go/src/cmd/compile/internal/noder/linker.go
Than McIntosh 323cf73091 cmd/compile: write "properties" to export data for inlinable funcs
Augment the ir.Inline container to include an entry for function
properties (currently serialized as a string), and if
GOEXPERIMENT=newinliner is set, compute and store function
properties for all inline candidates processed by the inliner.

The idea here is that if the function properties are going to drive
inlining decisions, we'd like to have the same info from non-local /
imported functions as for local / in-package functions, hence we need
to include the properties in the export data.

Hand testing on the compiler itself and with k8s kubelet shows that
this increases the size of export data overall by about 2-3 percent,
so a pretty modest increase.

Updates #61502.

Change-Id: I9d1c311aa8418d02ffea3629c3dd9d8076886d15
Reviewed-on: https://go-review.googlesource.com/c/go/+/511562
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2023-09-08 23:02:15 +00:00

350 lines
9.9 KiB
Go

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"internal/buildcfg"
"internal/goexperiment"
"internal/pkgbits"
"io"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/types"
"cmd/internal/goobj"
"cmd/internal/obj"
)
// This file implements the unified IR linker, which combines the
// local package's stub data with imported package data to produce a
// complete export data file. It also rewrites the compiler's
// extension data sections based on the results of compilation (e.g.,
// the function inlining cost and linker symbol index assignments).
//
// TODO(mdempsky): Using the name "linker" here is confusing, because
// readers are likely to mistake references to it for cmd/link. But
// there's a shortage of good names for "something that combines
// multiple parts into a cohesive whole"... e.g., "assembler" and
// "compiler" are also already taken.
// TODO(mdempsky): Should linker go into pkgbits? Probably the
// low-level linking details can be moved there, but the logic for
// handling extension data needs to stay in the compiler.
// A linker combines a package's stub export data with any referenced
// elements from imported packages into a single, self-contained
// export data file.
type linker struct {
pw pkgbits.PkgEncoder
pkgs map[string]pkgbits.Index
decls map[*types.Sym]pkgbits.Index
bodies map[*types.Sym]pkgbits.Index
}
// relocAll ensures that all elements specified by pr and relocs are
// copied into the output export data file, and returns the
// corresponding indices in the output.
func (l *linker) relocAll(pr *pkgReader, relocs []pkgbits.RelocEnt) []pkgbits.RelocEnt {
res := make([]pkgbits.RelocEnt, len(relocs))
for i, rent := range relocs {
rent.Idx = l.relocIdx(pr, rent.Kind, rent.Idx)
res[i] = rent
}
return res
}
// relocIdx ensures a single element is copied into the output export
// data file, and returns the corresponding index in the output.
func (l *linker) relocIdx(pr *pkgReader, k pkgbits.RelocKind, idx pkgbits.Index) pkgbits.Index {
assert(pr != nil)
absIdx := pr.AbsIdx(k, idx)
if newidx := pr.newindex[absIdx]; newidx != 0 {
return ^newidx
}
var newidx pkgbits.Index
switch k {
case pkgbits.RelocString:
newidx = l.relocString(pr, idx)
case pkgbits.RelocPkg:
newidx = l.relocPkg(pr, idx)
case pkgbits.RelocObj:
newidx = l.relocObj(pr, idx)
default:
// Generic relocations.
//
// TODO(mdempsky): Deduplicate more sections? In fact, I think
// every section could be deduplicated. This would also be easier
// if we do external relocations.
w := l.pw.NewEncoderRaw(k)
l.relocCommon(pr, &w, k, idx)
newidx = w.Idx
}
pr.newindex[absIdx] = ^newidx
return newidx
}
// relocString copies the specified string from pr into the output
// export data file, deduplicating it against other strings.
func (l *linker) relocString(pr *pkgReader, idx pkgbits.Index) pkgbits.Index {
return l.pw.StringIdx(pr.StringIdx(idx))
}
// relocPkg copies the specified package from pr into the output
// export data file, rewriting its import path to match how it was
// imported.
//
// TODO(mdempsky): Since CL 391014, we already have the compilation
// unit's import path, so there should be no need to rewrite packages
// anymore.
func (l *linker) relocPkg(pr *pkgReader, idx pkgbits.Index) pkgbits.Index {
path := pr.PeekPkgPath(idx)
if newidx, ok := l.pkgs[path]; ok {
return newidx
}
r := pr.NewDecoder(pkgbits.RelocPkg, idx, pkgbits.SyncPkgDef)
w := l.pw.NewEncoder(pkgbits.RelocPkg, pkgbits.SyncPkgDef)
l.pkgs[path] = w.Idx
// TODO(mdempsky): We end up leaving an empty string reference here
// from when the package was originally written as "". Probably not
// a big deal, but a little annoying. Maybe relocating
// cross-references in place is the way to go after all.
w.Relocs = l.relocAll(pr, r.Relocs)
_ = r.String() // original path
w.String(path)
io.Copy(&w.Data, &r.Data)
return w.Flush()
}
// relocObj copies the specified object from pr into the output export
// data file, rewriting its compiler-private extension data (e.g.,
// adding inlining cost and escape analysis results for functions).
func (l *linker) relocObj(pr *pkgReader, idx pkgbits.Index) pkgbits.Index {
path, name, tag := pr.PeekObj(idx)
sym := types.NewPkg(path, "").Lookup(name)
if newidx, ok := l.decls[sym]; ok {
return newidx
}
if tag == pkgbits.ObjStub && path != "builtin" && path != "unsafe" {
pri, ok := objReader[sym]
if !ok {
base.Fatalf("missing reader for %q.%v", path, name)
}
assert(ok)
pr = pri.pr
idx = pri.idx
path2, name2, tag2 := pr.PeekObj(idx)
sym2 := types.NewPkg(path2, "").Lookup(name2)
assert(sym == sym2)
assert(tag2 != pkgbits.ObjStub)
}
w := l.pw.NewEncoderRaw(pkgbits.RelocObj)
wext := l.pw.NewEncoderRaw(pkgbits.RelocObjExt)
wname := l.pw.NewEncoderRaw(pkgbits.RelocName)
wdict := l.pw.NewEncoderRaw(pkgbits.RelocObjDict)
l.decls[sym] = w.Idx
assert(wext.Idx == w.Idx)
assert(wname.Idx == w.Idx)
assert(wdict.Idx == w.Idx)
l.relocCommon(pr, &w, pkgbits.RelocObj, idx)
l.relocCommon(pr, &wname, pkgbits.RelocName, idx)
l.relocCommon(pr, &wdict, pkgbits.RelocObjDict, idx)
// Generic types and functions won't have definitions, and imported
// objects may not either.
obj, _ := sym.Def.(*ir.Name)
local := sym.Pkg == types.LocalPkg
if local && obj != nil {
wext.Sync(pkgbits.SyncObject1)
switch tag {
case pkgbits.ObjFunc:
l.relocFuncExt(&wext, obj)
case pkgbits.ObjType:
l.relocTypeExt(&wext, obj)
case pkgbits.ObjVar:
l.relocVarExt(&wext, obj)
}
wext.Flush()
} else {
l.relocCommon(pr, &wext, pkgbits.RelocObjExt, idx)
}
// Check if we need to export the inline bodies for functions and
// methods.
if obj != nil {
if obj.Op() == ir.ONAME && obj.Class == ir.PFUNC {
l.exportBody(obj, local)
}
if obj.Op() == ir.OTYPE && !obj.Alias() {
if typ := obj.Type(); !typ.IsInterface() {
for _, method := range typ.Methods() {
l.exportBody(method.Nname.(*ir.Name), local)
}
}
}
}
return w.Idx
}
// exportBody exports the given function or method's body, if
// appropriate. local indicates whether it's a local function or
// method available on a locally declared type. (Due to cross-package
// type aliases, a method may be imported, but still available on a
// locally declared type.)
func (l *linker) exportBody(obj *ir.Name, local bool) {
assert(obj.Op() == ir.ONAME && obj.Class == ir.PFUNC)
fn := obj.Func
if fn.Inl == nil {
return // not inlinable anyway
}
// As a simple heuristic, if the function was declared in this
// package or we inlined it somewhere in this package, then we'll
// (re)export the function body. This isn't perfect, but seems
// reasonable in practice. In particular, it has the nice property
// that in the worst case, adding a blank import ensures the
// function body is available for inlining.
//
// TODO(mdempsky): Reimplement the reachable method crawling logic
// from typecheck/crawler.go.
exportBody := local || fn.Inl.HaveDcl
if !exportBody {
return
}
sym := obj.Sym()
if _, ok := l.bodies[sym]; ok {
// Due to type aliases, we might visit methods multiple times.
base.AssertfAt(obj.Type().Recv() != nil, obj.Pos(), "expected method: %v", obj)
return
}
pri, ok := bodyReaderFor(fn)
assert(ok)
l.bodies[sym] = l.relocIdx(pri.pr, pkgbits.RelocBody, pri.idx)
}
// relocCommon copies the specified element from pr into w,
// recursively relocating any referenced elements as well.
func (l *linker) relocCommon(pr *pkgReader, w *pkgbits.Encoder, k pkgbits.RelocKind, idx pkgbits.Index) {
r := pr.NewDecoderRaw(k, idx)
w.Relocs = l.relocAll(pr, r.Relocs)
io.Copy(&w.Data, &r.Data)
w.Flush()
}
func (l *linker) pragmaFlag(w *pkgbits.Encoder, pragma ir.PragmaFlag) {
w.Sync(pkgbits.SyncPragma)
w.Int(int(pragma))
}
func (l *linker) relocFuncExt(w *pkgbits.Encoder, name *ir.Name) {
w.Sync(pkgbits.SyncFuncExt)
l.pragmaFlag(w, name.Func.Pragma)
l.linkname(w, name)
if buildcfg.GOARCH == "wasm" {
if name.Func.WasmImport != nil {
w.String(name.Func.WasmImport.Module)
w.String(name.Func.WasmImport.Name)
} else {
w.String("")
w.String("")
}
}
// Relocated extension data.
w.Bool(true)
// Record definition ABI so cross-ABI calls can be direct.
// This is important for the performance of calling some
// common functions implemented in assembly (e.g., bytealg).
w.Uint64(uint64(name.Func.ABI))
// Escape analysis.
for _, f := range name.Type().RecvParams() {
w.String(f.Note)
}
if inl := name.Func.Inl; w.Bool(inl != nil) {
w.Len(int(inl.Cost))
w.Bool(inl.CanDelayResults)
if goexperiment.NewInliner {
w.String(inl.Properties)
}
}
w.Sync(pkgbits.SyncEOF)
}
func (l *linker) relocTypeExt(w *pkgbits.Encoder, name *ir.Name) {
w.Sync(pkgbits.SyncTypeExt)
typ := name.Type()
l.pragmaFlag(w, name.Pragma())
// For type T, export the index of type descriptor symbols of T and *T.
l.lsymIdx(w, "", reflectdata.TypeLinksym(typ))
l.lsymIdx(w, "", reflectdata.TypeLinksym(typ.PtrTo()))
if typ.Kind() != types.TINTER {
for _, method := range typ.Methods() {
l.relocFuncExt(w, method.Nname.(*ir.Name))
}
}
}
func (l *linker) relocVarExt(w *pkgbits.Encoder, name *ir.Name) {
w.Sync(pkgbits.SyncVarExt)
l.linkname(w, name)
}
func (l *linker) linkname(w *pkgbits.Encoder, name *ir.Name) {
w.Sync(pkgbits.SyncLinkname)
linkname := name.Sym().Linkname
if !l.lsymIdx(w, linkname, name.Linksym()) {
w.String(linkname)
}
}
func (l *linker) lsymIdx(w *pkgbits.Encoder, linkname string, lsym *obj.LSym) bool {
if lsym.PkgIdx > goobj.PkgIdxSelf || (lsym.PkgIdx == goobj.PkgIdxInvalid && !lsym.Indexed()) || linkname != "" {
w.Int64(-1)
return false
}
// For a defined symbol, export its index.
// For re-exporting an imported symbol, pass its index through.
w.Int64(int64(lsym.SymIdx))
return true
}