go/src/os/signal/signal_test.go
Bryan C. Mills 0ebe224628 os/signal: scale back the solaris-amd64-oraclerel settle time
The settleTime is arbitrary. Ideally we should refactor the test to
avoid it (using subprocesses instead of sleeps to isolate tests from
each others' delayed signals), but as a shorter-term workaround let's
try scaling it back to match linux/ppc64 (the other builder that
empirically requires a longer settleTime).

For #51054.
Updates #33174.

Change-Id: I574fffaadd74c52c13d63974e87f20b6d3cf3c4b
Reviewed-on: https://go-review.googlesource.com/c/go/+/403199
TryBot-Result: Gopher Robot <gobot@golang.org>
Auto-Submit: Bryan Mills <bcmills@google.com>
Reviewed-by: Ian Lance Taylor <iant@google.com>
Run-TryBot: Bryan Mills <bcmills@google.com>
2022-04-30 02:35:50 +00:00

916 lines
27 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build unix
package signal
import (
"bytes"
"context"
"flag"
"fmt"
"internal/testenv"
"os"
"os/exec"
"runtime"
"runtime/trace"
"strconv"
"strings"
"sync"
"syscall"
"testing"
"time"
)
// settleTime is an upper bound on how long we expect signals to take to be
// delivered. Lower values make the test faster, but also flakier — especially
// on heavily loaded systems.
//
// The current value is set based on flakes observed in the Go builders.
var settleTime = 100 * time.Millisecond
// fatalWaitingTime is an absurdly long time to wait for signals to be
// delivered but, using it, we (hopefully) eliminate test flakes on the
// build servers. See #46736 for discussion.
var fatalWaitingTime = 30 * time.Second
func init() {
if testenv.Builder() == "solaris-amd64-oraclerel" {
// The solaris-amd64-oraclerel builder has been observed to time out in
// TestNohup even with a 250ms settle time.
//
// Use a much longer settle time on that builder to try to suss out whether
// the test is flaky due to builder slowness (which may mean we need a
// longer GO_TEST_TIMEOUT_SCALE) or due to a dropped signal (which may
// instead need a test-skip and upstream bug filed against the Solaris
// kernel).
//
// See https://golang.org/issue/33174.
settleTime = 5 * time.Second
} else if runtime.GOOS == "linux" && strings.HasPrefix(runtime.GOARCH, "ppc64") {
// Older linux kernels seem to have some hiccups delivering the signal
// in a timely manner on ppc64 and ppc64le. When running on a
// ppc64le/ubuntu 16.04/linux 4.4 host the time can vary quite
// substantially even on a idle system. 5 seconds is twice any value
// observed when running 10000 tests on such a system.
settleTime = 5 * time.Second
} else if s := os.Getenv("GO_TEST_TIMEOUT_SCALE"); s != "" {
if scale, err := strconv.Atoi(s); err == nil {
settleTime *= time.Duration(scale)
}
}
}
func waitSig(t *testing.T, c <-chan os.Signal, sig os.Signal) {
t.Helper()
waitSig1(t, c, sig, false)
}
func waitSigAll(t *testing.T, c <-chan os.Signal, sig os.Signal) {
t.Helper()
waitSig1(t, c, sig, true)
}
func waitSig1(t *testing.T, c <-chan os.Signal, sig os.Signal, all bool) {
t.Helper()
// Sleep multiple times to give the kernel more tries to
// deliver the signal.
start := time.Now()
timer := time.NewTimer(settleTime / 10)
defer timer.Stop()
// If the caller notified for all signals on c, filter out SIGURG,
// which is used for runtime preemption and can come at unpredictable times.
// General user code should filter out all unexpected signals instead of just
// SIGURG, but since os/signal is tightly coupled to the runtime it seems
// appropriate to be stricter here.
for time.Since(start) < fatalWaitingTime {
select {
case s := <-c:
if s == sig {
return
}
if !all || s != syscall.SIGURG {
t.Fatalf("signal was %v, want %v", s, sig)
}
case <-timer.C:
timer.Reset(settleTime / 10)
}
}
t.Fatalf("timeout after %v waiting for %v", fatalWaitingTime, sig)
}
// quiesce waits until we can be reasonably confident that all pending signals
// have been delivered by the OS.
func quiesce() {
// The kernel will deliver a signal as a thread returns
// from a syscall. If the only active thread is sleeping,
// and the system is busy, the kernel may not get around
// to waking up a thread to catch the signal.
// We try splitting up the sleep to give the kernel
// many chances to deliver the signal.
start := time.Now()
for time.Since(start) < settleTime {
time.Sleep(settleTime / 10)
}
}
// Test that basic signal handling works.
func TestSignal(t *testing.T) {
// Ask for SIGHUP
c := make(chan os.Signal, 1)
Notify(c, syscall.SIGHUP)
defer Stop(c)
// Send this process a SIGHUP
t.Logf("sighup...")
syscall.Kill(syscall.Getpid(), syscall.SIGHUP)
waitSig(t, c, syscall.SIGHUP)
// Ask for everything we can get. The buffer size has to be
// more than 1, since the runtime might send SIGURG signals.
// Using 10 is arbitrary.
c1 := make(chan os.Signal, 10)
Notify(c1)
// Stop relaying the SIGURG signals. See #49724
Reset(syscall.SIGURG)
defer Stop(c1)
// Send this process a SIGWINCH
t.Logf("sigwinch...")
syscall.Kill(syscall.Getpid(), syscall.SIGWINCH)
waitSigAll(t, c1, syscall.SIGWINCH)
// Send two more SIGHUPs, to make sure that
// they get delivered on c1 and that not reading
// from c does not block everything.
t.Logf("sighup...")
syscall.Kill(syscall.Getpid(), syscall.SIGHUP)
waitSigAll(t, c1, syscall.SIGHUP)
t.Logf("sighup...")
syscall.Kill(syscall.Getpid(), syscall.SIGHUP)
waitSigAll(t, c1, syscall.SIGHUP)
// The first SIGHUP should be waiting for us on c.
waitSig(t, c, syscall.SIGHUP)
}
func TestStress(t *testing.T) {
dur := 3 * time.Second
if testing.Short() {
dur = 100 * time.Millisecond
}
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(4))
sig := make(chan os.Signal, 1)
Notify(sig, syscall.SIGUSR1)
go func() {
stop := time.After(dur)
for {
select {
case <-stop:
// Allow enough time for all signals to be delivered before we stop
// listening for them.
quiesce()
Stop(sig)
// According to its documentation, “[w]hen Stop returns, it in
// guaranteed that c will receive no more signals.” So we can safely
// close sig here: if there is a send-after-close race here, that is a
// bug in Stop and we would like to detect it.
close(sig)
return
default:
syscall.Kill(syscall.Getpid(), syscall.SIGUSR1)
runtime.Gosched()
}
}
}()
for range sig {
// Receive signals until the sender closes sig.
}
}
func testCancel(t *testing.T, ignore bool) {
// Ask to be notified on c1 when a SIGWINCH is received.
c1 := make(chan os.Signal, 1)
Notify(c1, syscall.SIGWINCH)
defer Stop(c1)
// Ask to be notified on c2 when a SIGHUP is received.
c2 := make(chan os.Signal, 1)
Notify(c2, syscall.SIGHUP)
defer Stop(c2)
// Send this process a SIGWINCH and wait for notification on c1.
syscall.Kill(syscall.Getpid(), syscall.SIGWINCH)
waitSig(t, c1, syscall.SIGWINCH)
// Send this process a SIGHUP and wait for notification on c2.
syscall.Kill(syscall.Getpid(), syscall.SIGHUP)
waitSig(t, c2, syscall.SIGHUP)
// Ignore, or reset the signal handlers for, SIGWINCH and SIGHUP.
// Either way, this should undo both calls to Notify above.
if ignore {
Ignore(syscall.SIGWINCH, syscall.SIGHUP)
// Don't bother deferring a call to Reset: it is documented to undo Notify,
// but its documentation says nothing about Ignore, and (as of the time of
// writing) it empirically does not undo an Ignore.
} else {
Reset(syscall.SIGWINCH, syscall.SIGHUP)
}
// Send this process a SIGWINCH. It should be ignored.
syscall.Kill(syscall.Getpid(), syscall.SIGWINCH)
// If ignoring, Send this process a SIGHUP. It should be ignored.
if ignore {
syscall.Kill(syscall.Getpid(), syscall.SIGHUP)
}
quiesce()
select {
case s := <-c1:
t.Errorf("unexpected signal %v", s)
default:
// nothing to read - good
}
select {
case s := <-c2:
t.Errorf("unexpected signal %v", s)
default:
// nothing to read - good
}
// One or both of the signals may have been blocked for this process
// by the calling process.
// Discard any queued signals now to avoid interfering with other tests.
Notify(c1, syscall.SIGWINCH)
Notify(c2, syscall.SIGHUP)
quiesce()
}
// Test that Reset cancels registration for listed signals on all channels.
func TestReset(t *testing.T) {
testCancel(t, false)
}
// Test that Ignore cancels registration for listed signals on all channels.
func TestIgnore(t *testing.T) {
testCancel(t, true)
}
// Test that Ignored correctly detects changes to the ignored status of a signal.
func TestIgnored(t *testing.T) {
// Ask to be notified on SIGWINCH.
c := make(chan os.Signal, 1)
Notify(c, syscall.SIGWINCH)
// If we're being notified, then the signal should not be ignored.
if Ignored(syscall.SIGWINCH) {
t.Errorf("expected SIGWINCH to not be ignored.")
}
Stop(c)
Ignore(syscall.SIGWINCH)
// We're no longer paying attention to this signal.
if !Ignored(syscall.SIGWINCH) {
t.Errorf("expected SIGWINCH to be ignored when explicitly ignoring it.")
}
Reset()
}
var checkSighupIgnored = flag.Bool("check_sighup_ignored", false, "if true, TestDetectNohup will fail if SIGHUP is not ignored.")
// Test that Ignored(SIGHUP) correctly detects whether it is being run under nohup.
func TestDetectNohup(t *testing.T) {
if *checkSighupIgnored {
if !Ignored(syscall.SIGHUP) {
t.Fatal("SIGHUP is not ignored.")
} else {
t.Log("SIGHUP is ignored.")
}
} else {
defer Reset()
// Ugly: ask for SIGHUP so that child will not have no-hup set
// even if test is running under nohup environment.
// We have no intention of reading from c.
c := make(chan os.Signal, 1)
Notify(c, syscall.SIGHUP)
if out, err := exec.Command(os.Args[0], "-test.run=TestDetectNohup", "-check_sighup_ignored").CombinedOutput(); err == nil {
t.Errorf("ran test with -check_sighup_ignored and it succeeded: expected failure.\nOutput:\n%s", out)
}
Stop(c)
// Again, this time with nohup, assuming we can find it.
_, err := os.Stat("/usr/bin/nohup")
if err != nil {
t.Skip("cannot find nohup; skipping second half of test")
}
Ignore(syscall.SIGHUP)
os.Remove("nohup.out")
out, err := exec.Command("/usr/bin/nohup", os.Args[0], "-test.run=TestDetectNohup", "-check_sighup_ignored").CombinedOutput()
data, _ := os.ReadFile("nohup.out")
os.Remove("nohup.out")
if err != nil {
t.Errorf("ran test with -check_sighup_ignored under nohup and it failed: expected success.\nError: %v\nOutput:\n%s%s", err, out, data)
}
}
}
var (
sendUncaughtSighup = flag.Int("send_uncaught_sighup", 0, "send uncaught SIGHUP during TestStop")
dieFromSighup = flag.Bool("die_from_sighup", false, "wait to die from uncaught SIGHUP")
)
// Test that Stop cancels the channel's registrations.
func TestStop(t *testing.T) {
sigs := []syscall.Signal{
syscall.SIGWINCH,
syscall.SIGHUP,
syscall.SIGUSR1,
}
for _, sig := range sigs {
sig := sig
t.Run(fmt.Sprint(sig), func(t *testing.T) {
// When calling Notify with a specific signal,
// independent signals should not interfere with each other,
// and we end up needing to wait for signals to quiesce a lot.
// Test the three different signals concurrently.
t.Parallel()
// If the signal is not ignored, send the signal before registering a
// channel to verify the behavior of the default Go handler.
// If it's SIGWINCH or SIGUSR1 we should not see it.
// If it's SIGHUP, maybe we'll die. Let the flag tell us what to do.
mayHaveBlockedSignal := false
if !Ignored(sig) && (sig != syscall.SIGHUP || *sendUncaughtSighup == 1) {
syscall.Kill(syscall.Getpid(), sig)
quiesce()
// We don't know whether sig is blocked for this process; see
// https://golang.org/issue/38165. Assume that it could be.
mayHaveBlockedSignal = true
}
// Ask for signal
c := make(chan os.Signal, 1)
Notify(c, sig)
// Send this process the signal again.
syscall.Kill(syscall.Getpid(), sig)
waitSig(t, c, sig)
if mayHaveBlockedSignal {
// We may have received a queued initial signal in addition to the one
// that we sent after Notify. If so, waitSig may have observed that
// initial signal instead of the second one, and we may need to wait for
// the second signal to clear. Do that now.
quiesce()
select {
case <-c:
default:
}
}
// Stop watching for the signal and send it again.
// If it's SIGHUP, maybe we'll die. Let the flag tell us what to do.
Stop(c)
if sig != syscall.SIGHUP || *sendUncaughtSighup == 2 {
syscall.Kill(syscall.Getpid(), sig)
quiesce()
select {
case s := <-c:
t.Errorf("unexpected signal %v", s)
default:
// nothing to read - good
}
// If we're going to receive a signal, it has almost certainly been
// received by now. However, it may have been blocked for this process —
// we don't know. Explicitly unblock it and wait for it to clear now.
Notify(c, sig)
quiesce()
Stop(c)
}
})
}
}
// Test that when run under nohup, an uncaught SIGHUP does not kill the program.
func TestNohup(t *testing.T) {
// Ugly: ask for SIGHUP so that child will not have no-hup set
// even if test is running under nohup environment.
// We have no intention of reading from c.
c := make(chan os.Signal, 1)
Notify(c, syscall.SIGHUP)
// When run without nohup, the test should crash on an uncaught SIGHUP.
// When run under nohup, the test should ignore uncaught SIGHUPs,
// because the runtime is not supposed to be listening for them.
// Either way, TestStop should still be able to catch them when it wants them
// and then when it stops wanting them, the original behavior should resume.
//
// send_uncaught_sighup=1 sends the SIGHUP before starting to listen for SIGHUPs.
// send_uncaught_sighup=2 sends the SIGHUP after no longer listening for SIGHUPs.
//
// Both should fail without nohup and succeed with nohup.
var subTimeout time.Duration
var wg sync.WaitGroup
wg.Add(2)
if deadline, ok := t.Deadline(); ok {
subTimeout = time.Until(deadline)
subTimeout -= subTimeout / 10 // Leave 10% headroom for propagating output.
}
for i := 1; i <= 2; i++ {
i := i
go t.Run(fmt.Sprintf("uncaught-%d", i), func(t *testing.T) {
defer wg.Done()
args := []string{
"-test.v",
"-test.run=TestStop",
"-send_uncaught_sighup=" + strconv.Itoa(i),
"-die_from_sighup",
}
if subTimeout != 0 {
args = append(args, fmt.Sprintf("-test.timeout=%v", subTimeout))
}
out, err := exec.Command(os.Args[0], args...).CombinedOutput()
if err == nil {
t.Errorf("ran test with -send_uncaught_sighup=%d and it succeeded: expected failure.\nOutput:\n%s", i, out)
} else {
t.Logf("test with -send_uncaught_sighup=%d failed as expected.\nError: %v\nOutput:\n%s", i, err, out)
}
})
}
wg.Wait()
Stop(c)
// Skip the nohup test below when running in tmux on darwin, since nohup
// doesn't work correctly there. See issue #5135.
if runtime.GOOS == "darwin" && os.Getenv("TMUX") != "" {
t.Skip("Skipping nohup test due to running in tmux on darwin")
}
// Again, this time with nohup, assuming we can find it.
_, err := exec.LookPath("nohup")
if err != nil {
t.Skip("cannot find nohup; skipping second half of test")
}
wg.Add(2)
if deadline, ok := t.Deadline(); ok {
subTimeout = time.Until(deadline)
subTimeout -= subTimeout / 10 // Leave 10% headroom for propagating output.
}
for i := 1; i <= 2; i++ {
i := i
go t.Run(fmt.Sprintf("nohup-%d", i), func(t *testing.T) {
defer wg.Done()
// POSIX specifies that nohup writes to a file named nohup.out if standard
// output is a terminal. However, for an exec.Command, standard output is
// not a terminal — so we don't need to read or remove that file (and,
// indeed, cannot even create it if the current user is unable to write to
// GOROOT/src, such as when GOROOT is installed and owned by root).
args := []string{
os.Args[0],
"-test.v",
"-test.run=TestStop",
"-send_uncaught_sighup=" + strconv.Itoa(i),
}
if subTimeout != 0 {
args = append(args, fmt.Sprintf("-test.timeout=%v", subTimeout))
}
out, err := exec.Command("nohup", args...).CombinedOutput()
if err != nil {
t.Errorf("ran test with -send_uncaught_sighup=%d under nohup and it failed: expected success.\nError: %v\nOutput:\n%s", i, err, out)
} else {
t.Logf("ran test with -send_uncaught_sighup=%d under nohup.\nOutput:\n%s", i, out)
}
})
}
wg.Wait()
}
// Test that SIGCONT works (issue 8953).
func TestSIGCONT(t *testing.T) {
c := make(chan os.Signal, 1)
Notify(c, syscall.SIGCONT)
defer Stop(c)
syscall.Kill(syscall.Getpid(), syscall.SIGCONT)
waitSig(t, c, syscall.SIGCONT)
}
// Test race between stopping and receiving a signal (issue 14571).
func TestAtomicStop(t *testing.T) {
if os.Getenv("GO_TEST_ATOMIC_STOP") != "" {
atomicStopTestProgram(t)
t.Fatal("atomicStopTestProgram returned")
}
testenv.MustHaveExec(t)
// Call Notify for SIGINT before starting the child process.
// That ensures that SIGINT is not ignored for the child.
// This is necessary because if SIGINT is ignored when a
// Go program starts, then it remains ignored, and closing
// the last notification channel for SIGINT will switch it
// back to being ignored. In that case the assumption of
// atomicStopTestProgram, that it will either die from SIGINT
// or have it be reported, breaks down, as there is a third
// option: SIGINT might be ignored.
cs := make(chan os.Signal, 1)
Notify(cs, syscall.SIGINT)
defer Stop(cs)
const execs = 10
for i := 0; i < execs; i++ {
timeout := "0"
if deadline, ok := t.Deadline(); ok {
timeout = time.Until(deadline).String()
}
cmd := exec.Command(os.Args[0], "-test.run=TestAtomicStop", "-test.timeout="+timeout)
cmd.Env = append(os.Environ(), "GO_TEST_ATOMIC_STOP=1")
out, err := cmd.CombinedOutput()
if err == nil {
if len(out) > 0 {
t.Logf("iteration %d: output %s", i, out)
}
} else {
t.Logf("iteration %d: exit status %q: output: %s", i, err, out)
}
lost := bytes.Contains(out, []byte("lost signal"))
if lost {
t.Errorf("iteration %d: lost signal", i)
}
// The program should either die due to SIGINT,
// or exit with success without printing "lost signal".
if err == nil {
if len(out) > 0 && !lost {
t.Errorf("iteration %d: unexpected output", i)
}
} else {
if ee, ok := err.(*exec.ExitError); !ok {
t.Errorf("iteration %d: error (%v) has type %T; expected exec.ExitError", i, err, err)
} else if ws, ok := ee.Sys().(syscall.WaitStatus); !ok {
t.Errorf("iteration %d: error.Sys (%v) has type %T; expected syscall.WaitStatus", i, ee.Sys(), ee.Sys())
} else if !ws.Signaled() || ws.Signal() != syscall.SIGINT {
t.Errorf("iteration %d: got exit status %v; expected SIGINT", i, ee)
}
}
}
}
// atomicStopTestProgram is run in a subprocess by TestAtomicStop.
// It tries to trigger a signal delivery race. This function should
// either catch a signal or die from it.
func atomicStopTestProgram(t *testing.T) {
// This test won't work if SIGINT is ignored here.
if Ignored(syscall.SIGINT) {
fmt.Println("SIGINT is ignored")
os.Exit(1)
}
const tries = 10
timeout := 2 * time.Second
if deadline, ok := t.Deadline(); ok {
// Give each try an equal slice of the deadline, with one slice to spare for
// cleanup.
timeout = time.Until(deadline) / (tries + 1)
}
pid := syscall.Getpid()
printed := false
for i := 0; i < tries; i++ {
cs := make(chan os.Signal, 1)
Notify(cs, syscall.SIGINT)
var wg sync.WaitGroup
wg.Add(1)
go func() {
defer wg.Done()
Stop(cs)
}()
syscall.Kill(pid, syscall.SIGINT)
// At this point we should either die from SIGINT or
// get a notification on cs. If neither happens, we
// dropped the signal. It is given 2 seconds to
// deliver, as needed for gccgo on some loaded test systems.
select {
case <-cs:
case <-time.After(timeout):
if !printed {
fmt.Print("lost signal on tries:")
printed = true
}
fmt.Printf(" %d", i)
}
wg.Wait()
}
if printed {
fmt.Print("\n")
}
os.Exit(0)
}
func TestTime(t *testing.T) {
// Test that signal works fine when we are in a call to get time,
// which on some platforms is using VDSO. See issue #34391.
dur := 3 * time.Second
if testing.Short() {
dur = 100 * time.Millisecond
}
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(4))
sig := make(chan os.Signal, 1)
Notify(sig, syscall.SIGUSR1)
stop := make(chan struct{})
go func() {
for {
select {
case <-stop:
// Allow enough time for all signals to be delivered before we stop
// listening for them.
quiesce()
Stop(sig)
// According to its documentation, “[w]hen Stop returns, it in
// guaranteed that c will receive no more signals.” So we can safely
// close sig here: if there is a send-after-close race, that is a bug in
// Stop and we would like to detect it.
close(sig)
return
default:
syscall.Kill(syscall.Getpid(), syscall.SIGUSR1)
runtime.Gosched()
}
}
}()
done := make(chan struct{})
go func() {
for range sig {
// Receive signals until the sender closes sig.
}
close(done)
}()
t0 := time.Now()
for t1 := t0; t1.Sub(t0) < dur; t1 = time.Now() {
} // hammering on getting time
close(stop)
<-done
}
var (
checkNotifyContext = flag.Bool("check_notify_ctx", false, "if true, TestNotifyContext will fail if SIGINT is not received.")
ctxNotifyTimes = flag.Int("ctx_notify_times", 1, "number of times a SIGINT signal should be received")
)
func TestNotifyContextNotifications(t *testing.T) {
if *checkNotifyContext {
ctx, _ := NotifyContext(context.Background(), syscall.SIGINT)
// We want to make sure not to be calling Stop() internally on NotifyContext() when processing a received signal.
// Being able to wait for a number of received system signals allows us to do so.
var wg sync.WaitGroup
n := *ctxNotifyTimes
wg.Add(n)
for i := 0; i < n; i++ {
go func() {
syscall.Kill(syscall.Getpid(), syscall.SIGINT)
wg.Done()
}()
}
wg.Wait()
<-ctx.Done()
fmt.Println("received SIGINT")
// Sleep to give time to simultaneous signals to reach the process.
// These signals must be ignored given stop() is not called on this code.
// We want to guarantee a SIGINT doesn't cause a premature termination of the program.
time.Sleep(settleTime)
return
}
t.Parallel()
testCases := []struct {
name string
n int // number of times a SIGINT should be notified.
}{
{"once", 1},
{"multiple", 10},
}
for _, tc := range testCases {
tc := tc
t.Run(tc.name, func(t *testing.T) {
t.Parallel()
var subTimeout time.Duration
if deadline, ok := t.Deadline(); ok {
timeout := time.Until(deadline)
if timeout < 2*settleTime {
t.Fatalf("starting test with less than %v remaining", 2*settleTime)
}
subTimeout = timeout - (timeout / 10) // Leave 10% headroom for cleaning up subprocess.
}
args := []string{
"-test.v",
"-test.run=TestNotifyContextNotifications$",
"-check_notify_ctx",
fmt.Sprintf("-ctx_notify_times=%d", tc.n),
}
if subTimeout != 0 {
args = append(args, fmt.Sprintf("-test.timeout=%v", subTimeout))
}
out, err := exec.Command(os.Args[0], args...).CombinedOutput()
if err != nil {
t.Errorf("ran test with -check_notify_ctx_notification and it failed with %v.\nOutput:\n%s", err, out)
}
if want := []byte("received SIGINT\n"); !bytes.Contains(out, want) {
t.Errorf("got %q, wanted %q", out, want)
}
})
}
}
func TestNotifyContextStop(t *testing.T) {
Ignore(syscall.SIGHUP)
if !Ignored(syscall.SIGHUP) {
t.Errorf("expected SIGHUP to be ignored when explicitly ignoring it.")
}
parent, cancelParent := context.WithCancel(context.Background())
defer cancelParent()
c, stop := NotifyContext(parent, syscall.SIGHUP)
defer stop()
// If we're being notified, then the signal should not be ignored.
if Ignored(syscall.SIGHUP) {
t.Errorf("expected SIGHUP to not be ignored.")
}
if want, got := "signal.NotifyContext(context.Background.WithCancel, [hangup])", fmt.Sprint(c); want != got {
t.Errorf("c.String() = %q, wanted %q", got, want)
}
stop()
select {
case <-c.Done():
if got := c.Err(); got != context.Canceled {
t.Errorf("c.Err() = %q, want %q", got, context.Canceled)
}
case <-time.After(time.Second):
t.Errorf("timed out waiting for context to be done after calling stop")
}
}
func TestNotifyContextCancelParent(t *testing.T) {
parent, cancelParent := context.WithCancel(context.Background())
defer cancelParent()
c, stop := NotifyContext(parent, syscall.SIGINT)
defer stop()
if want, got := "signal.NotifyContext(context.Background.WithCancel, [interrupt])", fmt.Sprint(c); want != got {
t.Errorf("c.String() = %q, want %q", got, want)
}
cancelParent()
select {
case <-c.Done():
if got := c.Err(); got != context.Canceled {
t.Errorf("c.Err() = %q, want %q", got, context.Canceled)
}
case <-time.After(time.Second):
t.Errorf("timed out waiting for parent context to be canceled")
}
}
func TestNotifyContextPrematureCancelParent(t *testing.T) {
parent, cancelParent := context.WithCancel(context.Background())
defer cancelParent()
cancelParent() // Prematurely cancel context before calling NotifyContext.
c, stop := NotifyContext(parent, syscall.SIGINT)
defer stop()
if want, got := "signal.NotifyContext(context.Background.WithCancel, [interrupt])", fmt.Sprint(c); want != got {
t.Errorf("c.String() = %q, want %q", got, want)
}
select {
case <-c.Done():
if got := c.Err(); got != context.Canceled {
t.Errorf("c.Err() = %q, want %q", got, context.Canceled)
}
case <-time.After(time.Second):
t.Errorf("timed out waiting for parent context to be canceled")
}
}
func TestNotifyContextSimultaneousStop(t *testing.T) {
c, stop := NotifyContext(context.Background(), syscall.SIGINT)
defer stop()
if want, got := "signal.NotifyContext(context.Background, [interrupt])", fmt.Sprint(c); want != got {
t.Errorf("c.String() = %q, want %q", got, want)
}
var wg sync.WaitGroup
n := 10
wg.Add(n)
for i := 0; i < n; i++ {
go func() {
stop()
wg.Done()
}()
}
wg.Wait()
select {
case <-c.Done():
if got := c.Err(); got != context.Canceled {
t.Errorf("c.Err() = %q, want %q", got, context.Canceled)
}
case <-time.After(time.Second):
t.Errorf("expected context to be canceled")
}
}
func TestNotifyContextStringer(t *testing.T) {
parent, cancelParent := context.WithCancel(context.Background())
defer cancelParent()
c, stop := NotifyContext(parent, syscall.SIGHUP, syscall.SIGINT, syscall.SIGTERM)
defer stop()
want := `signal.NotifyContext(context.Background.WithCancel, [hangup interrupt terminated])`
if got := fmt.Sprint(c); got != want {
t.Errorf("c.String() = %q, want %q", got, want)
}
}
// #44193 test signal handling while stopping and starting the world.
func TestSignalTrace(t *testing.T) {
done := make(chan struct{})
quit := make(chan struct{})
c := make(chan os.Signal, 1)
Notify(c, syscall.SIGHUP)
// Source and sink for signals busy loop unsynchronized with
// trace starts and stops. We are ultimately validating that
// signals and runtime.(stop|start)TheWorldGC are compatible.
go func() {
defer close(done)
defer Stop(c)
pid := syscall.Getpid()
for {
select {
case <-quit:
return
default:
syscall.Kill(pid, syscall.SIGHUP)
}
waitSig(t, c, syscall.SIGHUP)
}
}()
for i := 0; i < 100; i++ {
buf := new(bytes.Buffer)
if err := trace.Start(buf); err != nil {
t.Fatalf("[%d] failed to start tracing: %v", i, err)
}
time.After(1 * time.Microsecond)
trace.Stop()
size := buf.Len()
if size == 0 {
t.Fatalf("[%d] trace is empty", i)
}
}
close(quit)
<-done
}