mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
For symmetry with go/types.Identical. Passes toolstash-check. Change-Id: Id19c3956e44ed8e2d9f203d15824322cc5842d3d Reviewed-on: https://go-review.googlesource.com/c/143180 Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
1333 lines
36 KiB
Go
1333 lines
36 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/src"
|
|
"fmt"
|
|
)
|
|
|
|
// Rewrite tree to use separate statements to enforce
|
|
// order of evaluation. Makes walk easier, because it
|
|
// can (after this runs) reorder at will within an expression.
|
|
//
|
|
// Rewrite m[k] op= r into m[k] = m[k] op r if op is / or %.
|
|
//
|
|
// Introduce temporaries as needed by runtime routines.
|
|
// For example, the map runtime routines take the map key
|
|
// by reference, so make sure all map keys are addressable
|
|
// by copying them to temporaries as needed.
|
|
// The same is true for channel operations.
|
|
//
|
|
// Arrange that map index expressions only appear in direct
|
|
// assignments x = m[k] or m[k] = x, never in larger expressions.
|
|
//
|
|
// Arrange that receive expressions only appear in direct assignments
|
|
// x = <-c or as standalone statements <-c, never in larger expressions.
|
|
|
|
// TODO(rsc): The temporary introduction during multiple assignments
|
|
// should be moved into this file, so that the temporaries can be cleaned
|
|
// and so that conversions implicit in the OAS2FUNC and OAS2RECV
|
|
// nodes can be made explicit and then have their temporaries cleaned.
|
|
|
|
// TODO(rsc): Goto and multilevel break/continue can jump over
|
|
// inserted VARKILL annotations. Work out a way to handle these.
|
|
// The current implementation is safe, in that it will execute correctly.
|
|
// But it won't reuse temporaries as aggressively as it might, and
|
|
// it can result in unnecessary zeroing of those variables in the function
|
|
// prologue.
|
|
|
|
// Order holds state during the ordering process.
|
|
type Order struct {
|
|
out []*Node // list of generated statements
|
|
temp []*Node // stack of temporary variables
|
|
free map[string][]*Node // free list of unused temporaries, by type.LongString().
|
|
}
|
|
|
|
// Order rewrites fn.Nbody to apply the ordering constraints
|
|
// described in the comment at the top of the file.
|
|
func order(fn *Node) {
|
|
if Debug['W'] > 1 {
|
|
s := fmt.Sprintf("\nbefore order %v", fn.Func.Nname.Sym)
|
|
dumplist(s, fn.Nbody)
|
|
}
|
|
|
|
orderBlock(&fn.Nbody, map[string][]*Node{})
|
|
}
|
|
|
|
// newTemp allocates a new temporary with the given type,
|
|
// pushes it onto the temp stack, and returns it.
|
|
// If clear is true, newTemp emits code to zero the temporary.
|
|
func (o *Order) newTemp(t *types.Type, clear bool) *Node {
|
|
var v *Node
|
|
// Note: LongString is close to the type equality we want,
|
|
// but not exactly. We still need to double-check with eqtype.
|
|
key := t.LongString()
|
|
a := o.free[key]
|
|
for i, n := range a {
|
|
if types.Identical(t, n.Type) {
|
|
v = a[i]
|
|
a[i] = a[len(a)-1]
|
|
a = a[:len(a)-1]
|
|
o.free[key] = a
|
|
break
|
|
}
|
|
}
|
|
if v == nil {
|
|
v = temp(t)
|
|
}
|
|
if clear {
|
|
a := nod(OAS, v, nil)
|
|
a = typecheck(a, Etop)
|
|
o.out = append(o.out, a)
|
|
}
|
|
|
|
o.temp = append(o.temp, v)
|
|
return v
|
|
}
|
|
|
|
// copyExpr behaves like ordertemp but also emits
|
|
// code to initialize the temporary to the value n.
|
|
//
|
|
// The clear argument is provided for use when the evaluation
|
|
// of tmp = n turns into a function call that is passed a pointer
|
|
// to the temporary as the output space. If the call blocks before
|
|
// tmp has been written, the garbage collector will still treat the
|
|
// temporary as live, so we must zero it before entering that call.
|
|
// Today, this only happens for channel receive operations.
|
|
// (The other candidate would be map access, but map access
|
|
// returns a pointer to the result data instead of taking a pointer
|
|
// to be filled in.)
|
|
func (o *Order) copyExpr(n *Node, t *types.Type, clear bool) *Node {
|
|
v := o.newTemp(t, clear)
|
|
a := nod(OAS, v, n)
|
|
a = typecheck(a, Etop)
|
|
o.out = append(o.out, a)
|
|
return v
|
|
}
|
|
|
|
// cheapExpr returns a cheap version of n.
|
|
// The definition of cheap is that n is a variable or constant.
|
|
// If not, cheapExpr allocates a new tmp, emits tmp = n,
|
|
// and then returns tmp.
|
|
func (o *Order) cheapExpr(n *Node) *Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
switch n.Op {
|
|
case ONAME, OLITERAL:
|
|
return n
|
|
case OLEN, OCAP:
|
|
l := o.cheapExpr(n.Left)
|
|
if l == n.Left {
|
|
return n
|
|
}
|
|
a := n.sepcopy()
|
|
a.Left = l
|
|
return typecheck(a, Erv)
|
|
}
|
|
|
|
return o.copyExpr(n, n.Type, false)
|
|
}
|
|
|
|
// safeExpr returns a safe version of n.
|
|
// The definition of safe is that n can appear multiple times
|
|
// without violating the semantics of the original program,
|
|
// and that assigning to the safe version has the same effect
|
|
// as assigning to the original n.
|
|
//
|
|
// The intended use is to apply to x when rewriting x += y into x = x + y.
|
|
func (o *Order) safeExpr(n *Node) *Node {
|
|
switch n.Op {
|
|
case ONAME, OLITERAL:
|
|
return n
|
|
|
|
case ODOT, OLEN, OCAP:
|
|
l := o.safeExpr(n.Left)
|
|
if l == n.Left {
|
|
return n
|
|
}
|
|
a := n.sepcopy()
|
|
a.Left = l
|
|
return typecheck(a, Erv)
|
|
|
|
case ODOTPTR, OIND:
|
|
l := o.cheapExpr(n.Left)
|
|
if l == n.Left {
|
|
return n
|
|
}
|
|
a := n.sepcopy()
|
|
a.Left = l
|
|
return typecheck(a, Erv)
|
|
|
|
case OINDEX, OINDEXMAP:
|
|
var l *Node
|
|
if n.Left.Type.IsArray() {
|
|
l = o.safeExpr(n.Left)
|
|
} else {
|
|
l = o.cheapExpr(n.Left)
|
|
}
|
|
r := o.cheapExpr(n.Right)
|
|
if l == n.Left && r == n.Right {
|
|
return n
|
|
}
|
|
a := n.sepcopy()
|
|
a.Left = l
|
|
a.Right = r
|
|
return typecheck(a, Erv)
|
|
|
|
default:
|
|
Fatalf("ordersafeexpr %v", n.Op)
|
|
return nil // not reached
|
|
}
|
|
}
|
|
|
|
// Isaddrokay reports whether it is okay to pass n's address to runtime routines.
|
|
// Taking the address of a variable makes the liveness and optimization analyses
|
|
// lose track of where the variable's lifetime ends. To avoid hurting the analyses
|
|
// of ordinary stack variables, those are not 'isaddrokay'. Temporaries are okay,
|
|
// because we emit explicit VARKILL instructions marking the end of those
|
|
// temporaries' lifetimes.
|
|
func isaddrokay(n *Node) bool {
|
|
return islvalue(n) && (n.Op != ONAME || n.Class() == PEXTERN || n.IsAutoTmp())
|
|
}
|
|
|
|
// addrTemp ensures that n is okay to pass by address to runtime routines.
|
|
// If the original argument n is not okay, addrTemp creates a tmp, emits
|
|
// tmp = n, and then returns tmp.
|
|
// The result of addrTemp MUST be assigned back to n, e.g.
|
|
// n.Left = o.addrTemp(n.Left)
|
|
func (o *Order) addrTemp(n *Node) *Node {
|
|
if consttype(n) > 0 {
|
|
// TODO: expand this to all static composite literal nodes?
|
|
n = defaultlit(n, nil)
|
|
dowidth(n.Type)
|
|
vstat := staticname(n.Type)
|
|
vstat.Name.SetReadonly(true)
|
|
var out []*Node
|
|
staticassign(vstat, n, &out)
|
|
if out != nil {
|
|
Fatalf("staticassign of const generated code: %+v", n)
|
|
}
|
|
vstat = typecheck(vstat, Erv)
|
|
return vstat
|
|
}
|
|
if isaddrokay(n) {
|
|
return n
|
|
}
|
|
return o.copyExpr(n, n.Type, false)
|
|
}
|
|
|
|
// mapKeyTemp prepares n to be a key in a map runtime call and returns n.
|
|
// It should only be used for map runtime calls which have *_fast* versions.
|
|
func (o *Order) mapKeyTemp(t *types.Type, n *Node) *Node {
|
|
// Most map calls need to take the address of the key.
|
|
// Exception: map*_fast* calls. See golang.org/issue/19015.
|
|
if mapfast(t) == mapslow {
|
|
return o.addrTemp(n)
|
|
}
|
|
return n
|
|
}
|
|
|
|
// mapKeyReplaceStrConv replaces OARRAYBYTESTR by OARRAYBYTESTRTMP
|
|
// in n to avoid string allocations for keys in map lookups.
|
|
// Returns a bool that signals if a modification was made.
|
|
//
|
|
// For:
|
|
// x = m[string(k)]
|
|
// x = m[T1{... Tn{..., string(k), ...}]
|
|
// where k is []byte, T1 to Tn is a nesting of struct and array literals,
|
|
// the allocation of backing bytes for the string can be avoided
|
|
// by reusing the []byte backing array. These are special cases
|
|
// for avoiding allocations when converting byte slices to strings.
|
|
// It would be nice to handle these generally, but because
|
|
// []byte keys are not allowed in maps, the use of string(k)
|
|
// comes up in important cases in practice. See issue 3512.
|
|
func mapKeyReplaceStrConv(n *Node) bool {
|
|
var replaced bool
|
|
switch n.Op {
|
|
case OARRAYBYTESTR:
|
|
n.Op = OARRAYBYTESTRTMP
|
|
replaced = true
|
|
case OSTRUCTLIT:
|
|
for _, elem := range n.List.Slice() {
|
|
if mapKeyReplaceStrConv(elem.Left) {
|
|
replaced = true
|
|
}
|
|
}
|
|
case OARRAYLIT:
|
|
for _, elem := range n.List.Slice() {
|
|
if elem.Op == OKEY {
|
|
elem = elem.Right
|
|
}
|
|
if mapKeyReplaceStrConv(elem) {
|
|
replaced = true
|
|
}
|
|
}
|
|
}
|
|
return replaced
|
|
}
|
|
|
|
type ordermarker int
|
|
|
|
// Marktemp returns the top of the temporary variable stack.
|
|
func (o *Order) markTemp() ordermarker {
|
|
return ordermarker(len(o.temp))
|
|
}
|
|
|
|
// Poptemp pops temporaries off the stack until reaching the mark,
|
|
// which must have been returned by marktemp.
|
|
func (o *Order) popTemp(mark ordermarker) {
|
|
for _, n := range o.temp[mark:] {
|
|
key := n.Type.LongString()
|
|
o.free[key] = append(o.free[key], n)
|
|
}
|
|
o.temp = o.temp[:mark]
|
|
}
|
|
|
|
// Cleantempnopop emits VARKILL and if needed VARLIVE instructions
|
|
// to *out for each temporary above the mark on the temporary stack.
|
|
// It does not pop the temporaries from the stack.
|
|
func (o *Order) cleanTempNoPop(mark ordermarker) []*Node {
|
|
var out []*Node
|
|
for i := len(o.temp) - 1; i >= int(mark); i-- {
|
|
n := o.temp[i]
|
|
if n.Name.Keepalive() {
|
|
n.Name.SetKeepalive(false)
|
|
n.SetAddrtaken(true) // ensure SSA keeps the n variable
|
|
live := nod(OVARLIVE, n, nil)
|
|
live = typecheck(live, Etop)
|
|
out = append(out, live)
|
|
}
|
|
kill := nod(OVARKILL, n, nil)
|
|
kill = typecheck(kill, Etop)
|
|
out = append(out, kill)
|
|
}
|
|
return out
|
|
}
|
|
|
|
// cleanTemp emits VARKILL instructions for each temporary above the
|
|
// mark on the temporary stack and removes them from the stack.
|
|
func (o *Order) cleanTemp(top ordermarker) {
|
|
o.out = append(o.out, o.cleanTempNoPop(top)...)
|
|
o.popTemp(top)
|
|
}
|
|
|
|
// stmtList orders each of the statements in the list.
|
|
func (o *Order) stmtList(l Nodes) {
|
|
for _, n := range l.Slice() {
|
|
o.stmt(n)
|
|
}
|
|
}
|
|
|
|
// orderBlock orders the block of statements in n into a new slice,
|
|
// and then replaces the old slice in n with the new slice.
|
|
// free is a map that can be used to obtain temporary variables by type.
|
|
func orderBlock(n *Nodes, free map[string][]*Node) {
|
|
var order Order
|
|
order.free = free
|
|
mark := order.markTemp()
|
|
order.stmtList(*n)
|
|
order.cleanTemp(mark)
|
|
n.Set(order.out)
|
|
}
|
|
|
|
// exprInPlace orders the side effects in *np and
|
|
// leaves them as the init list of the final *np.
|
|
// The result of exprInPlace MUST be assigned back to n, e.g.
|
|
// n.Left = o.exprInPlace(n.Left)
|
|
func (o *Order) exprInPlace(n *Node) *Node {
|
|
var order Order
|
|
order.free = o.free
|
|
n = order.expr(n, nil)
|
|
n = addinit(n, order.out)
|
|
|
|
// insert new temporaries from order
|
|
// at head of outer list.
|
|
o.temp = append(o.temp, order.temp...)
|
|
return n
|
|
}
|
|
|
|
// orderStmtInPlace orders the side effects of the single statement *np
|
|
// and replaces it with the resulting statement list.
|
|
// The result of orderStmtInPlace MUST be assigned back to n, e.g.
|
|
// n.Left = orderStmtInPlace(n.Left)
|
|
// free is a map that can be used to obtain temporary variables by type.
|
|
func orderStmtInPlace(n *Node, free map[string][]*Node) *Node {
|
|
var order Order
|
|
order.free = free
|
|
mark := order.markTemp()
|
|
order.stmt(n)
|
|
order.cleanTemp(mark)
|
|
return liststmt(order.out)
|
|
}
|
|
|
|
// init moves n's init list to o.out.
|
|
func (o *Order) init(n *Node) {
|
|
if n.mayBeShared() {
|
|
// For concurrency safety, don't mutate potentially shared nodes.
|
|
// First, ensure that no work is required here.
|
|
if n.Ninit.Len() > 0 {
|
|
Fatalf("orderinit shared node with ninit")
|
|
}
|
|
return
|
|
}
|
|
o.stmtList(n.Ninit)
|
|
n.Ninit.Set(nil)
|
|
}
|
|
|
|
// Ismulticall reports whether the list l is f() for a multi-value function.
|
|
// Such an f() could appear as the lone argument to a multi-arg function.
|
|
func ismulticall(l Nodes) bool {
|
|
// one arg only
|
|
if l.Len() != 1 {
|
|
return false
|
|
}
|
|
n := l.First()
|
|
|
|
// must be call
|
|
switch n.Op {
|
|
default:
|
|
return false
|
|
case OCALLFUNC, OCALLMETH, OCALLINTER:
|
|
// call must return multiple values
|
|
return n.Left.Type.NumResults() > 1
|
|
}
|
|
}
|
|
|
|
// copyRet emits t1, t2, ... = n, where n is a function call,
|
|
// and then returns the list t1, t2, ....
|
|
func (o *Order) copyRet(n *Node) []*Node {
|
|
if !n.Type.IsFuncArgStruct() {
|
|
Fatalf("copyret %v %d", n.Type, n.Left.Type.NumResults())
|
|
}
|
|
|
|
var l1, l2 []*Node
|
|
for _, f := range n.Type.Fields().Slice() {
|
|
tmp := temp(f.Type)
|
|
l1 = append(l1, tmp)
|
|
l2 = append(l2, tmp)
|
|
}
|
|
|
|
as := nod(OAS2, nil, nil)
|
|
as.List.Set(l1)
|
|
as.Rlist.Set1(n)
|
|
as = typecheck(as, Etop)
|
|
o.stmt(as)
|
|
|
|
return l2
|
|
}
|
|
|
|
// callArgs orders the list of call arguments *l.
|
|
func (o *Order) callArgs(l *Nodes) {
|
|
if ismulticall(*l) {
|
|
// return f() where f() is multiple values.
|
|
l.Set(o.copyRet(l.First()))
|
|
} else {
|
|
o.exprList(*l)
|
|
}
|
|
}
|
|
|
|
// call orders the call expression n.
|
|
// n.Op is OCALLMETH/OCALLFUNC/OCALLINTER or a builtin like OCOPY.
|
|
func (o *Order) call(n *Node) {
|
|
n.Left = o.expr(n.Left, nil)
|
|
n.Right = o.expr(n.Right, nil) // ODDDARG temp
|
|
o.callArgs(&n.List)
|
|
|
|
if n.Op != OCALLFUNC {
|
|
return
|
|
}
|
|
keepAlive := func(i int) {
|
|
// If the argument is really a pointer being converted to uintptr,
|
|
// arrange for the pointer to be kept alive until the call returns,
|
|
// by copying it into a temp and marking that temp
|
|
// still alive when we pop the temp stack.
|
|
xp := n.List.Addr(i)
|
|
for (*xp).Op == OCONVNOP && !(*xp).Type.IsUnsafePtr() {
|
|
xp = &(*xp).Left
|
|
}
|
|
x := *xp
|
|
if x.Type.IsUnsafePtr() {
|
|
x = o.copyExpr(x, x.Type, false)
|
|
x.Name.SetKeepalive(true)
|
|
*xp = x
|
|
}
|
|
}
|
|
|
|
for i, t := range n.Left.Type.Params().FieldSlice() {
|
|
// Check for "unsafe-uintptr" tag provided by escape analysis.
|
|
if t.Isddd() && !n.Isddd() {
|
|
if t.Note == uintptrEscapesTag {
|
|
for ; i < n.List.Len(); i++ {
|
|
keepAlive(i)
|
|
}
|
|
}
|
|
} else {
|
|
if t.Note == unsafeUintptrTag || t.Note == uintptrEscapesTag {
|
|
keepAlive(i)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// mapAssign appends n to o.out, introducing temporaries
|
|
// to make sure that all map assignments have the form m[k] = x.
|
|
// (Note: expr has already been called on n, so we know k is addressable.)
|
|
//
|
|
// If n is the multiple assignment form ..., m[k], ... = ..., x, ..., the rewrite is
|
|
// t1 = m
|
|
// t2 = k
|
|
// ...., t3, ... = ..., x, ...
|
|
// t1[t2] = t3
|
|
//
|
|
// The temporaries t1, t2 are needed in case the ... being assigned
|
|
// contain m or k. They are usually unnecessary, but in the unnecessary
|
|
// cases they are also typically registerizable, so not much harm done.
|
|
// And this only applies to the multiple-assignment form.
|
|
// We could do a more precise analysis if needed, like in walk.go.
|
|
func (o *Order) mapAssign(n *Node) {
|
|
switch n.Op {
|
|
default:
|
|
Fatalf("ordermapassign %v", n.Op)
|
|
|
|
case OAS, OASOP:
|
|
if n.Left.Op == OINDEXMAP {
|
|
// Make sure we evaluate the RHS before starting the map insert.
|
|
// We need to make sure the RHS won't panic. See issue 22881.
|
|
if n.Right.Op == OAPPEND {
|
|
s := n.Right.List.Slice()[1:]
|
|
for i, n := range s {
|
|
s[i] = o.cheapExpr(n)
|
|
}
|
|
} else {
|
|
n.Right = o.cheapExpr(n.Right)
|
|
}
|
|
}
|
|
o.out = append(o.out, n)
|
|
|
|
case OAS2, OAS2DOTTYPE, OAS2MAPR, OAS2FUNC:
|
|
var post []*Node
|
|
for i, m := range n.List.Slice() {
|
|
switch {
|
|
case m.Op == OINDEXMAP:
|
|
if !m.Left.IsAutoTmp() {
|
|
m.Left = o.copyExpr(m.Left, m.Left.Type, false)
|
|
}
|
|
if !m.Right.IsAutoTmp() {
|
|
m.Right = o.copyExpr(m.Right, m.Right.Type, false)
|
|
}
|
|
fallthrough
|
|
case instrumenting && n.Op == OAS2FUNC && !m.isBlank():
|
|
t := o.newTemp(m.Type, false)
|
|
n.List.SetIndex(i, t)
|
|
a := nod(OAS, m, t)
|
|
a = typecheck(a, Etop)
|
|
post = append(post, a)
|
|
}
|
|
}
|
|
|
|
o.out = append(o.out, n)
|
|
o.out = append(o.out, post...)
|
|
}
|
|
}
|
|
|
|
// stmt orders the statement n, appending to o.out.
|
|
// Temporaries created during the statement are cleaned
|
|
// up using VARKILL instructions as possible.
|
|
func (o *Order) stmt(n *Node) {
|
|
if n == nil {
|
|
return
|
|
}
|
|
|
|
lno := setlineno(n)
|
|
o.init(n)
|
|
|
|
switch n.Op {
|
|
default:
|
|
Fatalf("orderstmt %v", n.Op)
|
|
|
|
case OVARKILL, OVARLIVE:
|
|
o.out = append(o.out, n)
|
|
|
|
case OAS:
|
|
t := o.markTemp()
|
|
n.Left = o.expr(n.Left, nil)
|
|
n.Right = o.expr(n.Right, n.Left)
|
|
o.mapAssign(n)
|
|
o.cleanTemp(t)
|
|
|
|
case OAS2,
|
|
OCLOSE,
|
|
OCOPY,
|
|
OPRINT,
|
|
OPRINTN,
|
|
ORECOVER,
|
|
ORECV:
|
|
t := o.markTemp()
|
|
n.Left = o.expr(n.Left, nil)
|
|
n.Right = o.expr(n.Right, nil)
|
|
o.exprList(n.List)
|
|
o.exprList(n.Rlist)
|
|
switch n.Op {
|
|
case OAS2:
|
|
o.mapAssign(n)
|
|
default:
|
|
o.out = append(o.out, n)
|
|
}
|
|
o.cleanTemp(t)
|
|
|
|
case OASOP:
|
|
t := o.markTemp()
|
|
n.Left = o.expr(n.Left, nil)
|
|
n.Right = o.expr(n.Right, nil)
|
|
|
|
if instrumenting || n.Left.Op == OINDEXMAP && (n.SubOp() == ODIV || n.SubOp() == OMOD) {
|
|
// Rewrite m[k] op= r into m[k] = m[k] op r so
|
|
// that we can ensure that if op panics
|
|
// because r is zero, the panic happens before
|
|
// the map assignment.
|
|
|
|
n.Left = o.safeExpr(n.Left)
|
|
|
|
l := treecopy(n.Left, src.NoXPos)
|
|
if l.Op == OINDEXMAP {
|
|
l.SetIndexMapLValue(false)
|
|
}
|
|
l = o.copyExpr(l, n.Left.Type, false)
|
|
n.Right = nod(n.SubOp(), l, n.Right)
|
|
n.Right = typecheck(n.Right, Erv)
|
|
n.Right = o.expr(n.Right, nil)
|
|
|
|
n.Op = OAS
|
|
n.ResetAux()
|
|
}
|
|
|
|
o.mapAssign(n)
|
|
o.cleanTemp(t)
|
|
|
|
// Special: make sure key is addressable if needed,
|
|
// and make sure OINDEXMAP is not copied out.
|
|
case OAS2MAPR:
|
|
t := o.markTemp()
|
|
o.exprList(n.List)
|
|
r := n.Rlist.First()
|
|
r.Left = o.expr(r.Left, nil)
|
|
r.Right = o.expr(r.Right, nil)
|
|
|
|
// See similar conversion for OINDEXMAP below.
|
|
_ = mapKeyReplaceStrConv(r.Right)
|
|
|
|
r.Right = o.mapKeyTemp(r.Left.Type, r.Right)
|
|
o.okAs2(n)
|
|
o.cleanTemp(t)
|
|
|
|
// Special: avoid copy of func call n.Rlist.First().
|
|
case OAS2FUNC:
|
|
t := o.markTemp()
|
|
o.exprList(n.List)
|
|
o.call(n.Rlist.First())
|
|
o.as2(n)
|
|
o.cleanTemp(t)
|
|
|
|
// Special: use temporary variables to hold result,
|
|
// so that assertI2Tetc can take address of temporary.
|
|
// No temporary for blank assignment.
|
|
case OAS2DOTTYPE:
|
|
t := o.markTemp()
|
|
o.exprList(n.List)
|
|
n.Rlist.First().Left = o.expr(n.Rlist.First().Left, nil) // i in i.(T)
|
|
o.okAs2(n)
|
|
o.cleanTemp(t)
|
|
|
|
// Special: use temporary variables to hold result,
|
|
// so that chanrecv can take address of temporary.
|
|
case OAS2RECV:
|
|
t := o.markTemp()
|
|
o.exprList(n.List)
|
|
n.Rlist.First().Left = o.expr(n.Rlist.First().Left, nil) // arg to recv
|
|
ch := n.Rlist.First().Left.Type
|
|
tmp1 := o.newTemp(ch.Elem(), types.Haspointers(ch.Elem()))
|
|
tmp2 := o.newTemp(types.Types[TBOOL], false)
|
|
o.out = append(o.out, n)
|
|
r := nod(OAS, n.List.First(), tmp1)
|
|
r = typecheck(r, Etop)
|
|
o.mapAssign(r)
|
|
r = okas(n.List.Second(), tmp2)
|
|
r = typecheck(r, Etop)
|
|
o.mapAssign(r)
|
|
n.List.Set2(tmp1, tmp2)
|
|
o.cleanTemp(t)
|
|
|
|
// Special: does not save n onto out.
|
|
case OBLOCK, OEMPTY:
|
|
o.stmtList(n.List)
|
|
|
|
// Special: n->left is not an expression; save as is.
|
|
case OBREAK,
|
|
OCONTINUE,
|
|
ODCL,
|
|
ODCLCONST,
|
|
ODCLTYPE,
|
|
OFALL,
|
|
OGOTO,
|
|
OLABEL,
|
|
ORETJMP:
|
|
o.out = append(o.out, n)
|
|
|
|
// Special: handle call arguments.
|
|
case OCALLFUNC, OCALLINTER, OCALLMETH:
|
|
t := o.markTemp()
|
|
o.call(n)
|
|
o.out = append(o.out, n)
|
|
o.cleanTemp(t)
|
|
|
|
// Special: order arguments to inner call but not call itself.
|
|
case ODEFER, OPROC:
|
|
t := o.markTemp()
|
|
o.call(n.Left)
|
|
o.out = append(o.out, n)
|
|
o.cleanTemp(t)
|
|
|
|
case ODELETE:
|
|
t := o.markTemp()
|
|
n.List.SetFirst(o.expr(n.List.First(), nil))
|
|
n.List.SetSecond(o.expr(n.List.Second(), nil))
|
|
n.List.SetSecond(o.mapKeyTemp(n.List.First().Type, n.List.Second()))
|
|
o.out = append(o.out, n)
|
|
o.cleanTemp(t)
|
|
|
|
// Clean temporaries from condition evaluation at
|
|
// beginning of loop body and after for statement.
|
|
case OFOR:
|
|
t := o.markTemp()
|
|
n.Left = o.exprInPlace(n.Left)
|
|
n.Nbody.Prepend(o.cleanTempNoPop(t)...)
|
|
orderBlock(&n.Nbody, o.free)
|
|
n.Right = orderStmtInPlace(n.Right, o.free)
|
|
o.out = append(o.out, n)
|
|
o.cleanTemp(t)
|
|
|
|
// Clean temporaries from condition at
|
|
// beginning of both branches.
|
|
case OIF:
|
|
t := o.markTemp()
|
|
n.Left = o.exprInPlace(n.Left)
|
|
n.Nbody.Prepend(o.cleanTempNoPop(t)...)
|
|
n.Rlist.Prepend(o.cleanTempNoPop(t)...)
|
|
o.popTemp(t)
|
|
orderBlock(&n.Nbody, o.free)
|
|
orderBlock(&n.Rlist, o.free)
|
|
o.out = append(o.out, n)
|
|
|
|
// Special: argument will be converted to interface using convT2E
|
|
// so make sure it is an addressable temporary.
|
|
case OPANIC:
|
|
t := o.markTemp()
|
|
n.Left = o.expr(n.Left, nil)
|
|
if !n.Left.Type.IsInterface() {
|
|
n.Left = o.addrTemp(n.Left)
|
|
}
|
|
o.out = append(o.out, n)
|
|
o.cleanTemp(t)
|
|
|
|
case ORANGE:
|
|
// n.Right is the expression being ranged over.
|
|
// order it, and then make a copy if we need one.
|
|
// We almost always do, to ensure that we don't
|
|
// see any value changes made during the loop.
|
|
// Usually the copy is cheap (e.g., array pointer,
|
|
// chan, slice, string are all tiny).
|
|
// The exception is ranging over an array value
|
|
// (not a slice, not a pointer to array),
|
|
// which must make a copy to avoid seeing updates made during
|
|
// the range body. Ranging over an array value is uncommon though.
|
|
|
|
// Mark []byte(str) range expression to reuse string backing storage.
|
|
// It is safe because the storage cannot be mutated.
|
|
if n.Right.Op == OSTRARRAYBYTE {
|
|
n.Right.Op = OSTRARRAYBYTETMP
|
|
}
|
|
|
|
t := o.markTemp()
|
|
n.Right = o.expr(n.Right, nil)
|
|
|
|
orderBody := true
|
|
switch n.Type.Etype {
|
|
default:
|
|
Fatalf("orderstmt range %v", n.Type)
|
|
|
|
case TARRAY, TSLICE:
|
|
if n.List.Len() < 2 || n.List.Second().isBlank() {
|
|
// for i := range x will only use x once, to compute len(x).
|
|
// No need to copy it.
|
|
break
|
|
}
|
|
fallthrough
|
|
|
|
case TCHAN, TSTRING:
|
|
// chan, string, slice, array ranges use value multiple times.
|
|
// make copy.
|
|
r := n.Right
|
|
|
|
if r.Type.IsString() && r.Type != types.Types[TSTRING] {
|
|
r = nod(OCONV, r, nil)
|
|
r.Type = types.Types[TSTRING]
|
|
r = typecheck(r, Erv)
|
|
}
|
|
|
|
n.Right = o.copyExpr(r, r.Type, false)
|
|
|
|
case TMAP:
|
|
if isMapClear(n) {
|
|
// Preserve the body of the map clear pattern so it can
|
|
// be detected during walk. The loop body will not be used
|
|
// when optimizing away the range loop to a runtime call.
|
|
orderBody = false
|
|
break
|
|
}
|
|
|
|
// copy the map value in case it is a map literal.
|
|
// TODO(rsc): Make tmp = literal expressions reuse tmp.
|
|
// For maps tmp is just one word so it hardly matters.
|
|
r := n.Right
|
|
n.Right = o.copyExpr(r, r.Type, false)
|
|
|
|
// prealloc[n] is the temp for the iterator.
|
|
// hiter contains pointers and needs to be zeroed.
|
|
prealloc[n] = o.newTemp(hiter(n.Type), true)
|
|
}
|
|
o.exprListInPlace(n.List)
|
|
if orderBody {
|
|
orderBlock(&n.Nbody, o.free)
|
|
}
|
|
o.out = append(o.out, n)
|
|
o.cleanTemp(t)
|
|
|
|
case ORETURN:
|
|
o.callArgs(&n.List)
|
|
o.out = append(o.out, n)
|
|
|
|
// Special: clean case temporaries in each block entry.
|
|
// Select must enter one of its blocks, so there is no
|
|
// need for a cleaning at the end.
|
|
// Doubly special: evaluation order for select is stricter
|
|
// than ordinary expressions. Even something like p.c
|
|
// has to be hoisted into a temporary, so that it cannot be
|
|
// reordered after the channel evaluation for a different
|
|
// case (if p were nil, then the timing of the fault would
|
|
// give this away).
|
|
case OSELECT:
|
|
t := o.markTemp()
|
|
|
|
for _, n2 := range n.List.Slice() {
|
|
if n2.Op != OXCASE {
|
|
Fatalf("order select case %v", n2.Op)
|
|
}
|
|
r := n2.Left
|
|
setlineno(n2)
|
|
|
|
// Append any new body prologue to ninit.
|
|
// The next loop will insert ninit into nbody.
|
|
if n2.Ninit.Len() != 0 {
|
|
Fatalf("order select ninit")
|
|
}
|
|
if r == nil {
|
|
continue
|
|
}
|
|
switch r.Op {
|
|
default:
|
|
Dump("select case", r)
|
|
Fatalf("unknown op in select %v", r.Op)
|
|
|
|
// If this is case x := <-ch or case x, y := <-ch, the case has
|
|
// the ODCL nodes to declare x and y. We want to delay that
|
|
// declaration (and possible allocation) until inside the case body.
|
|
// Delete the ODCL nodes here and recreate them inside the body below.
|
|
case OSELRECV, OSELRECV2:
|
|
if r.Colas() {
|
|
i := 0
|
|
if r.Ninit.Len() != 0 && r.Ninit.First().Op == ODCL && r.Ninit.First().Left == r.Left {
|
|
i++
|
|
}
|
|
if i < r.Ninit.Len() && r.Ninit.Index(i).Op == ODCL && r.List.Len() != 0 && r.Ninit.Index(i).Left == r.List.First() {
|
|
i++
|
|
}
|
|
if i >= r.Ninit.Len() {
|
|
r.Ninit.Set(nil)
|
|
}
|
|
}
|
|
|
|
if r.Ninit.Len() != 0 {
|
|
dumplist("ninit", r.Ninit)
|
|
Fatalf("ninit on select recv")
|
|
}
|
|
|
|
// case x = <-c
|
|
// case x, ok = <-c
|
|
// r->left is x, r->ntest is ok, r->right is ORECV, r->right->left is c.
|
|
// r->left == N means 'case <-c'.
|
|
// c is always evaluated; x and ok are only evaluated when assigned.
|
|
r.Right.Left = o.expr(r.Right.Left, nil)
|
|
|
|
if r.Right.Left.Op != ONAME {
|
|
r.Right.Left = o.copyExpr(r.Right.Left, r.Right.Left.Type, false)
|
|
}
|
|
|
|
// Introduce temporary for receive and move actual copy into case body.
|
|
// avoids problems with target being addressed, as usual.
|
|
// NOTE: If we wanted to be clever, we could arrange for just one
|
|
// temporary per distinct type, sharing the temp among all receives
|
|
// with that temp. Similarly one ok bool could be shared among all
|
|
// the x,ok receives. Not worth doing until there's a clear need.
|
|
if r.Left != nil && r.Left.isBlank() {
|
|
r.Left = nil
|
|
}
|
|
if r.Left != nil {
|
|
// use channel element type for temporary to avoid conversions,
|
|
// such as in case interfacevalue = <-intchan.
|
|
// the conversion happens in the OAS instead.
|
|
tmp1 := r.Left
|
|
|
|
if r.Colas() {
|
|
tmp2 := nod(ODCL, tmp1, nil)
|
|
tmp2 = typecheck(tmp2, Etop)
|
|
n2.Ninit.Append(tmp2)
|
|
}
|
|
|
|
r.Left = o.newTemp(r.Right.Left.Type.Elem(), types.Haspointers(r.Right.Left.Type.Elem()))
|
|
tmp2 := nod(OAS, tmp1, r.Left)
|
|
tmp2 = typecheck(tmp2, Etop)
|
|
n2.Ninit.Append(tmp2)
|
|
}
|
|
|
|
if r.List.Len() != 0 && r.List.First().isBlank() {
|
|
r.List.Set(nil)
|
|
}
|
|
if r.List.Len() != 0 {
|
|
tmp1 := r.List.First()
|
|
if r.Colas() {
|
|
tmp2 := nod(ODCL, tmp1, nil)
|
|
tmp2 = typecheck(tmp2, Etop)
|
|
n2.Ninit.Append(tmp2)
|
|
}
|
|
|
|
r.List.Set1(o.newTemp(types.Types[TBOOL], false))
|
|
tmp2 := okas(tmp1, r.List.First())
|
|
tmp2 = typecheck(tmp2, Etop)
|
|
n2.Ninit.Append(tmp2)
|
|
}
|
|
orderBlock(&n2.Ninit, o.free)
|
|
|
|
case OSEND:
|
|
if r.Ninit.Len() != 0 {
|
|
dumplist("ninit", r.Ninit)
|
|
Fatalf("ninit on select send")
|
|
}
|
|
|
|
// case c <- x
|
|
// r->left is c, r->right is x, both are always evaluated.
|
|
r.Left = o.expr(r.Left, nil)
|
|
|
|
if !r.Left.IsAutoTmp() {
|
|
r.Left = o.copyExpr(r.Left, r.Left.Type, false)
|
|
}
|
|
r.Right = o.expr(r.Right, nil)
|
|
if !r.Right.IsAutoTmp() {
|
|
r.Right = o.copyExpr(r.Right, r.Right.Type, false)
|
|
}
|
|
}
|
|
}
|
|
// Now that we have accumulated all the temporaries, clean them.
|
|
// Also insert any ninit queued during the previous loop.
|
|
// (The temporary cleaning must follow that ninit work.)
|
|
for _, n3 := range n.List.Slice() {
|
|
orderBlock(&n3.Nbody, o.free)
|
|
n3.Nbody.Prepend(o.cleanTempNoPop(t)...)
|
|
|
|
// TODO(mdempsky): Is this actually necessary?
|
|
// walkselect appears to walk Ninit.
|
|
n3.Nbody.Prepend(n3.Ninit.Slice()...)
|
|
n3.Ninit.Set(nil)
|
|
}
|
|
|
|
o.out = append(o.out, n)
|
|
o.popTemp(t)
|
|
|
|
// Special: value being sent is passed as a pointer; make it addressable.
|
|
case OSEND:
|
|
t := o.markTemp()
|
|
n.Left = o.expr(n.Left, nil)
|
|
n.Right = o.expr(n.Right, nil)
|
|
if instrumenting {
|
|
// Force copying to the stack so that (chan T)(nil) <- x
|
|
// is still instrumented as a read of x.
|
|
n.Right = o.copyExpr(n.Right, n.Right.Type, false)
|
|
} else {
|
|
n.Right = o.addrTemp(n.Right)
|
|
}
|
|
o.out = append(o.out, n)
|
|
o.cleanTemp(t)
|
|
|
|
// TODO(rsc): Clean temporaries more aggressively.
|
|
// Note that because walkswitch will rewrite some of the
|
|
// switch into a binary search, this is not as easy as it looks.
|
|
// (If we ran that code here we could invoke orderstmt on
|
|
// the if-else chain instead.)
|
|
// For now just clean all the temporaries at the end.
|
|
// In practice that's fine.
|
|
case OSWITCH:
|
|
t := o.markTemp()
|
|
n.Left = o.expr(n.Left, nil)
|
|
for _, ncas := range n.List.Slice() {
|
|
if ncas.Op != OXCASE {
|
|
Fatalf("order switch case %v", ncas.Op)
|
|
}
|
|
o.exprListInPlace(ncas.List)
|
|
orderBlock(&ncas.Nbody, o.free)
|
|
}
|
|
|
|
o.out = append(o.out, n)
|
|
o.cleanTemp(t)
|
|
}
|
|
|
|
lineno = lno
|
|
}
|
|
|
|
// exprList orders the expression list l into o.
|
|
func (o *Order) exprList(l Nodes) {
|
|
s := l.Slice()
|
|
for i := range s {
|
|
s[i] = o.expr(s[i], nil)
|
|
}
|
|
}
|
|
|
|
// exprListInPlace orders the expression list l but saves
|
|
// the side effects on the individual expression ninit lists.
|
|
func (o *Order) exprListInPlace(l Nodes) {
|
|
s := l.Slice()
|
|
for i := range s {
|
|
s[i] = o.exprInPlace(s[i])
|
|
}
|
|
}
|
|
|
|
// prealloc[x] records the allocation to use for x.
|
|
var prealloc = map[*Node]*Node{}
|
|
|
|
// expr orders a single expression, appending side
|
|
// effects to o.out as needed.
|
|
// If this is part of an assignment lhs = *np, lhs is given.
|
|
// Otherwise lhs == nil. (When lhs != nil it may be possible
|
|
// to avoid copying the result of the expression to a temporary.)
|
|
// The result of expr MUST be assigned back to n, e.g.
|
|
// n.Left = o.expr(n.Left, lhs)
|
|
func (o *Order) expr(n, lhs *Node) *Node {
|
|
if n == nil {
|
|
return n
|
|
}
|
|
|
|
lno := setlineno(n)
|
|
o.init(n)
|
|
|
|
switch n.Op {
|
|
default:
|
|
n.Left = o.expr(n.Left, nil)
|
|
n.Right = o.expr(n.Right, nil)
|
|
o.exprList(n.List)
|
|
o.exprList(n.Rlist)
|
|
|
|
// Addition of strings turns into a function call.
|
|
// Allocate a temporary to hold the strings.
|
|
// Fewer than 5 strings use direct runtime helpers.
|
|
case OADDSTR:
|
|
o.exprList(n.List)
|
|
|
|
if n.List.Len() > 5 {
|
|
t := types.NewArray(types.Types[TSTRING], int64(n.List.Len()))
|
|
prealloc[n] = o.newTemp(t, false)
|
|
}
|
|
|
|
// Mark string(byteSlice) arguments to reuse byteSlice backing
|
|
// buffer during conversion. String concatenation does not
|
|
// memorize the strings for later use, so it is safe.
|
|
// However, we can do it only if there is at least one non-empty string literal.
|
|
// Otherwise if all other arguments are empty strings,
|
|
// concatstrings will return the reference to the temp string
|
|
// to the caller.
|
|
hasbyte := false
|
|
|
|
haslit := false
|
|
for _, n1 := range n.List.Slice() {
|
|
hasbyte = hasbyte || n1.Op == OARRAYBYTESTR
|
|
haslit = haslit || n1.Op == OLITERAL && len(n1.Val().U.(string)) != 0
|
|
}
|
|
|
|
if haslit && hasbyte {
|
|
for _, n2 := range n.List.Slice() {
|
|
if n2.Op == OARRAYBYTESTR {
|
|
n2.Op = OARRAYBYTESTRTMP
|
|
}
|
|
}
|
|
}
|
|
|
|
// key must be addressable
|
|
case OINDEXMAP:
|
|
n.Left = o.expr(n.Left, nil)
|
|
n.Right = o.expr(n.Right, nil)
|
|
needCopy := false
|
|
|
|
if !n.IndexMapLValue() {
|
|
// Enforce that any []byte slices we are not copying
|
|
// can not be changed before the map index by forcing
|
|
// the map index to happen immediately following the
|
|
// conversions. See copyExpr a few lines below.
|
|
needCopy = mapKeyReplaceStrConv(n.Right)
|
|
|
|
if instrumenting {
|
|
// Race detector needs the copy so it can
|
|
// call treecopy on the result.
|
|
needCopy = true
|
|
}
|
|
}
|
|
|
|
n.Right = o.mapKeyTemp(n.Left.Type, n.Right)
|
|
if needCopy {
|
|
n = o.copyExpr(n, n.Type, false)
|
|
}
|
|
|
|
// concrete type (not interface) argument might need an addressable
|
|
// temporary to pass to the runtime conversion routine.
|
|
case OCONVIFACE:
|
|
n.Left = o.expr(n.Left, nil)
|
|
if n.Left.Type.IsInterface() {
|
|
break
|
|
}
|
|
if _, needsaddr := convFuncName(n.Left.Type, n.Type); needsaddr || consttype(n.Left) > 0 {
|
|
// Need a temp if we need to pass the address to the conversion function.
|
|
// We also process constants here, making a named static global whose
|
|
// address we can put directly in an interface (see OCONVIFACE case in walk).
|
|
n.Left = o.addrTemp(n.Left)
|
|
}
|
|
|
|
case OCONVNOP:
|
|
if n.Type.IsKind(TUNSAFEPTR) && n.Left.Type.IsKind(TUINTPTR) && (n.Left.Op == OCALLFUNC || n.Left.Op == OCALLINTER || n.Left.Op == OCALLMETH) {
|
|
// When reordering unsafe.Pointer(f()) into a separate
|
|
// statement, the conversion and function call must stay
|
|
// together. See golang.org/issue/15329.
|
|
o.init(n.Left)
|
|
o.call(n.Left)
|
|
if lhs == nil || lhs.Op != ONAME || instrumenting {
|
|
n = o.copyExpr(n, n.Type, false)
|
|
}
|
|
} else {
|
|
n.Left = o.expr(n.Left, nil)
|
|
}
|
|
|
|
case OANDAND, OOROR:
|
|
mark := o.markTemp()
|
|
n.Left = o.expr(n.Left, nil)
|
|
|
|
// Clean temporaries from first branch at beginning of second.
|
|
// Leave them on the stack so that they can be killed in the outer
|
|
// context in case the short circuit is taken.
|
|
n.Right = addinit(n.Right, o.cleanTempNoPop(mark))
|
|
n.Right = o.exprInPlace(n.Right)
|
|
|
|
case OCALLFUNC,
|
|
OCALLINTER,
|
|
OCALLMETH,
|
|
OCAP,
|
|
OCOMPLEX,
|
|
OCOPY,
|
|
OIMAG,
|
|
OLEN,
|
|
OMAKECHAN,
|
|
OMAKEMAP,
|
|
OMAKESLICE,
|
|
ONEW,
|
|
OREAL,
|
|
ORECOVER,
|
|
OSTRARRAYBYTE,
|
|
OSTRARRAYBYTETMP,
|
|
OSTRARRAYRUNE:
|
|
|
|
if isRuneCount(n) {
|
|
// len([]rune(s)) is rewritten to runtime.countrunes(s) later.
|
|
n.Left.Left = o.expr(n.Left.Left, nil)
|
|
} else {
|
|
o.call(n)
|
|
}
|
|
|
|
if lhs == nil || lhs.Op != ONAME || instrumenting {
|
|
n = o.copyExpr(n, n.Type, false)
|
|
}
|
|
|
|
case OAPPEND:
|
|
// Check for append(x, make([]T, y)...) .
|
|
if isAppendOfMake(n) {
|
|
n.List.SetFirst(o.expr(n.List.First(), nil)) // order x
|
|
n.List.Second().Left = o.expr(n.List.Second().Left, nil) // order y
|
|
} else {
|
|
o.callArgs(&n.List)
|
|
}
|
|
|
|
if lhs == nil || lhs.Op != ONAME && !samesafeexpr(lhs, n.List.First()) {
|
|
n = o.copyExpr(n, n.Type, false)
|
|
}
|
|
|
|
case OSLICE, OSLICEARR, OSLICESTR, OSLICE3, OSLICE3ARR:
|
|
n.Left = o.expr(n.Left, nil)
|
|
low, high, max := n.SliceBounds()
|
|
low = o.expr(low, nil)
|
|
low = o.cheapExpr(low)
|
|
high = o.expr(high, nil)
|
|
high = o.cheapExpr(high)
|
|
max = o.expr(max, nil)
|
|
max = o.cheapExpr(max)
|
|
n.SetSliceBounds(low, high, max)
|
|
if lhs == nil || lhs.Op != ONAME && !samesafeexpr(lhs, n.Left) {
|
|
n = o.copyExpr(n, n.Type, false)
|
|
}
|
|
|
|
case OCLOSURE:
|
|
if n.Noescape() && n.Func.Closure.Func.Cvars.Len() > 0 {
|
|
prealloc[n] = o.newTemp(closureType(n), false)
|
|
}
|
|
|
|
case OSLICELIT, OCALLPART:
|
|
n.Left = o.expr(n.Left, nil)
|
|
n.Right = o.expr(n.Right, nil)
|
|
o.exprList(n.List)
|
|
o.exprList(n.Rlist)
|
|
if n.Noescape() {
|
|
var t *types.Type
|
|
switch n.Op {
|
|
case OSLICELIT:
|
|
t = types.NewArray(n.Type.Elem(), n.Right.Int64())
|
|
case OCALLPART:
|
|
t = partialCallType(n)
|
|
}
|
|
prealloc[n] = o.newTemp(t, false)
|
|
}
|
|
|
|
case ODDDARG:
|
|
if n.Noescape() {
|
|
// The ddd argument does not live beyond the call it is created for.
|
|
// Allocate a temporary that will be cleaned up when this statement
|
|
// completes. We could be more aggressive and try to arrange for it
|
|
// to be cleaned up when the call completes.
|
|
prealloc[n] = o.newTemp(n.Type.Elem(), false)
|
|
}
|
|
|
|
case ODOTTYPE, ODOTTYPE2:
|
|
n.Left = o.expr(n.Left, nil)
|
|
// TODO(rsc): The isfat is for consistency with componentgen and walkexpr.
|
|
// It needs to be removed in all three places.
|
|
// That would allow inlining x.(struct{*int}) the same as x.(*int).
|
|
if !isdirectiface(n.Type) || isfat(n.Type) || instrumenting {
|
|
n = o.copyExpr(n, n.Type, true)
|
|
}
|
|
|
|
case ORECV:
|
|
n.Left = o.expr(n.Left, nil)
|
|
n = o.copyExpr(n, n.Type, true)
|
|
|
|
case OEQ, ONE, OLT, OLE, OGT, OGE:
|
|
n.Left = o.expr(n.Left, nil)
|
|
n.Right = o.expr(n.Right, nil)
|
|
|
|
t := n.Left.Type
|
|
switch {
|
|
case t.IsString():
|
|
// Mark string(byteSlice) arguments to reuse byteSlice backing
|
|
// buffer during conversion. String comparison does not
|
|
// memorize the strings for later use, so it is safe.
|
|
if n.Left.Op == OARRAYBYTESTR {
|
|
n.Left.Op = OARRAYBYTESTRTMP
|
|
}
|
|
if n.Right.Op == OARRAYBYTESTR {
|
|
n.Right.Op = OARRAYBYTESTRTMP
|
|
}
|
|
|
|
case t.IsStruct() || t.IsArray():
|
|
// for complex comparisons, we need both args to be
|
|
// addressable so we can pass them to the runtime.
|
|
n.Left = o.addrTemp(n.Left)
|
|
n.Right = o.addrTemp(n.Right)
|
|
}
|
|
}
|
|
|
|
lineno = lno
|
|
return n
|
|
}
|
|
|
|
// okas creates and returns an assignment of val to ok,
|
|
// including an explicit conversion if necessary.
|
|
func okas(ok, val *Node) *Node {
|
|
if !ok.isBlank() {
|
|
val = conv(val, ok.Type)
|
|
}
|
|
return nod(OAS, ok, val)
|
|
}
|
|
|
|
// as2 orders OAS2XXXX nodes. It creates temporaries to ensure left-to-right assignment.
|
|
// The caller should order the right-hand side of the assignment before calling orderas2.
|
|
// It rewrites,
|
|
// a, b, a = ...
|
|
// as
|
|
// tmp1, tmp2, tmp3 = ...
|
|
// a, b, a = tmp1, tmp2, tmp3
|
|
// This is necessary to ensure left to right assignment order.
|
|
func (o *Order) as2(n *Node) {
|
|
tmplist := []*Node{}
|
|
left := []*Node{}
|
|
for ni, l := range n.List.Slice() {
|
|
if !l.isBlank() {
|
|
tmp := o.newTemp(l.Type, types.Haspointers(l.Type))
|
|
n.List.SetIndex(ni, tmp)
|
|
tmplist = append(tmplist, tmp)
|
|
left = append(left, l)
|
|
}
|
|
}
|
|
|
|
o.out = append(o.out, n)
|
|
|
|
as := nod(OAS2, nil, nil)
|
|
as.List.Set(left)
|
|
as.Rlist.Set(tmplist)
|
|
as = typecheck(as, Etop)
|
|
o.stmt(as)
|
|
}
|
|
|
|
// okAs2 orders OAS2 with ok.
|
|
// Just like as2, this also adds temporaries to ensure left-to-right assignment.
|
|
func (o *Order) okAs2(n *Node) {
|
|
var tmp1, tmp2 *Node
|
|
if !n.List.First().isBlank() {
|
|
typ := n.Rlist.First().Type
|
|
tmp1 = o.newTemp(typ, types.Haspointers(typ))
|
|
}
|
|
|
|
if !n.List.Second().isBlank() {
|
|
tmp2 = o.newTemp(types.Types[TBOOL], false)
|
|
}
|
|
|
|
o.out = append(o.out, n)
|
|
|
|
if tmp1 != nil {
|
|
r := nod(OAS, n.List.First(), tmp1)
|
|
r = typecheck(r, Etop)
|
|
o.mapAssign(r)
|
|
n.List.SetFirst(tmp1)
|
|
}
|
|
if tmp2 != nil {
|
|
r := okas(n.List.Second(), tmp2)
|
|
r = typecheck(r, Etop)
|
|
o.mapAssign(r)
|
|
n.List.SetSecond(tmp2)
|
|
}
|
|
}
|