go/src/cmd/compile/internal/noder/expr.go
Dan Scales e87c4bb3ef cmd/compile: fix noder.Addr() to not call typechecker
Simple change to avoid calling the old typechecker in noder.Addr(). This
fixes cases where generic code calls a pointer method with a non-pointer
receiver.

Added test typeparam/lockable.go that now works with this change.

For lockable.go to work, also fix incorrect check to decide whether to
translate an OXDOT now or later. We should delay translating an OXDOT
until instantiation (because we don't know how embedding, etc. will
work) if the receiver has any typeparam, not just if the receiver type
is a simple typeparam. We also have to handle OXDOT for now in
IsAddressable(), until we can remove calls to the old typechecker in
(*irgen).funcBody().

Change-Id: I77ee5efcef9a8f6c7133564106a32437e36ba4bb
Reviewed-on: https://go-review.googlesource.com/c/go/+/300990
Run-TryBot: Dan Scales <danscales@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Trust: Dan Scales <danscales@google.com>
Trust: Robert Griesemer <gri@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 02:30:33 +00:00

391 lines
12 KiB
Go

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
func (g *irgen) expr(expr syntax.Expr) ir.Node {
// TODO(mdempsky): Change callers to not call on nil?
if expr == nil {
return nil
}
if expr, ok := expr.(*syntax.Name); ok && expr.Value == "_" {
return ir.BlankNode
}
tv, ok := g.info.Types[expr]
if !ok {
base.FatalfAt(g.pos(expr), "missing type for %v (%T)", expr, expr)
}
switch {
case tv.IsBuiltin():
// TODO(mdempsky): Handle in CallExpr?
return g.use(expr.(*syntax.Name))
case tv.IsType():
return ir.TypeNode(g.typ(tv.Type))
case tv.IsValue(), tv.IsVoid():
// ok
default:
base.FatalfAt(g.pos(expr), "unrecognized type-checker result")
}
// The gc backend expects all expressions to have a concrete type, and
// types2 mostly satisfies this expectation already. But there are a few
// cases where the Go spec doesn't require converting to concrete type,
// and so types2 leaves them untyped. So we need to fix those up here.
typ := tv.Type
if basic, ok := typ.(*types2.Basic); ok && basic.Info()&types2.IsUntyped != 0 {
switch basic.Kind() {
case types2.UntypedNil:
// ok; can appear in type switch case clauses
// TODO(mdempsky): Handle as part of type switches instead?
case types2.UntypedBool:
typ = types2.Typ[types2.Bool] // expression in "if" or "for" condition
case types2.UntypedString:
typ = types2.Typ[types2.String] // argument to "append" or "copy" calls
default:
base.FatalfAt(g.pos(expr), "unexpected untyped type: %v", basic)
}
}
// Constant expression.
if tv.Value != nil {
return Const(g.pos(expr), g.typ(typ), tv.Value)
}
n := g.expr0(typ, expr)
if n.Typecheck() != 1 {
base.FatalfAt(g.pos(expr), "missed typecheck: %+v", n)
}
if !g.match(n.Type(), typ, tv.HasOk()) {
base.FatalfAt(g.pos(expr), "expected %L to have type %v", n, typ)
}
return n
}
func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
pos := g.pos(expr)
switch expr := expr.(type) {
case *syntax.Name:
if _, isNil := g.info.Uses[expr].(*types2.Nil); isNil {
return Nil(pos, g.typ(typ))
}
// TODO(mdempsky): Remove dependency on typecheck.Expr.
return typecheck.Expr(g.use(expr))
case *syntax.CompositeLit:
return g.compLit(typ, expr)
case *syntax.FuncLit:
return g.funcLit(typ, expr)
case *syntax.AssertExpr:
return Assert(pos, g.expr(expr.X), g.typeExpr(expr.Type))
case *syntax.CallExpr:
fun := g.expr(expr.Fun)
// The key for the Inferred map is usually the expr.
key := syntax.Expr(expr)
if _, ok := expr.Fun.(*syntax.IndexExpr); ok {
// If the Fun is an IndexExpr, then this may be a
// partial type inference case. In this case, we look up
// the IndexExpr in the Inferred map.
// TODO(gri): should types2 always record the callExpr as the key?
key = syntax.Expr(expr.Fun)
}
if inferred, ok := g.info.Inferred[key]; ok && len(inferred.Targs) > 0 {
targs := make([]ir.Node, len(inferred.Targs))
for i, targ := range inferred.Targs {
targs[i] = ir.TypeNode(g.typ(targ))
}
if fun.Op() == ir.OFUNCINST {
// Replace explicit type args with the full list that
// includes the additional inferred type args
fun.(*ir.InstExpr).Targs = targs
} else {
// Create a function instantiation here, given
// there are only inferred type args (e.g.
// min(5,6), where min is a generic function)
inst := ir.NewInstExpr(pos, ir.OFUNCINST, fun, targs)
typed(fun.Type(), inst)
fun = inst
}
}
return Call(pos, g.typ(typ), fun, g.exprs(expr.ArgList), expr.HasDots)
case *syntax.IndexExpr:
var targs []ir.Node
if _, ok := expr.Index.(*syntax.ListExpr); ok {
targs = g.exprList(expr.Index)
} else {
index := g.expr(expr.Index)
if index.Op() != ir.OTYPE {
// This is just a normal index expression
return Index(pos, g.expr(expr.X), index)
}
// This is generic function instantiation with a single type
targs = []ir.Node{index}
}
// This is a generic function instantiation (e.g. min[int])
x := g.expr(expr.X)
if x.Op() != ir.ONAME || x.Type().Kind() != types.TFUNC {
panic("Incorrect argument for generic func instantiation")
}
// This could also be an OTYPEINST once we can handle those examples.
n := ir.NewInstExpr(pos, ir.OFUNCINST, x, targs)
typed(g.typ(typ), n)
return n
case *syntax.ParenExpr:
return g.expr(expr.X) // skip parens; unneeded after parse+typecheck
case *syntax.SelectorExpr:
// Qualified identifier.
if name, ok := expr.X.(*syntax.Name); ok {
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
// TODO(mdempsky): Remove dependency on typecheck.Expr.
return typecheck.Expr(g.use(expr.Sel))
}
}
return g.selectorExpr(pos, typ, expr)
case *syntax.SliceExpr:
return Slice(pos, g.expr(expr.X), g.expr(expr.Index[0]), g.expr(expr.Index[1]), g.expr(expr.Index[2]))
case *syntax.Operation:
if expr.Y == nil {
return Unary(pos, g.op(expr.Op, unOps[:]), g.expr(expr.X))
}
switch op := g.op(expr.Op, binOps[:]); op {
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
return Compare(pos, g.typ(typ), op, g.expr(expr.X), g.expr(expr.Y))
default:
return Binary(pos, op, g.expr(expr.X), g.expr(expr.Y))
}
default:
g.unhandled("expression", expr)
panic("unreachable")
}
}
// selectorExpr resolves the choice of ODOT, ODOTPTR, OCALLPART (eventually
// ODOTMETH & ODOTINTER), and OMETHEXPR and deals with embedded fields here rather
// than in typecheck.go.
func (g *irgen) selectorExpr(pos src.XPos, typ types2.Type, expr *syntax.SelectorExpr) ir.Node {
x := g.expr(expr.X)
if x.Type().HasTParam() {
// Leave a method call on a type param as an OXDOT, since it can
// only be fully transformed once it has an instantiated type.
n := ir.NewSelectorExpr(pos, ir.OXDOT, x, typecheck.Lookup(expr.Sel.Value))
typed(g.typ(typ), n)
return n
}
selinfo := g.info.Selections[expr]
// Everything up to the last selection is an implicit embedded field access,
// and the last selection is determined by selinfo.Kind().
index := selinfo.Index()
embeds, last := index[:len(index)-1], index[len(index)-1]
origx := x
for _, ix := range embeds {
x = Implicit(DotField(pos, x, ix))
}
kind := selinfo.Kind()
if kind == types2.FieldVal {
return DotField(pos, x, last)
}
// TODO(danscales,mdempsky): Interface method sets are not sorted the
// same between types and types2. In particular, using "last" here
// without conversion will likely fail if an interface contains
// unexported methods from two different packages (due to cross-package
// interface embedding).
var n ir.Node
method2 := selinfo.Obj().(*types2.Func)
if kind == types2.MethodExpr {
// OMETHEXPR is unusual in using directly the node and type of the
// original OTYPE node (origx) before passing through embedded
// fields, even though the method is selected from the type
// (x.Type()) reached after following the embedded fields. We will
// actually drop any ODOT nodes we created due to the embedded
// fields.
n = MethodExpr(pos, origx, x.Type(), last)
} else {
// Add implicit addr/deref for method values, if needed.
if x.Type().IsInterface() {
n = DotMethod(pos, x, last)
} else {
recvType2 := method2.Type().(*types2.Signature).Recv().Type()
_, wantPtr := recvType2.(*types2.Pointer)
havePtr := x.Type().IsPtr()
if havePtr != wantPtr {
if havePtr {
x = Implicit(Deref(pos, x))
} else {
x = Implicit(Addr(pos, x))
}
}
recvType2Base := recvType2
if wantPtr {
recvType2Base = types2.AsPointer(recvType2).Elem()
}
if len(types2.AsNamed(recvType2Base).TParams()) > 0 {
// recvType2 is the original generic type that is
// instantiated for this method call.
// selinfo.Recv() is the instantiated type
recvType2 = recvType2Base
// method is the generic method associated with the gen type
method := g.obj(types2.AsNamed(recvType2).Method(last))
n = ir.NewSelectorExpr(pos, ir.OCALLPART, x, method.Sym())
n.(*ir.SelectorExpr).Selection = types.NewField(pos, method.Sym(), method.Type())
n.(*ir.SelectorExpr).Selection.Nname = method
typed(method.Type(), n)
// selinfo.Targs() are the types used to
// instantiate the type of receiver
targs2 := getTargs(selinfo)
targs := make([]ir.Node, len(targs2))
for i, targ2 := range targs2 {
targs[i] = ir.TypeNode(g.typ(targ2))
}
// Create function instantiation with the type
// args for the receiver type for the method call.
n = ir.NewInstExpr(pos, ir.OFUNCINST, n, targs)
typed(g.typ(typ), n)
return n
}
if !g.match(x.Type(), recvType2, false) {
base.FatalfAt(pos, "expected %L to have type %v", x, recvType2)
} else {
n = DotMethod(pos, x, last)
}
}
}
if have, want := n.Sym(), g.selector(method2); have != want {
base.FatalfAt(pos, "bad Sym: have %v, want %v", have, want)
}
return n
}
// getTargs gets the targs associated with the receiver of a selected method
func getTargs(selinfo *types2.Selection) []types2.Type {
r := selinfo.Recv()
if p := types2.AsPointer(r); p != nil {
r = p.Elem()
}
n := types2.AsNamed(r)
if n == nil {
base.Fatalf("Incorrect type for selinfo %v", selinfo)
}
return n.TArgs()
}
func (g *irgen) exprList(expr syntax.Expr) []ir.Node {
switch expr := expr.(type) {
case nil:
return nil
case *syntax.ListExpr:
return g.exprs(expr.ElemList)
default:
return []ir.Node{g.expr(expr)}
}
}
func (g *irgen) exprs(exprs []syntax.Expr) []ir.Node {
nodes := make([]ir.Node, len(exprs))
for i, expr := range exprs {
nodes[i] = g.expr(expr)
}
return nodes
}
func (g *irgen) compLit(typ types2.Type, lit *syntax.CompositeLit) ir.Node {
if ptr, ok := typ.Underlying().(*types2.Pointer); ok {
n := ir.NewAddrExpr(g.pos(lit), g.compLit(ptr.Elem(), lit))
n.SetOp(ir.OPTRLIT)
return typed(g.typ(typ), n)
}
_, isStruct := typ.Underlying().(*types2.Struct)
exprs := make([]ir.Node, len(lit.ElemList))
for i, elem := range lit.ElemList {
switch elem := elem.(type) {
case *syntax.KeyValueExpr:
if isStruct {
exprs[i] = ir.NewStructKeyExpr(g.pos(elem), g.name(elem.Key.(*syntax.Name)), g.expr(elem.Value))
} else {
exprs[i] = ir.NewKeyExpr(g.pos(elem), g.expr(elem.Key), g.expr(elem.Value))
}
default:
exprs[i] = g.expr(elem)
}
}
// TODO(mdempsky): Remove dependency on typecheck.Expr.
return typecheck.Expr(ir.NewCompLitExpr(g.pos(lit), ir.OCOMPLIT, ir.TypeNode(g.typ(typ)), exprs))
}
func (g *irgen) funcLit(typ2 types2.Type, expr *syntax.FuncLit) ir.Node {
fn := ir.NewFunc(g.pos(expr))
fn.SetIsHiddenClosure(ir.CurFunc != nil)
fn.Nname = ir.NewNameAt(g.pos(expr), typecheck.ClosureName(ir.CurFunc))
ir.MarkFunc(fn.Nname)
typ := g.typ(typ2)
fn.Nname.Func = fn
fn.Nname.Defn = fn
// Set Ntype for now to be compatible with later parts of compile, remove later.
fn.Nname.Ntype = ir.TypeNode(typ)
typed(typ, fn.Nname)
fn.SetTypecheck(1)
fn.OClosure = ir.NewClosureExpr(g.pos(expr), fn)
typed(typ, fn.OClosure)
g.funcBody(fn, nil, expr.Type, expr.Body)
ir.FinishCaptureNames(fn.Pos(), ir.CurFunc, fn)
// TODO(mdempsky): ir.CaptureName should probably handle
// copying these fields from the canonical variable.
for _, cv := range fn.ClosureVars {
cv.SetType(cv.Canonical().Type())
cv.SetTypecheck(1)
cv.SetWalkdef(1)
}
g.target.Decls = append(g.target.Decls, fn)
return fn.OClosure
}
func (g *irgen) typeExpr(typ syntax.Expr) *types.Type {
n := g.expr(typ)
if n.Op() != ir.OTYPE {
base.FatalfAt(g.pos(typ), "expected type: %L", n)
}
return n.Type()
}