go/src/cmd/compile/internal/gc/obj.go
Matthew Dempsky a2f77e9ef8 cmd/compile: cleanup gdata slightly
In sinit.go, gdata can already handle strings and complex, so no
reason to handle them separately.

In obj.go, inline gdatastring and gdatacomplex into gdata, since it's
the only caller. Allows extracting out the common Linksym calls.

Passes toolstash -cmp.

Change-Id: I3cb18d9b4206a8a269c36e0d30a345d8e6caba1f
Reviewed-on: https://go-review.googlesource.com/31498
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
2016-10-25 17:12:08 +00:00

422 lines
9.3 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/internal/bio"
"cmd/internal/obj"
"crypto/sha256"
"fmt"
"io"
"strconv"
)
// architecture-independent object file output
const (
ArhdrSize = 60
)
func formathdr(arhdr []byte, name string, size int64) {
copy(arhdr[:], fmt.Sprintf("%-16s%-12d%-6d%-6d%-8o%-10d`\n", name, 0, 0, 0, 0644, size))
}
// These modes say which kind of object file to generate.
// The default use of the toolchain is to set both bits,
// generating a combined compiler+linker object, one that
// serves to describe the package to both the compiler and the linker.
// In fact the compiler and linker read nearly disjoint sections of
// that file, though, so in a distributed build setting it can be more
// efficient to split the output into two files, supplying the compiler
// object only to future compilations and the linker object only to
// future links.
//
// By default a combined object is written, but if -linkobj is specified
// on the command line then the default -o output is a compiler object
// and the -linkobj output is a linker object.
const (
modeCompilerObj = 1 << iota
modeLinkerObj
)
func dumpobj() {
if linkobj == "" {
dumpobj1(outfile, modeCompilerObj|modeLinkerObj)
} else {
dumpobj1(outfile, modeCompilerObj)
dumpobj1(linkobj, modeLinkerObj)
}
}
func dumpobj1(outfile string, mode int) {
var err error
bout, err = bio.Create(outfile)
if err != nil {
flusherrors()
fmt.Printf("can't create %s: %v\n", outfile, err)
errorexit()
}
startobj := int64(0)
var arhdr [ArhdrSize]byte
if writearchive {
bout.WriteString("!<arch>\n")
arhdr = [ArhdrSize]byte{}
bout.Write(arhdr[:])
startobj = bout.Offset()
}
printheader := func() {
fmt.Fprintf(bout, "go object %s %s %s %s\n", obj.GOOS, obj.GOARCH, obj.Version, obj.Expstring())
if buildid != "" {
fmt.Fprintf(bout, "build id %q\n", buildid)
}
if localpkg.Name == "main" {
fmt.Fprintf(bout, "main\n")
}
if safemode {
fmt.Fprintf(bout, "safe\n")
} else {
fmt.Fprintf(bout, "----\n") // room for some other tool to write "safe"
}
fmt.Fprintf(bout, "\n") // header ends with blank line
}
printheader()
if mode&modeCompilerObj != 0 {
dumpexport()
}
if writearchive {
bout.Flush()
size := bout.Offset() - startobj
if size&1 != 0 {
bout.WriteByte(0)
}
bout.Seek(startobj-ArhdrSize, 0)
formathdr(arhdr[:], "__.PKGDEF", size)
bout.Write(arhdr[:])
bout.Flush()
bout.Seek(startobj+size+(size&1), 0)
}
if mode&modeLinkerObj == 0 {
bout.Close()
return
}
if writearchive {
// start object file
arhdr = [ArhdrSize]byte{}
bout.Write(arhdr[:])
startobj = bout.Offset()
printheader()
}
if pragcgobuf != "" {
if writearchive {
// write empty export section; must be before cgo section
fmt.Fprintf(bout, "\n$$\n\n$$\n\n")
}
fmt.Fprintf(bout, "\n$$ // cgo\n")
fmt.Fprintf(bout, "%s\n$$\n\n", pragcgobuf)
}
fmt.Fprintf(bout, "\n!\n")
externs := len(externdcl)
dumpglobls()
dumpptabs()
dumptypestructs()
// Dump extra globals.
tmp := externdcl
if externdcl != nil {
externdcl = externdcl[externs:]
}
dumpglobls()
externdcl = tmp
if zerosize > 0 {
zero := Pkglookup("zero", mappkg)
ggloblsym(zero, int32(zerosize), obj.DUPOK|obj.RODATA)
}
obj.Writeobjdirect(Ctxt, bout.Writer)
if writearchive {
bout.Flush()
size := bout.Offset() - startobj
if size&1 != 0 {
bout.WriteByte(0)
}
bout.Seek(startobj-ArhdrSize, 0)
formathdr(arhdr[:], "_go_.o", size)
bout.Write(arhdr[:])
}
bout.Close()
}
func dumpptabs() {
if !Ctxt.Flag_dynlink || localpkg.Name != "main" {
return
}
for _, exportn := range exportlist {
s := exportn.Sym
n := s.Def
if n == nil {
continue
}
if n.Op != ONAME {
continue
}
if !exportname(s.Name) {
continue
}
if s.Pkg.Name != "main" {
continue
}
if n.Type.Etype == TFUNC && n.Class == PFUNC {
// function
ptabs = append(ptabs, ptabEntry{s: s, t: s.Def.Type})
} else {
// variable
ptabs = append(ptabs, ptabEntry{s: s, t: typPtr(s.Def.Type)})
}
}
}
func dumpglobls() {
// add globals
for _, n := range externdcl {
if n.Op != ONAME {
continue
}
if n.Type == nil {
Fatalf("external %v nil type\n", n)
}
if n.Class == PFUNC {
continue
}
if n.Sym.Pkg != localpkg {
continue
}
dowidth(n.Type)
ggloblnod(n)
}
for _, n := range funcsyms {
dsymptr(n.Sym, 0, n.Sym.Def.Func.Shortname.Sym, 0)
ggloblsym(n.Sym, int32(Widthptr), obj.DUPOK|obj.RODATA)
}
// Do not reprocess funcsyms on next dumpglobls call.
funcsyms = nil
}
func Linksym(s *Sym) *obj.LSym {
if s == nil {
return nil
}
if s.Lsym != nil {
return s.Lsym
}
var name string
if isblanksym(s) {
name = "_"
} else if s.Linkname != "" {
name = s.Linkname
} else {
name = s.Pkg.Prefix + "." + s.Name
}
ls := obj.Linklookup(Ctxt, name, 0)
s.Lsym = ls
return ls
}
func duintxx(s *Sym, off int, v uint64, wid int) int {
return duintxxLSym(Linksym(s), off, v, wid)
}
func duintxxLSym(s *obj.LSym, off int, v uint64, wid int) int {
// Update symbol data directly instead of generating a
// DATA instruction that liblink will have to interpret later.
// This reduces compilation time and memory usage.
off = int(Rnd(int64(off), int64(wid)))
return int(obj.Setuintxx(Ctxt, s, int64(off), v, int64(wid)))
}
func duint8(s *Sym, off int, v uint8) int {
return duintxx(s, off, uint64(v), 1)
}
func duint16(s *Sym, off int, v uint16) int {
return duintxx(s, off, uint64(v), 2)
}
func duint32(s *Sym, off int, v uint32) int {
return duintxx(s, off, uint64(v), 4)
}
func duintptr(s *Sym, off int, v uint64) int {
return duintxx(s, off, v, Widthptr)
}
func dbvec(s *Sym, off int, bv bvec) int {
// Runtime reads the bitmaps as byte arrays. Oblige.
for j := 0; int32(j) < bv.n; j += 8 {
word := bv.b[j/32]
off = duint8(s, off, uint8(word>>(uint(j)%32)))
}
return off
}
func stringsym(s string) (data *obj.LSym) {
var symname string
if len(s) > 100 {
// Huge strings are hashed to avoid long names in object files.
// Indulge in some paranoia by writing the length of s, too,
// as protection against length extension attacks.
h := sha256.New()
io.WriteString(h, s)
symname = fmt.Sprintf(".gostring.%d.%x", len(s), h.Sum(nil))
} else {
// Small strings get named directly by their contents.
symname = strconv.Quote(s)
}
const prefix = "go.string."
symdataname := prefix + symname
symdata := obj.Linklookup(Ctxt, symdataname, 0)
if !symdata.Seenglobl {
// string data
off := dsnameLSym(symdata, 0, s)
ggloblLSym(symdata, int32(off), obj.DUPOK|obj.RODATA|obj.LOCAL)
}
return symdata
}
var slicebytes_gen int
func slicebytes(nam *Node, s string, len int) {
slicebytes_gen++
symname := fmt.Sprintf(".gobytes.%d", slicebytes_gen)
sym := Pkglookup(symname, localpkg)
sym.Def = newname(sym)
off := dsname(sym, 0, s)
ggloblsym(sym, int32(off), obj.NOPTR|obj.LOCAL)
if nam.Op != ONAME {
Fatalf("slicebytes %v", nam)
}
off = int(nam.Xoffset)
off = dsymptr(nam.Sym, off, sym, 0)
off = duintxx(nam.Sym, off, uint64(len), Widthint)
duintxx(nam.Sym, off, uint64(len), Widthint)
}
func dsname(s *Sym, off int, t string) int {
return dsnameLSym(Linksym(s), off, t)
}
func dsnameLSym(s *obj.LSym, off int, t string) int {
s.WriteString(Ctxt, int64(off), len(t), t)
return off + len(t)
}
func dsymptr(s *Sym, off int, x *Sym, xoff int) int {
return dsymptrLSym(Linksym(s), off, Linksym(x), xoff)
}
func dsymptrLSym(s *obj.LSym, off int, x *obj.LSym, xoff int) int {
off = int(Rnd(int64(off), int64(Widthptr)))
s.WriteAddr(Ctxt, int64(off), Widthptr, x, int64(xoff))
off += Widthptr
return off
}
func dsymptrOffLSym(s *obj.LSym, off int, x *obj.LSym, xoff int) int {
s.WriteOff(Ctxt, int64(off), x, int64(xoff))
off += 4
return off
}
func gdata(nam *Node, nr *Node, wid int) {
if nam.Op != ONAME {
Fatalf("gdata nam op %v", nam.Op)
}
if nam.Sym == nil {
Fatalf("gdata nil nam sym")
}
s := Linksym(nam.Sym)
switch nr.Op {
case OLITERAL:
switch u := nr.Val().U.(type) {
case bool:
i := int64(obj.Bool2int(u))
s.WriteInt(Ctxt, nam.Xoffset, wid, i)
case *Mpint:
s.WriteInt(Ctxt, nam.Xoffset, wid, u.Int64())
case *Mpflt:
f := u.Float64()
switch nam.Type.Etype {
case TFLOAT32:
s.WriteFloat32(Ctxt, nam.Xoffset, float32(f))
case TFLOAT64:
s.WriteFloat64(Ctxt, nam.Xoffset, f)
}
case *Mpcplx:
r := u.Real.Float64()
i := u.Imag.Float64()
switch nam.Type.Etype {
case TCOMPLEX64:
s.WriteFloat32(Ctxt, nam.Xoffset, float32(r))
s.WriteFloat32(Ctxt, nam.Xoffset+4, float32(i))
case TCOMPLEX128:
s.WriteFloat64(Ctxt, nam.Xoffset, r)
s.WriteFloat64(Ctxt, nam.Xoffset+8, i)
}
case string:
symdata := stringsym(u)
s.WriteAddr(Ctxt, nam.Xoffset, Widthptr, symdata, 0)
s.WriteInt(Ctxt, nam.Xoffset+int64(Widthptr), Widthint, int64(len(u)))
default:
Fatalf("gdata unhandled OLITERAL %v", nr)
}
case OADDR:
if nr.Left.Op != ONAME {
Fatalf("gdata ADDR left op %v", nr.Left.Op)
}
to := nr.Left
s.WriteAddr(Ctxt, nam.Xoffset, wid, Linksym(to.Sym), to.Xoffset)
case ONAME:
if nr.Class != PFUNC {
Fatalf("gdata NAME not PFUNC %d", nr.Class)
}
s.WriteAddr(Ctxt, nam.Xoffset, wid, Linksym(funcsym(nr.Sym)), nr.Xoffset)
default:
Fatalf("gdata unhandled op %v %v\n", nr, nr.Op)
}
}