mirror of
				https://github.com/golang/go.git
				synced 2025-10-31 16:50:58 +00:00 
			
		
		
		
	 2b50ab2aee
			
		
	
	
		2b50ab2aee
		
	
	
	
	
		
			
			Add generic rule to rewrite the single-precision square root expression with one single-precision instruction. The optimization will reduce two times of precision converting between double-precision and single-precision. On arm64 flatform. previous: FCVTSD F0, F0 FSQRTD F0, F0 FCVTDS F0, F0 optimized: FSQRTS S0, S0 And this patch adds the test case to check the correctness. This patch refers to CL 241877, contributed by Alice Xu (dianhong.xu@arm.com) Change-Id: I6de5d02281c693017ac4bd4c10963dd55989bd7e Reviewed-on: https://go-review.googlesource.com/c/go/+/276873 Trust: fannie zhang <Fannie.Zhang@arm.com> Run-TryBot: fannie zhang <Fannie.Zhang@arm.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Keith Randall <khr@golang.org>
		
			
				
	
	
		
			228 lines
		
	
	
	
		
			5.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			228 lines
		
	
	
	
		
			5.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // asmcheck
 | |
| 
 | |
| // Copyright 2018 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package codegen
 | |
| 
 | |
| import "math"
 | |
| 
 | |
| var sink64 [8]float64
 | |
| 
 | |
| func approx(x float64) {
 | |
| 	// s390x:"FIDBR\t[$]6"
 | |
| 	// arm64:"FRINTPD"
 | |
| 	// ppc64:"FRIP"
 | |
| 	// ppc64le:"FRIP"
 | |
| 	// wasm:"F64Ceil"
 | |
| 	sink64[0] = math.Ceil(x)
 | |
| 
 | |
| 	// s390x:"FIDBR\t[$]7"
 | |
| 	// arm64:"FRINTMD"
 | |
| 	// ppc64:"FRIM"
 | |
| 	// ppc64le:"FRIM"
 | |
| 	// wasm:"F64Floor"
 | |
| 	sink64[1] = math.Floor(x)
 | |
| 
 | |
| 	// s390x:"FIDBR\t[$]1"
 | |
| 	// arm64:"FRINTAD"
 | |
| 	// ppc64:"FRIN"
 | |
| 	// ppc64le:"FRIN"
 | |
| 	sink64[2] = math.Round(x)
 | |
| 
 | |
| 	// s390x:"FIDBR\t[$]5"
 | |
| 	// arm64:"FRINTZD"
 | |
| 	// ppc64:"FRIZ"
 | |
| 	// ppc64le:"FRIZ"
 | |
| 	// wasm:"F64Trunc"
 | |
| 	sink64[3] = math.Trunc(x)
 | |
| 
 | |
| 	// s390x:"FIDBR\t[$]4"
 | |
| 	// arm64:"FRINTND"
 | |
| 	// wasm:"F64Nearest"
 | |
| 	sink64[4] = math.RoundToEven(x)
 | |
| }
 | |
| 
 | |
| func sqrt(x float64) float64 {
 | |
| 	// amd64:"SQRTSD"
 | |
| 	// 386/sse2:"SQRTSD" 386/softfloat:-"SQRTD"
 | |
| 	// arm64:"FSQRTD"
 | |
| 	// arm/7:"SQRTD"
 | |
| 	// mips/hardfloat:"SQRTD" mips/softfloat:-"SQRTD"
 | |
| 	// mips64/hardfloat:"SQRTD" mips64/softfloat:-"SQRTD"
 | |
| 	// wasm:"F64Sqrt"
 | |
| 	return math.Sqrt(x)
 | |
| }
 | |
| 
 | |
| func sqrt32(x float32) float32 {
 | |
| 	// amd64:"SQRTSS"
 | |
| 	// 386/sse2:"SQRTSS" 386/softfloat:-"SQRTS"
 | |
| 	// arm64:"FSQRTS"
 | |
| 	// arm/7:"SQRTF"
 | |
| 	// mips/hardfloat:"SQRTF" mips/softfloat:-"SQRTF"
 | |
| 	// mips64/hardfloat:"SQRTF" mips64/softfloat:-"SQRTF"
 | |
| 	// wasm:"F32Sqrt"
 | |
| 	return float32(math.Sqrt(float64(x)))
 | |
| }
 | |
| 
 | |
| // Check that it's using integer registers
 | |
| func abs(x, y float64) {
 | |
| 	// amd64:"BTRQ\t[$]63"
 | |
| 	// arm64:"FABSD\t"
 | |
| 	// s390x:"LPDFR\t",-"MOVD\t"     (no integer load/store)
 | |
| 	// ppc64:"FABS\t"
 | |
| 	// ppc64le:"FABS\t"
 | |
| 	// wasm:"F64Abs"
 | |
| 	// arm/6:"ABSD\t"
 | |
| 	sink64[0] = math.Abs(x)
 | |
| 
 | |
| 	// amd64:"BTRQ\t[$]63","PXOR"    (TODO: this should be BTSQ)
 | |
| 	// s390x:"LNDFR\t",-"MOVD\t"     (no integer load/store)
 | |
| 	// ppc64:"FNABS\t"
 | |
| 	// ppc64le:"FNABS\t"
 | |
| 	sink64[1] = -math.Abs(y)
 | |
| }
 | |
| 
 | |
| // Check that it's using integer registers
 | |
| func abs32(x float32) float32 {
 | |
| 	// s390x:"LPDFR",-"LDEBR",-"LEDBR"     (no float64 conversion)
 | |
| 	return float32(math.Abs(float64(x)))
 | |
| }
 | |
| 
 | |
| // Check that it's using integer registers
 | |
| func copysign(a, b, c float64) {
 | |
| 	// amd64:"BTRQ\t[$]63","ANDQ","ORQ"
 | |
| 	// s390x:"CPSDR",-"MOVD"         (no integer load/store)
 | |
| 	// ppc64:"FCPSGN"
 | |
| 	// ppc64le:"FCPSGN"
 | |
| 	// wasm:"F64Copysign"
 | |
| 	sink64[0] = math.Copysign(a, b)
 | |
| 
 | |
| 	// amd64:"BTSQ\t[$]63"
 | |
| 	// s390x:"LNDFR\t",-"MOVD\t"     (no integer load/store)
 | |
| 	// ppc64:"FCPSGN"
 | |
| 	// ppc64le:"FCPSGN"
 | |
| 	// arm64:"ORR", -"AND"
 | |
| 	sink64[1] = math.Copysign(c, -1)
 | |
| 
 | |
| 	// Like math.Copysign(c, -1), but with integer operations. Useful
 | |
| 	// for platforms that have a copysign opcode to see if it's detected.
 | |
| 	// s390x:"LNDFR\t",-"MOVD\t"     (no integer load/store)
 | |
| 	sink64[2] = math.Float64frombits(math.Float64bits(a) | 1<<63)
 | |
| 
 | |
| 	// amd64:"ANDQ","ORQ"
 | |
| 	// s390x:"CPSDR\t",-"MOVD\t"     (no integer load/store)
 | |
| 	// ppc64:"FCPSGN"
 | |
| 	// ppc64le:"FCPSGN"
 | |
| 	sink64[3] = math.Copysign(-1, c)
 | |
| }
 | |
| 
 | |
| func fma(x, y, z float64) float64 {
 | |
| 	// amd64:"VFMADD231SD"
 | |
| 	// arm/6:"FMULAD"
 | |
| 	// arm64:"FMADDD"
 | |
| 	// s390x:"FMADD"
 | |
| 	// ppc64:"FMADD"
 | |
| 	// ppc64le:"FMADD"
 | |
| 	return math.FMA(x, y, z)
 | |
| }
 | |
| 
 | |
| func fromFloat64(f64 float64) uint64 {
 | |
| 	// amd64:"MOVQ\tX.*, [^X].*"
 | |
| 	// arm64:"FMOVD\tF.*, R.*"
 | |
| 	// ppc64:"MFVSRD"
 | |
| 	// ppc64le:"MFVSRD"
 | |
| 	return math.Float64bits(f64+1) + 1
 | |
| }
 | |
| 
 | |
| func fromFloat32(f32 float32) uint32 {
 | |
| 	// amd64:"MOVL\tX.*, [^X].*"
 | |
| 	// arm64:"FMOVS\tF.*, R.*"
 | |
| 	return math.Float32bits(f32+1) + 1
 | |
| }
 | |
| 
 | |
| func toFloat64(u64 uint64) float64 {
 | |
| 	// amd64:"MOVQ\t[^X].*, X.*"
 | |
| 	// arm64:"FMOVD\tR.*, F.*"
 | |
| 	// ppc64:"MTVSRD"
 | |
| 	// ppc64le:"MTVSRD"
 | |
| 	return math.Float64frombits(u64+1) + 1
 | |
| }
 | |
| 
 | |
| func toFloat32(u32 uint32) float32 {
 | |
| 	// amd64:"MOVL\t[^X].*, X.*"
 | |
| 	// arm64:"FMOVS\tR.*, F.*"
 | |
| 	return math.Float32frombits(u32+1) + 1
 | |
| }
 | |
| 
 | |
| // Test that comparisons with constants converted to float
 | |
| // are evaluated at compile-time
 | |
| 
 | |
| func constantCheck64() bool {
 | |
| 	// amd64:"MOVB\t[$]0",-"FCMP",-"MOVB\t[$]1"
 | |
| 	// s390x:"MOV(B|BZ|D)\t[$]0,",-"FCMPU",-"MOV(B|BZ|D)\t[$]1,"
 | |
| 	return 0.5 == float64(uint32(1)) || 1.5 > float64(uint64(1<<63))
 | |
| }
 | |
| 
 | |
| func constantCheck32() bool {
 | |
| 	// amd64:"MOVB\t[$]1",-"FCMP",-"MOVB\t[$]0"
 | |
| 	// s390x:"MOV(B|BZ|D)\t[$]1,",-"FCMPU",-"MOV(B|BZ|D)\t[$]0,"
 | |
| 	return float32(0.5) <= float32(int64(1)) && float32(1.5) >= float32(int32(-1<<31))
 | |
| }
 | |
| 
 | |
| // Test that integer constants are converted to floating point constants
 | |
| // at compile-time
 | |
| 
 | |
| func constantConvert32(x float32) float32 {
 | |
| 	// amd64:"MOVSS\t[$]f32.3f800000\\(SB\\)"
 | |
| 	// s390x:"FMOVS\t[$]f32.3f800000\\(SB\\)"
 | |
| 	// ppc64:"FMOVS\t[$]f32.3f800000\\(SB\\)"
 | |
| 	// ppc64le:"FMOVS\t[$]f32.3f800000\\(SB\\)"
 | |
| 	// arm64:"FMOVS\t[$]\\(1.0\\)"
 | |
| 	if x > math.Float32frombits(0x3f800000) {
 | |
| 		return -x
 | |
| 	}
 | |
| 	return x
 | |
| }
 | |
| 
 | |
| func constantConvertInt32(x uint32) uint32 {
 | |
| 	// amd64:-"MOVSS"
 | |
| 	// s390x:-"FMOVS"
 | |
| 	// ppc64:-"FMOVS"
 | |
| 	// ppc64le:-"FMOVS"
 | |
| 	// arm64:-"FMOVS"
 | |
| 	if x > math.Float32bits(1) {
 | |
| 		return -x
 | |
| 	}
 | |
| 	return x
 | |
| }
 | |
| 
 | |
| func nanGenerate64() float64 {
 | |
| 	// Test to make sure we don't generate a NaN while constant propagating.
 | |
| 	// See issue 36400.
 | |
| 	zero := 0.0
 | |
| 	// amd64:-"DIVSD"
 | |
| 	inf := 1 / zero // +inf. We can constant propagate this one.
 | |
| 	negone := -1.0
 | |
| 
 | |
| 	// amd64:"DIVSD"
 | |
| 	z0 := zero / zero
 | |
| 	// amd64:"MULSD"
 | |
| 	z1 := zero * inf
 | |
| 	// amd64:"SQRTSD"
 | |
| 	z2 := math.Sqrt(negone)
 | |
| 	return z0 + z1 + z2
 | |
| }
 | |
| 
 | |
| func nanGenerate32() float32 {
 | |
| 	zero := float32(0.0)
 | |
| 	// amd64:-"DIVSS"
 | |
| 	inf := 1 / zero // +inf. We can constant propagate this one.
 | |
| 
 | |
| 	// amd64:"DIVSS"
 | |
| 	z0 := zero / zero
 | |
| 	// amd64:"MULSS"
 | |
| 	z1 := zero * inf
 | |
| 	return z0 + z1
 | |
| }
 |