (e.g. min[int]).
// Generic type instantiation is handled in the type
// section of expr() above (using g.typ).
x := g.expr(expr.X)
if x.Op() != ir.ONAME || x.Type().Kind() != types.TFUNC {
panic("Incorrect argument for generic func instantiation")
}
n := ir.NewInstExpr(pos, ir.OFUNCINST, x, targs)
typed(g.typ(typ), n)
return n
case *syntax.SelectorExpr:
// Qualified identifier.
if name, ok := expr.X.(*syntax.Name); ok {
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
return g.use(expr.Sel)
}
}
return g.selectorExpr(pos, typ, expr)
case *syntax.SliceExpr:
return Slice(pos, g.typ(typ), g.expr(expr.X), g.expr(expr.Index[0]), g.expr(expr.Index[1]), g.expr(expr.Index[2]))
case *syntax.Operation:
if expr.Y == nil {
return Unary(pos, g.typ(typ), g.op(expr.Op, unOps[:]), g.expr(expr.X))
}
switch op := g.op(expr.Op, binOps[:]); op {
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
return Compare(pos, g.typ(typ), op, g.expr(expr.X), g.expr(expr.Y))
default:
return Binary(pos, op, g.typ(typ), g.expr(expr.X), g.expr(expr.Y))
}
default:
g.unhandled("expression", expr)
panic("unreachable")
}
}
// selectorExpr resolves the choice of ODOT, ODOTPTR, OMETHVALUE (eventually
// ODOTMETH & ODOTINTER), and OMETHEXPR and deals with embedded fields here rather
// than in typecheck.go.
func (g *irgen) selectorExpr(pos src.XPos, typ types2.Type, expr *syntax.SelectorExpr) ir.Node {
x := g.expr(expr.X)
if x.Type().HasTParam() {
// Leave a method call on a type param as an OXDOT, since it can
// only be fully transformed once it has an instantiated type.
n := ir.NewSelectorExpr(pos, ir.OXDOT, x, typecheck.Lookup(expr.Sel.Value))
typed(g.typ(typ), n)
// Fill in n.Selection for a generic method reference or a bound
// interface method, even though we won't use it directly, since it
// is useful for analysis. Specifically do not fill in for fields or
// other interfaces methods (method call on an interface value), so
// n.Selection being non-nil means a method reference for a generic
// type or a method reference due to a bound.
obj2 := g.info.Selections[expr].Obj()
sig := types2.AsSignature(obj2.Type())
if sig == nil || sig.Recv() == nil {
return n
}
index := g.info.Selections[expr].Index()
last := index[len(index)-1]
// recvType is the receiver of the method being called. Because of the
// way methods are imported, g.obj(obj2) doesn't work across
// packages, so we have to lookup the method via the receiver type.
recvType := deref2(sig.Recv().Type())
if types2.AsInterface(recvType.Underlying()) != nil {
fieldType := n.X.Type()
for _, ix := range index[:len(index)-1] {
fieldType = fieldType.Field(ix).Type
}
if fieldType.Kind() == types.TTYPEPARAM {
n.Selection = fieldType.Bound().AllMethods().Index(last)
//fmt.Printf(">>>>> %v: Bound call %v\n", base.FmtPos(pos), n.Sel)
} else {
assert(fieldType.Kind() == types.TINTER)
//fmt.Printf(">>>>> %v: Interface call %v\n", base.FmtPos(pos), n.Sel)
}
return n
}
recvObj := types2.AsNamed(recvType).Obj()
recv := g.pkg(recvObj.Pkg()).Lookup(recvObj.Name()).Def
n.Selection = recv.Type().Methods().Index(last)
//fmt.Printf(">>>>> %v: Method call %v\n", base.FmtPos(pos), n.Sel)
return n
}
selinfo := g.info.Selections[expr]
// Everything up to the last selection is an implicit embedded field access,
// and the last selection is determined by selinfo.Kind().
index := selinfo.Index()
embeds, last := index[:len(index)-1], index[len(index)-1]
origx := x
for _, ix := range embeds {
x = Implicit(DotField(pos, x, ix))
}
kind := selinfo.Kind()
if kind == types2.FieldVal {
return DotField(pos, x, last)
}
// TODO(danscales,mdempsky): Interface method sets are not sorted the
// same between types and types2. In particular, using "last" here
// without conversion will likely fail if an interface contains
// unexported methods from two different packages (due to cross-package
// interface embedding).
var n ir.Node
method2 := selinfo.Obj().(*types2.Func)
if kind == types2.MethodExpr {
// OMETHEXPR is unusual in using directly the node and type of the
// original OTYPE node (origx) before passing through embedded
// fields, even though the method is selected from the type
// (x.Type()) reached after following the embedded fields. We will
// actually drop any ODOT nodes we created due to the embedded
// fields.
n = MethodExpr(pos, origx, x.Type(), last)
} else {
// Add implicit addr/deref for method values, if needed.
if x.Type().IsInterface() {
n = DotMethod(pos, x, last)
} else {
recvType2 := method2.Type().(*types2.Signature).Recv().Type()
_, wantPtr := recvType2.(*types2.Pointer)
havePtr := x.Type().IsPtr()
if havePtr != wantPtr {
if havePtr {
x = Implicit(Deref(pos, x.Type().Elem(), x))
} else {
x = Implicit(Addr(pos, x))
}
}
recvType2Base := recvType2
if wantPtr {
recvType2Base = types2.AsPointer(recvType2).Elem()
}
if len(types2.AsNamed(recvType2Base).TParams()) > 0 {
// recvType2 is the original generic type that is
// instantiated for this method call.
// selinfo.Recv() is the instantiated type
recvType2 = recvType2Base
recvTypeSym := g.pkg(method2.Pkg()).Lookup(recvType2.(*types2.Named).Obj().Name())
recvType := recvTypeSym.Def.(*ir.Name).Type()
// method is the generic method associated with
// the base generic type. The instantiated type may not
// have method bodies filled in, if it was imported.
method := recvType.Methods().Index(last).Nname.(*ir.Name)
n = ir.NewSelectorExpr(pos, ir.OMETHVALUE, x, typecheck.Lookup(expr.Sel.Value))
n.(*ir.SelectorExpr).Selection = types.NewField(pos, method.Sym(), method.Type())
n.(*ir.SelectorExpr).Selection.Nname = method
typed(method.Type(), n)
// selinfo.Targs() are the types used to
// instantiate the type of receiver
targs2 := getTargs(selinfo)
targs := make([]ir.Node, len(targs2))
for i, targ2 := range targs2 {
targs[i] = ir.TypeNode(g.typ(targ2))
}
// Create function instantiation with the type
// args for the receiver type for the method call.
n = ir.NewInstExpr(pos, ir.OFUNCINST, n, targs)
typed(g.typ(typ), n)
return n
}
if !g.match(x.Type(), recvType2, false) {
base.FatalfAt(pos, "expected %L to have type %v", x, recvType2)
} else {
n = DotMethod(pos, x, last)
}
}
}
if have, want := n.Sym(), g.selector(method2); have != want {
base.FatalfAt(pos, "bad Sym: have %v, want %v", have, want)
}
return n
}
// getTargs gets the targs associated with the receiver of a selected method
func getTargs(selinfo *types2.Selection) []types2.Type {
r := deref2(selinfo.Recv())
n := types2.AsNamed(r)
if n == nil {
base.Fatalf("Incorrect type for selinfo %v", selinfo)
}
return n.TArgs()
}
func (g *irgen) exprList(expr syntax.Expr) []ir.Node {
return g.exprs(unpackListExpr(expr))
}
func unpackListExpr(expr syntax.Expr) []syntax.Expr {
switch expr := expr.(type) {
case nil:
return nil
case *syntax.ListExpr:
return expr.ElemList
default:
return []syntax.Expr{expr}
}
}
func (g *irgen) exprs(exprs []syntax.Expr) []ir.Node {
nodes := make([]ir.Node, len(exprs))
for i, expr := range exprs {
nodes[i] = g.expr(expr)
}
return nodes
}
func (g *irgen) compLit(typ types2.Type, lit *syntax.CompositeLit) ir.Node {
if ptr, ok := typ.Underlying().(*types2.Pointer); ok {
n := ir.NewAddrExpr(g.pos(lit), g.compLit(ptr.Elem(), lit))
n.SetOp(ir.OPTRLIT)
return typed(g.typ(typ), n)
}
_, isStruct := typ.Underlying().(*types2.Struct)
exprs := make([]ir.Node, len(lit.ElemList))
for i, elem := range lit.ElemList {
switch elem := elem.(type) {
case *syntax.KeyValueExpr:
var key ir.Node
if isStruct {
key = ir.NewIdent(g.pos(elem.Key), g.name(elem.Key.(*syntax.Name)))
} else {
key = g.expr(elem.Key)
}
exprs[i] = ir.NewKeyExpr(g.pos(elem), key, g.expr(elem.Value))
default:
exprs[i] = g.expr(elem)
}
}
n := ir.NewCompLitExpr(g.pos(lit), ir.OCOMPLIT, nil, exprs)
typed(g.typ(typ), n)
return transformCompLit(n)
}
func (g *irgen) funcLit(typ2 types2.Type, expr *syntax.FuncLit) ir.Node {
fn := ir.NewClosureFunc(g.pos(expr), ir.CurFunc != nil)
ir.NameClosure(fn.OClosure, ir.CurFunc)
typ := g.typ(typ2)
typed(typ, fn.Nname)
typed(typ, fn.OClosure)
fn.SetTypecheck(1)
g.funcBody(fn, nil, expr.Type, expr.Body)
ir.FinishCaptureNames(fn.Pos(), ir.CurFunc, fn)
// TODO(mdempsky): ir.CaptureName should probably handle
// copying these fields from the canonical variable.
for _, cv := range fn.ClosureVars {
cv.SetType(cv.Canonical().Type())
cv.SetTypecheck(1)
cv.SetWalkdef(1)
}
return ir.UseClosure(fn.OClosure, g.target)
}
func (g *irgen) typeExpr(typ syntax.Expr) *types.Type {
n := g.expr(typ)
if n.Op() != ir.OTYPE {
base.FatalfAt(g.pos(typ), "expected type: %L", n)
}
return n.Type()
}
// constExprOp returns an ir.Op that represents the outermost
// operation of the given constant expression. It's intended for use
// with ir.RawOrigExpr.
func constExprOp(expr syntax.Expr) ir.Op {
switch expr := expr.(type) {
default:
panic(fmt.Sprintf("%s: unexpected expression: %T", expr.Pos(), expr))
case *syntax.BasicLit:
return ir.OLITERAL
case *syntax.Name, *syntax.SelectorExpr:
return ir.ONAME
case *syntax.CallExpr:
return ir.OCALL
case *syntax.Operation:
if expr.Y == nil {
return unOps[expr.Op]
}
return binOps[expr.Op]
}
}
func unparen(expr syntax.Expr) syntax.Expr {
for {
paren, ok := expr.(*syntax.ParenExpr)
if !ok {
return expr
}
expr = paren.X
}
}