mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
Ran rsc.io/grind rev 6f0e601 on the source files. The cleanups move var declarations as close to the use as possible, splitting disjoint uses of the var into separate variables. They also remove dead code (especially in func sudoaddable), which helps with the var moving. There's more cleanup to come, but this alone cuts the time spent compiling html/template on my 2013 MacBook Pro from 3.1 seconds to 2.3 seconds. Change-Id: I4de499f47b1dd47a560c310bbcde6b08d425cfd6 Reviewed-on: https://go-review.googlesource.com/5637 Reviewed-by: Rob Pike <r@golang.org>
1133 lines
30 KiB
Go
1133 lines
30 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"fmt"
|
|
"strings"
|
|
)
|
|
|
|
// Rewrite tree to use separate statements to enforce
|
|
// order of evaluation. Makes walk easier, because it
|
|
// can (after this runs) reorder at will within an expression.
|
|
//
|
|
// Rewrite x op= y into x = x op y.
|
|
//
|
|
// Introduce temporaries as needed by runtime routines.
|
|
// For example, the map runtime routines take the map key
|
|
// by reference, so make sure all map keys are addressable
|
|
// by copying them to temporaries as needed.
|
|
// The same is true for channel operations.
|
|
//
|
|
// Arrange that map index expressions only appear in direct
|
|
// assignments x = m[k] or m[k] = x, never in larger expressions.
|
|
//
|
|
// Arrange that receive expressions only appear in direct assignments
|
|
// x = <-c or as standalone statements <-c, never in larger expressions.
|
|
|
|
// TODO(rsc): The temporary introduction during multiple assignments
|
|
// should be moved into this file, so that the temporaries can be cleaned
|
|
// and so that conversions implicit in the OAS2FUNC and OAS2RECV
|
|
// nodes can be made explicit and then have their temporaries cleaned.
|
|
|
|
// TODO(rsc): Goto and multilevel break/continue can jump over
|
|
// inserted VARKILL annotations. Work out a way to handle these.
|
|
// The current implementation is safe, in that it will execute correctly.
|
|
// But it won't reuse temporaries as aggressively as it might, and
|
|
// it can result in unnecessary zeroing of those variables in the function
|
|
// prologue.
|
|
|
|
// Order holds state during the ordering process.
|
|
type Order struct {
|
|
out *NodeList
|
|
temp *NodeList
|
|
free *NodeList
|
|
}
|
|
|
|
// Order rewrites fn->nbody to apply the ordering constraints
|
|
// described in the comment at the top of the file.
|
|
func order(fn *Node) {
|
|
if Debug['W'] > 1 {
|
|
s := fmt.Sprintf("\nbefore order %v", Sconv(fn.Nname.Sym, 0))
|
|
dumplist(s, fn.Nbody)
|
|
}
|
|
|
|
orderblock(&fn.Nbody)
|
|
}
|
|
|
|
// Ordertemp allocates a new temporary with the given type,
|
|
// pushes it onto the temp stack, and returns it.
|
|
// If clear is true, ordertemp emits code to zero the temporary.
|
|
func ordertemp(t *Type, order *Order, clear bool) *Node {
|
|
var_ := temp(t)
|
|
if clear {
|
|
a := Nod(OAS, var_, nil)
|
|
typecheck(&a, Etop)
|
|
order.out = list(order.out, a)
|
|
}
|
|
|
|
l := order.free
|
|
if l == nil {
|
|
l = new(NodeList)
|
|
}
|
|
order.free = l.Next
|
|
l.Next = order.temp
|
|
l.N = var_
|
|
order.temp = l
|
|
return var_
|
|
}
|
|
|
|
// Ordercopyexpr behaves like ordertemp but also emits
|
|
// code to initialize the temporary to the value n.
|
|
//
|
|
// The clear argument is provided for use when the evaluation
|
|
// of tmp = n turns into a function call that is passed a pointer
|
|
// to the temporary as the output space. If the call blocks before
|
|
// tmp has been written, the garbage collector will still treat the
|
|
// temporary as live, so we must zero it before entering that call.
|
|
// Today, this only happens for channel receive operations.
|
|
// (The other candidate would be map access, but map access
|
|
// returns a pointer to the result data instead of taking a pointer
|
|
// to be filled in.)
|
|
func ordercopyexpr(n *Node, t *Type, order *Order, clear int) *Node {
|
|
var_ := ordertemp(t, order, clear != 0)
|
|
a := Nod(OAS, var_, n)
|
|
typecheck(&a, Etop)
|
|
order.out = list(order.out, a)
|
|
return var_
|
|
}
|
|
|
|
// Ordercheapexpr returns a cheap version of n.
|
|
// The definition of cheap is that n is a variable or constant.
|
|
// If not, ordercheapexpr allocates a new tmp, emits tmp = n,
|
|
// and then returns tmp.
|
|
func ordercheapexpr(n *Node, order *Order) *Node {
|
|
switch n.Op {
|
|
case ONAME,
|
|
OLITERAL:
|
|
return n
|
|
}
|
|
|
|
return ordercopyexpr(n, n.Type, order, 0)
|
|
}
|
|
|
|
// Ordersafeexpr returns a safe version of n.
|
|
// The definition of safe is that n can appear multiple times
|
|
// without violating the semantics of the original program,
|
|
// and that assigning to the safe version has the same effect
|
|
// as assigning to the original n.
|
|
//
|
|
// The intended use is to apply to x when rewriting x += y into x = x + y.
|
|
func ordersafeexpr(n *Node, order *Order) *Node {
|
|
switch n.Op {
|
|
case ONAME,
|
|
OLITERAL:
|
|
return n
|
|
|
|
case ODOT:
|
|
l := ordersafeexpr(n.Left, order)
|
|
if l == n.Left {
|
|
return n
|
|
}
|
|
a := Nod(OXXX, nil, nil)
|
|
*a = *n
|
|
a.Orig = a
|
|
a.Left = l
|
|
typecheck(&a, Erv)
|
|
return a
|
|
|
|
case ODOTPTR,
|
|
OIND:
|
|
l := ordercheapexpr(n.Left, order)
|
|
if l == n.Left {
|
|
return n
|
|
}
|
|
a := Nod(OXXX, nil, nil)
|
|
*a = *n
|
|
a.Orig = a
|
|
a.Left = l
|
|
typecheck(&a, Erv)
|
|
return a
|
|
|
|
case OINDEX,
|
|
OINDEXMAP:
|
|
var l *Node
|
|
if Isfixedarray(n.Left.Type) {
|
|
l = ordersafeexpr(n.Left, order)
|
|
} else {
|
|
l = ordercheapexpr(n.Left, order)
|
|
}
|
|
r := ordercheapexpr(n.Right, order)
|
|
if l == n.Left && r == n.Right {
|
|
return n
|
|
}
|
|
a := Nod(OXXX, nil, nil)
|
|
*a = *n
|
|
a.Orig = a
|
|
a.Left = l
|
|
a.Right = r
|
|
typecheck(&a, Erv)
|
|
return a
|
|
}
|
|
|
|
Fatal("ordersafeexpr %v", Oconv(int(n.Op), 0))
|
|
return nil // not reached
|
|
}
|
|
|
|
// Istemp reports whether n is a temporary variable.
|
|
func istemp(n *Node) bool {
|
|
if n.Op != ONAME {
|
|
return false
|
|
}
|
|
return strings.HasPrefix(n.Sym.Name, "autotmp_")
|
|
}
|
|
|
|
// Isaddrokay reports whether it is okay to pass n's address to runtime routines.
|
|
// Taking the address of a variable makes the liveness and optimization analyses
|
|
// lose track of where the variable's lifetime ends. To avoid hurting the analyses
|
|
// of ordinary stack variables, those are not 'isaddrokay'. Temporaries are okay,
|
|
// because we emit explicit VARKILL instructions marking the end of those
|
|
// temporaries' lifetimes.
|
|
func isaddrokay(n *Node) bool {
|
|
return islvalue(n) && (n.Op != ONAME || n.Class == PEXTERN || istemp(n))
|
|
}
|
|
|
|
// Orderaddrtemp ensures that *np is okay to pass by address to runtime routines.
|
|
// If the original argument *np is not okay, orderaddrtemp creates a tmp, emits
|
|
// tmp = *np, and then sets *np to the tmp variable.
|
|
func orderaddrtemp(np **Node, order *Order) {
|
|
n := *np
|
|
if isaddrokay(n) {
|
|
return
|
|
}
|
|
*np = ordercopyexpr(n, n.Type, order, 0)
|
|
}
|
|
|
|
// Marktemp returns the top of the temporary variable stack.
|
|
func marktemp(order *Order) *NodeList {
|
|
return order.temp
|
|
}
|
|
|
|
// Poptemp pops temporaries off the stack until reaching the mark,
|
|
// which must have been returned by marktemp.
|
|
func poptemp(mark *NodeList, order *Order) {
|
|
var l *NodeList
|
|
|
|
for {
|
|
l = order.temp
|
|
if l == mark {
|
|
break
|
|
}
|
|
order.temp = l.Next
|
|
l.Next = order.free
|
|
order.free = l
|
|
}
|
|
}
|
|
|
|
// Cleantempnopop emits to *out VARKILL instructions for each temporary
|
|
// above the mark on the temporary stack, but it does not pop them
|
|
// from the stack.
|
|
func cleantempnopop(mark *NodeList, order *Order, out **NodeList) {
|
|
var kill *Node
|
|
|
|
for l := order.temp; l != mark; l = l.Next {
|
|
kill = Nod(OVARKILL, l.N, nil)
|
|
typecheck(&kill, Etop)
|
|
*out = list(*out, kill)
|
|
}
|
|
}
|
|
|
|
// Cleantemp emits VARKILL instructions for each temporary above the
|
|
// mark on the temporary stack and removes them from the stack.
|
|
func cleantemp(top *NodeList, order *Order) {
|
|
cleantempnopop(top, order, &order.out)
|
|
poptemp(top, order)
|
|
}
|
|
|
|
// Orderstmtlist orders each of the statements in the list.
|
|
func orderstmtlist(l *NodeList, order *Order) {
|
|
for ; l != nil; l = l.Next {
|
|
orderstmt(l.N, order)
|
|
}
|
|
}
|
|
|
|
// Orderblock orders the block of statements *l onto a new list,
|
|
// and then replaces *l with that list.
|
|
func orderblock(l **NodeList) {
|
|
order := Order{}
|
|
mark := marktemp(&order)
|
|
orderstmtlist(*l, &order)
|
|
cleantemp(mark, &order)
|
|
*l = order.out
|
|
}
|
|
|
|
// Orderexprinplace orders the side effects in *np and
|
|
// leaves them as the init list of the final *np.
|
|
func orderexprinplace(np **Node, outer *Order) {
|
|
n := *np
|
|
order := Order{}
|
|
orderexpr(&n, &order)
|
|
addinit(&n, order.out)
|
|
|
|
// insert new temporaries from order
|
|
// at head of outer list.
|
|
lp := &order.temp
|
|
|
|
for *lp != nil {
|
|
lp = &(*lp).Next
|
|
}
|
|
*lp = outer.temp
|
|
outer.temp = order.temp
|
|
|
|
*np = n
|
|
}
|
|
|
|
// Orderstmtinplace orders the side effects of the single statement *np
|
|
// and replaces it with the resulting statement list.
|
|
func orderstmtinplace(np **Node) {
|
|
n := *np
|
|
order := Order{}
|
|
mark := marktemp(&order)
|
|
orderstmt(n, &order)
|
|
cleantemp(mark, &order)
|
|
*np = liststmt(order.out)
|
|
}
|
|
|
|
// Orderinit moves n's init list to order->out.
|
|
func orderinit(n *Node, order *Order) {
|
|
orderstmtlist(n.Ninit, order)
|
|
n.Ninit = nil
|
|
}
|
|
|
|
// Ismulticall reports whether the list l is f() for a multi-value function.
|
|
// Such an f() could appear as the lone argument to a multi-arg function.
|
|
func ismulticall(l *NodeList) bool {
|
|
// one arg only
|
|
if l == nil || l.Next != nil {
|
|
return false
|
|
}
|
|
n := l.N
|
|
|
|
// must be call
|
|
switch n.Op {
|
|
default:
|
|
return false
|
|
|
|
case OCALLFUNC,
|
|
OCALLMETH,
|
|
OCALLINTER:
|
|
break
|
|
}
|
|
|
|
// call must return multiple values
|
|
return n.Left.Type.Outtuple > 1
|
|
}
|
|
|
|
// Copyret emits t1, t2, ... = n, where n is a function call,
|
|
// and then returns the list t1, t2, ....
|
|
func copyret(n *Node, order *Order) *NodeList {
|
|
if n.Type.Etype != TSTRUCT || n.Type.Funarg == 0 {
|
|
Fatal("copyret %v %d", Tconv(n.Type, 0), n.Left.Type.Outtuple)
|
|
}
|
|
|
|
l1 := (*NodeList)(nil)
|
|
l2 := (*NodeList)(nil)
|
|
var tl Iter
|
|
var tmp *Node
|
|
for t := Structfirst(&tl, &n.Type); t != nil; t = structnext(&tl) {
|
|
tmp = temp(t.Type)
|
|
l1 = list(l1, tmp)
|
|
l2 = list(l2, tmp)
|
|
}
|
|
|
|
as := Nod(OAS2, nil, nil)
|
|
as.List = l1
|
|
as.Rlist = list1(n)
|
|
typecheck(&as, Etop)
|
|
orderstmt(as, order)
|
|
|
|
return l2
|
|
}
|
|
|
|
// Ordercallargs orders the list of call arguments *l.
|
|
func ordercallargs(l **NodeList, order *Order) {
|
|
if ismulticall(*l) {
|
|
// return f() where f() is multiple values.
|
|
*l = copyret((*l).N, order)
|
|
} else {
|
|
orderexprlist(*l, order)
|
|
}
|
|
}
|
|
|
|
// Ordercall orders the call expression n.
|
|
// n->op is OCALLMETH/OCALLFUNC/OCALLINTER or a builtin like OCOPY.
|
|
func ordercall(n *Node, order *Order) {
|
|
orderexpr(&n.Left, order)
|
|
orderexpr(&n.Right, order) // ODDDARG temp
|
|
ordercallargs(&n.List, order)
|
|
}
|
|
|
|
// Ordermapassign appends n to order->out, introducing temporaries
|
|
// to make sure that all map assignments have the form m[k] = x,
|
|
// where x is adressable.
|
|
// (Orderexpr has already been called on n, so we know k is addressable.)
|
|
//
|
|
// If n is m[k] = x where x is not addressable, the rewrite is:
|
|
// tmp = x
|
|
// m[k] = tmp
|
|
//
|
|
// If n is the multiple assignment form ..., m[k], ... = ..., the rewrite is
|
|
// t1 = m
|
|
// t2 = k
|
|
// ...., t3, ... = x
|
|
// t1[t2] = t3
|
|
//
|
|
// The temporaries t1, t2 are needed in case the ... being assigned
|
|
// contain m or k. They are usually unnecessary, but in the unnecessary
|
|
// cases they are also typically registerizable, so not much harm done.
|
|
// And this only applies to the multiple-assignment form.
|
|
// We could do a more precise analysis if needed, like in walk.c.
|
|
//
|
|
// Ordermapassign also inserts these temporaries if needed for
|
|
// calling writebarrierfat with a pointer to n->right.
|
|
func ordermapassign(n *Node, order *Order) {
|
|
switch n.Op {
|
|
default:
|
|
Fatal("ordermapassign %v", Oconv(int(n.Op), 0))
|
|
|
|
case OAS:
|
|
order.out = list(order.out, n)
|
|
|
|
// We call writebarrierfat only for values > 4 pointers long. See walk.c.
|
|
if (n.Left.Op == OINDEXMAP || (needwritebarrier(n.Left, n.Right) && n.Left.Type.Width > int64(4*Widthptr))) && !isaddrokay(n.Right) {
|
|
m := n.Left
|
|
n.Left = ordertemp(m.Type, order, false)
|
|
a := Nod(OAS, m, n.Left)
|
|
typecheck(&a, Etop)
|
|
order.out = list(order.out, a)
|
|
}
|
|
|
|
case OAS2,
|
|
OAS2DOTTYPE,
|
|
OAS2MAPR,
|
|
OAS2FUNC:
|
|
post := (*NodeList)(nil)
|
|
var m *Node
|
|
var a *Node
|
|
for l := n.List; l != nil; l = l.Next {
|
|
if l.N.Op == OINDEXMAP {
|
|
m = l.N
|
|
if !istemp(m.Left) {
|
|
m.Left = ordercopyexpr(m.Left, m.Left.Type, order, 0)
|
|
}
|
|
if !istemp(m.Right) {
|
|
m.Right = ordercopyexpr(m.Right, m.Right.Type, order, 0)
|
|
}
|
|
l.N = ordertemp(m.Type, order, false)
|
|
a = Nod(OAS, m, l.N)
|
|
typecheck(&a, Etop)
|
|
post = list(post, a)
|
|
}
|
|
}
|
|
|
|
order.out = list(order.out, n)
|
|
order.out = concat(order.out, post)
|
|
}
|
|
}
|
|
|
|
// Orderstmt orders the statement n, appending to order->out.
|
|
// Temporaries created during the statement are cleaned
|
|
// up using VARKILL instructions as possible.
|
|
func orderstmt(n *Node, order *Order) {
|
|
if n == nil {
|
|
return
|
|
}
|
|
|
|
lno := int(setlineno(n))
|
|
|
|
orderinit(n, order)
|
|
|
|
switch n.Op {
|
|
default:
|
|
Fatal("orderstmt %v", Oconv(int(n.Op), 0))
|
|
|
|
case OVARKILL:
|
|
order.out = list(order.out, n)
|
|
|
|
case OAS,
|
|
OAS2,
|
|
OCLOSE,
|
|
OCOPY,
|
|
OPRINT,
|
|
OPRINTN,
|
|
ORECOVER,
|
|
ORECV:
|
|
t := marktemp(order)
|
|
orderexpr(&n.Left, order)
|
|
orderexpr(&n.Right, order)
|
|
orderexprlist(n.List, order)
|
|
orderexprlist(n.Rlist, order)
|
|
switch n.Op {
|
|
case OAS,
|
|
OAS2,
|
|
OAS2DOTTYPE:
|
|
ordermapassign(n, order)
|
|
|
|
default:
|
|
order.out = list(order.out, n)
|
|
}
|
|
|
|
cleantemp(t, order)
|
|
|
|
// Special: rewrite l op= r into l = l op r.
|
|
// This simplies quite a few operations;
|
|
// most important is that it lets us separate
|
|
// out map read from map write when l is
|
|
// a map index expression.
|
|
case OASOP:
|
|
t := marktemp(order)
|
|
|
|
orderexpr(&n.Left, order)
|
|
n.Left = ordersafeexpr(n.Left, order)
|
|
tmp1 := treecopy(n.Left)
|
|
if tmp1.Op == OINDEXMAP {
|
|
tmp1.Etype = 0 // now an rvalue not an lvalue
|
|
}
|
|
tmp1 = ordercopyexpr(tmp1, n.Left.Type, order, 0)
|
|
n.Right = Nod(int(n.Etype), tmp1, n.Right)
|
|
typecheck(&n.Right, Erv)
|
|
orderexpr(&n.Right, order)
|
|
n.Etype = 0
|
|
n.Op = OAS
|
|
ordermapassign(n, order)
|
|
cleantemp(t, order)
|
|
|
|
// Special: make sure key is addressable,
|
|
// and make sure OINDEXMAP is not copied out.
|
|
case OAS2MAPR:
|
|
t := marktemp(order)
|
|
|
|
orderexprlist(n.List, order)
|
|
r := n.Rlist.N
|
|
orderexpr(&r.Left, order)
|
|
orderexpr(&r.Right, order)
|
|
|
|
// See case OINDEXMAP below.
|
|
if r.Right.Op == OARRAYBYTESTR {
|
|
r.Right.Op = OARRAYBYTESTRTMP
|
|
}
|
|
orderaddrtemp(&r.Right, order)
|
|
ordermapassign(n, order)
|
|
cleantemp(t, order)
|
|
|
|
// Special: avoid copy of func call n->rlist->n.
|
|
case OAS2FUNC:
|
|
t := marktemp(order)
|
|
|
|
orderexprlist(n.List, order)
|
|
ordercall(n.Rlist.N, order)
|
|
ordermapassign(n, order)
|
|
cleantemp(t, order)
|
|
|
|
// Special: use temporary variables to hold result,
|
|
// so that assertI2Tetc can take address of temporary.
|
|
// No temporary for blank assignment.
|
|
case OAS2DOTTYPE:
|
|
t := marktemp(order)
|
|
|
|
orderexprlist(n.List, order)
|
|
orderexpr(&n.Rlist.N.Left, order) // i in i.(T)
|
|
if isblank(n.List.N) {
|
|
order.out = list(order.out, n)
|
|
} else {
|
|
typ := n.Rlist.N.Type
|
|
tmp1 := ordertemp(typ, order, haspointers(typ))
|
|
order.out = list(order.out, n)
|
|
r := Nod(OAS, n.List.N, tmp1)
|
|
typecheck(&r, Etop)
|
|
ordermapassign(r, order)
|
|
n.List = list(list1(tmp1), n.List.Next.N)
|
|
}
|
|
|
|
cleantemp(t, order)
|
|
|
|
// Special: use temporary variables to hold result,
|
|
// so that chanrecv can take address of temporary.
|
|
case OAS2RECV:
|
|
t := marktemp(order)
|
|
|
|
orderexprlist(n.List, order)
|
|
orderexpr(&n.Rlist.N.Left, order) // arg to recv
|
|
ch := n.Rlist.N.Left.Type
|
|
tmp1 := ordertemp(ch.Type, order, haspointers(ch.Type))
|
|
var tmp2 *Node
|
|
if !isblank(n.List.Next.N) {
|
|
tmp2 = ordertemp(n.List.Next.N.Type, order, false)
|
|
} else {
|
|
tmp2 = ordertemp(Types[TBOOL], order, false)
|
|
}
|
|
order.out = list(order.out, n)
|
|
r := Nod(OAS, n.List.N, tmp1)
|
|
typecheck(&r, Etop)
|
|
ordermapassign(r, order)
|
|
r = Nod(OAS, n.List.Next.N, tmp2)
|
|
typecheck(&r, Etop)
|
|
ordermapassign(r, order)
|
|
n.List = list(list1(tmp1), tmp2)
|
|
cleantemp(t, order)
|
|
|
|
// Special: does not save n onto out.
|
|
case OBLOCK,
|
|
OEMPTY:
|
|
orderstmtlist(n.List, order)
|
|
|
|
// Special: n->left is not an expression; save as is.
|
|
case OBREAK,
|
|
OCONTINUE,
|
|
ODCL,
|
|
ODCLCONST,
|
|
ODCLTYPE,
|
|
OFALL,
|
|
OXFALL,
|
|
OGOTO,
|
|
OLABEL,
|
|
ORETJMP:
|
|
order.out = list(order.out, n)
|
|
|
|
// Special: handle call arguments.
|
|
case OCALLFUNC,
|
|
OCALLINTER,
|
|
OCALLMETH:
|
|
t := marktemp(order)
|
|
|
|
ordercall(n, order)
|
|
order.out = list(order.out, n)
|
|
cleantemp(t, order)
|
|
|
|
// Special: order arguments to inner call but not call itself.
|
|
case ODEFER,
|
|
OPROC:
|
|
t := marktemp(order)
|
|
|
|
switch n.Left.Op {
|
|
// Delete will take the address of the key.
|
|
// Copy key into new temp and do not clean it
|
|
// (it persists beyond the statement).
|
|
case ODELETE:
|
|
orderexprlist(n.Left.List, order)
|
|
|
|
t1 := marktemp(order)
|
|
np := &n.Left.List.Next.N // map key
|
|
*np = ordercopyexpr(*np, (*np).Type, order, 0)
|
|
poptemp(t1, order)
|
|
|
|
default:
|
|
ordercall(n.Left, order)
|
|
}
|
|
|
|
order.out = list(order.out, n)
|
|
cleantemp(t, order)
|
|
|
|
case ODELETE:
|
|
t := marktemp(order)
|
|
orderexpr(&n.List.N, order)
|
|
orderexpr(&n.List.Next.N, order)
|
|
orderaddrtemp(&n.List.Next.N, order) // map key
|
|
order.out = list(order.out, n)
|
|
cleantemp(t, order)
|
|
|
|
// Clean temporaries from condition evaluation at
|
|
// beginning of loop body and after for statement.
|
|
case OFOR:
|
|
t := marktemp(order)
|
|
|
|
orderexprinplace(&n.Ntest, order)
|
|
l := (*NodeList)(nil)
|
|
cleantempnopop(t, order, &l)
|
|
n.Nbody = concat(l, n.Nbody)
|
|
orderblock(&n.Nbody)
|
|
orderstmtinplace(&n.Nincr)
|
|
order.out = list(order.out, n)
|
|
cleantemp(t, order)
|
|
|
|
// Clean temporaries from condition at
|
|
// beginning of both branches.
|
|
case OIF:
|
|
t := marktemp(order)
|
|
|
|
orderexprinplace(&n.Ntest, order)
|
|
l := (*NodeList)(nil)
|
|
cleantempnopop(t, order, &l)
|
|
n.Nbody = concat(l, n.Nbody)
|
|
l = nil
|
|
cleantempnopop(t, order, &l)
|
|
n.Nelse = concat(l, n.Nelse)
|
|
poptemp(t, order)
|
|
orderblock(&n.Nbody)
|
|
orderblock(&n.Nelse)
|
|
order.out = list(order.out, n)
|
|
|
|
// Special: argument will be converted to interface using convT2E
|
|
// so make sure it is an addressable temporary.
|
|
case OPANIC:
|
|
t := marktemp(order)
|
|
|
|
orderexpr(&n.Left, order)
|
|
if !Isinter(n.Left.Type) {
|
|
orderaddrtemp(&n.Left, order)
|
|
}
|
|
order.out = list(order.out, n)
|
|
cleantemp(t, order)
|
|
|
|
// n->right is the expression being ranged over.
|
|
// order it, and then make a copy if we need one.
|
|
// We almost always do, to ensure that we don't
|
|
// see any value changes made during the loop.
|
|
// Usually the copy is cheap (e.g., array pointer, chan, slice, string are all tiny).
|
|
// The exception is ranging over an array value (not a slice, not a pointer to array),
|
|
// which must make a copy to avoid seeing updates made during
|
|
// the range body. Ranging over an array value is uncommon though.
|
|
case ORANGE:
|
|
t := marktemp(order)
|
|
|
|
orderexpr(&n.Right, order)
|
|
switch n.Type.Etype {
|
|
default:
|
|
Fatal("orderstmt range %v", Tconv(n.Type, 0))
|
|
|
|
// Mark []byte(str) range expression to reuse string backing storage.
|
|
// It is safe because the storage cannot be mutated.
|
|
case TARRAY:
|
|
if n.Right.Op == OSTRARRAYBYTE {
|
|
n.Right.Op = OSTRARRAYBYTETMP
|
|
}
|
|
if count(n.List) < 2 || isblank(n.List.Next.N) {
|
|
// for i := range x will only use x once, to compute len(x).
|
|
// No need to copy it.
|
|
break
|
|
}
|
|
fallthrough
|
|
|
|
// chan, string, slice, array ranges use value multiple times.
|
|
// make copy.
|
|
// fall through
|
|
case TCHAN,
|
|
TSTRING:
|
|
r := n.Right
|
|
|
|
if r.Type.Etype == TSTRING && r.Type != Types[TSTRING] {
|
|
r = Nod(OCONV, r, nil)
|
|
r.Type = Types[TSTRING]
|
|
typecheck(&r, Erv)
|
|
}
|
|
|
|
n.Right = ordercopyexpr(r, r.Type, order, 0)
|
|
|
|
// copy the map value in case it is a map literal.
|
|
// TODO(rsc): Make tmp = literal expressions reuse tmp.
|
|
// For maps tmp is just one word so it hardly matters.
|
|
case TMAP:
|
|
r := n.Right
|
|
|
|
n.Right = ordercopyexpr(r, r.Type, order, 0)
|
|
|
|
// n->alloc is the temp for the iterator.
|
|
n.Alloc = ordertemp(Types[TUINT8], order, true)
|
|
}
|
|
|
|
for l := n.List; l != nil; l = l.Next {
|
|
orderexprinplace(&l.N, order)
|
|
}
|
|
orderblock(&n.Nbody)
|
|
order.out = list(order.out, n)
|
|
cleantemp(t, order)
|
|
|
|
case ORETURN:
|
|
ordercallargs(&n.List, order)
|
|
order.out = list(order.out, n)
|
|
|
|
// Special: clean case temporaries in each block entry.
|
|
// Select must enter one of its blocks, so there is no
|
|
// need for a cleaning at the end.
|
|
// Doubly special: evaluation order for select is stricter
|
|
// than ordinary expressions. Even something like p.c
|
|
// has to be hoisted into a temporary, so that it cannot be
|
|
// reordered after the channel evaluation for a different
|
|
// case (if p were nil, then the timing of the fault would
|
|
// give this away).
|
|
case OSELECT:
|
|
t := marktemp(order)
|
|
|
|
var tmp1 *Node
|
|
var tmp2 *Node
|
|
var r *Node
|
|
for l := n.List; l != nil; l = l.Next {
|
|
if l.N.Op != OXCASE {
|
|
Fatal("order select case %v", Oconv(int(l.N.Op), 0))
|
|
}
|
|
r = l.N.Left
|
|
setlineno(l.N)
|
|
|
|
// Append any new body prologue to ninit.
|
|
// The next loop will insert ninit into nbody.
|
|
if l.N.Ninit != nil {
|
|
Fatal("order select ninit")
|
|
}
|
|
if r != nil {
|
|
switch r.Op {
|
|
default:
|
|
Yyerror("unknown op in select %v", Oconv(int(r.Op), 0))
|
|
Dump("select case", r)
|
|
|
|
// If this is case x := <-ch or case x, y := <-ch, the case has
|
|
// the ODCL nodes to declare x and y. We want to delay that
|
|
// declaration (and possible allocation) until inside the case body.
|
|
// Delete the ODCL nodes here and recreate them inside the body below.
|
|
case OSELRECV,
|
|
OSELRECV2:
|
|
if r.Colas != 0 {
|
|
t = r.Ninit
|
|
if t != nil && t.N.Op == ODCL && t.N.Left == r.Left {
|
|
t = t.Next
|
|
}
|
|
if t != nil && t.N.Op == ODCL && t.N.Left == r.Ntest {
|
|
t = t.Next
|
|
}
|
|
if t == nil {
|
|
r.Ninit = nil
|
|
}
|
|
}
|
|
|
|
if r.Ninit != nil {
|
|
Yyerror("ninit on select recv")
|
|
dumplist("ninit", r.Ninit)
|
|
}
|
|
|
|
// case x = <-c
|
|
// case x, ok = <-c
|
|
// r->left is x, r->ntest is ok, r->right is ORECV, r->right->left is c.
|
|
// r->left == N means 'case <-c'.
|
|
// c is always evaluated; x and ok are only evaluated when assigned.
|
|
orderexpr(&r.Right.Left, order)
|
|
|
|
if r.Right.Left.Op != ONAME {
|
|
r.Right.Left = ordercopyexpr(r.Right.Left, r.Right.Left.Type, order, 0)
|
|
}
|
|
|
|
// Introduce temporary for receive and move actual copy into case body.
|
|
// avoids problems with target being addressed, as usual.
|
|
// NOTE: If we wanted to be clever, we could arrange for just one
|
|
// temporary per distinct type, sharing the temp among all receives
|
|
// with that temp. Similarly one ok bool could be shared among all
|
|
// the x,ok receives. Not worth doing until there's a clear need.
|
|
if r.Left != nil && isblank(r.Left) {
|
|
r.Left = nil
|
|
}
|
|
if r.Left != nil {
|
|
// use channel element type for temporary to avoid conversions,
|
|
// such as in case interfacevalue = <-intchan.
|
|
// the conversion happens in the OAS instead.
|
|
tmp1 = r.Left
|
|
|
|
if r.Colas != 0 {
|
|
tmp2 = Nod(ODCL, tmp1, nil)
|
|
typecheck(&tmp2, Etop)
|
|
l.N.Ninit = list(l.N.Ninit, tmp2)
|
|
}
|
|
|
|
r.Left = ordertemp(r.Right.Left.Type.Type, order, haspointers(r.Right.Left.Type.Type))
|
|
tmp2 = Nod(OAS, tmp1, r.Left)
|
|
typecheck(&tmp2, Etop)
|
|
l.N.Ninit = list(l.N.Ninit, tmp2)
|
|
}
|
|
|
|
if r.Ntest != nil && isblank(r.Ntest) {
|
|
r.Ntest = nil
|
|
}
|
|
if r.Ntest != nil {
|
|
tmp1 = r.Ntest
|
|
if r.Colas != 0 {
|
|
tmp2 = Nod(ODCL, tmp1, nil)
|
|
typecheck(&tmp2, Etop)
|
|
l.N.Ninit = list(l.N.Ninit, tmp2)
|
|
}
|
|
|
|
r.Ntest = ordertemp(tmp1.Type, order, false)
|
|
tmp2 = Nod(OAS, tmp1, r.Ntest)
|
|
typecheck(&tmp2, Etop)
|
|
l.N.Ninit = list(l.N.Ninit, tmp2)
|
|
}
|
|
|
|
orderblock(&l.N.Ninit)
|
|
|
|
case OSEND:
|
|
if r.Ninit != nil {
|
|
Yyerror("ninit on select send")
|
|
dumplist("ninit", r.Ninit)
|
|
}
|
|
|
|
// case c <- x
|
|
// r->left is c, r->right is x, both are always evaluated.
|
|
orderexpr(&r.Left, order)
|
|
|
|
if !istemp(r.Left) {
|
|
r.Left = ordercopyexpr(r.Left, r.Left.Type, order, 0)
|
|
}
|
|
orderexpr(&r.Right, order)
|
|
if !istemp(r.Right) {
|
|
r.Right = ordercopyexpr(r.Right, r.Right.Type, order, 0)
|
|
}
|
|
}
|
|
}
|
|
|
|
orderblock(&l.N.Nbody)
|
|
}
|
|
|
|
// Now that we have accumulated all the temporaries, clean them.
|
|
// Also insert any ninit queued during the previous loop.
|
|
// (The temporary cleaning must follow that ninit work.)
|
|
for l := n.List; l != nil; l = l.Next {
|
|
cleantempnopop(t, order, &l.N.Ninit)
|
|
l.N.Nbody = concat(l.N.Ninit, l.N.Nbody)
|
|
l.N.Ninit = nil
|
|
}
|
|
|
|
order.out = list(order.out, n)
|
|
poptemp(t, order)
|
|
|
|
// Special: value being sent is passed as a pointer; make it addressable.
|
|
case OSEND:
|
|
t := marktemp(order)
|
|
|
|
orderexpr(&n.Left, order)
|
|
orderexpr(&n.Right, order)
|
|
orderaddrtemp(&n.Right, order)
|
|
order.out = list(order.out, n)
|
|
cleantemp(t, order)
|
|
|
|
// TODO(rsc): Clean temporaries more aggressively.
|
|
// Note that because walkswitch will rewrite some of the
|
|
// switch into a binary search, this is not as easy as it looks.
|
|
// (If we ran that code here we could invoke orderstmt on
|
|
// the if-else chain instead.)
|
|
// For now just clean all the temporaries at the end.
|
|
// In practice that's fine.
|
|
case OSWITCH:
|
|
t := marktemp(order)
|
|
|
|
orderexpr(&n.Ntest, order)
|
|
for l := n.List; l != nil; l = l.Next {
|
|
if l.N.Op != OXCASE {
|
|
Fatal("order switch case %v", Oconv(int(l.N.Op), 0))
|
|
}
|
|
orderexprlistinplace(l.N.List, order)
|
|
orderblock(&l.N.Nbody)
|
|
}
|
|
|
|
order.out = list(order.out, n)
|
|
cleantemp(t, order)
|
|
}
|
|
|
|
lineno = int32(lno)
|
|
}
|
|
|
|
// Orderexprlist orders the expression list l into order.
|
|
func orderexprlist(l *NodeList, order *Order) {
|
|
for ; l != nil; l = l.Next {
|
|
orderexpr(&l.N, order)
|
|
}
|
|
}
|
|
|
|
// Orderexprlist orders the expression list l but saves
|
|
// the side effects on the individual expression ninit lists.
|
|
func orderexprlistinplace(l *NodeList, order *Order) {
|
|
for ; l != nil; l = l.Next {
|
|
orderexprinplace(&l.N, order)
|
|
}
|
|
}
|
|
|
|
// Orderexpr orders a single expression, appending side
|
|
// effects to order->out as needed.
|
|
func orderexpr(np **Node, order *Order) {
|
|
n := *np
|
|
if n == nil {
|
|
return
|
|
}
|
|
|
|
lno := int(setlineno(n))
|
|
orderinit(n, order)
|
|
|
|
switch n.Op {
|
|
default:
|
|
orderexpr(&n.Left, order)
|
|
orderexpr(&n.Right, order)
|
|
orderexprlist(n.List, order)
|
|
orderexprlist(n.Rlist, order)
|
|
|
|
// Addition of strings turns into a function call.
|
|
// Allocate a temporary to hold the strings.
|
|
// Fewer than 5 strings use direct runtime helpers.
|
|
case OADDSTR:
|
|
orderexprlist(n.List, order)
|
|
|
|
if count(n.List) > 5 {
|
|
t := typ(TARRAY)
|
|
t.Bound = int64(count(n.List))
|
|
t.Type = Types[TSTRING]
|
|
n.Alloc = ordertemp(t, order, false)
|
|
}
|
|
|
|
// Mark string(byteSlice) arguments to reuse byteSlice backing
|
|
// buffer during conversion. String concatenation does not
|
|
// memorize the strings for later use, so it is safe.
|
|
// However, we can do it only if there is at least one non-empty string literal.
|
|
// Otherwise if all other arguments are empty strings,
|
|
// concatstrings will return the reference to the temp string
|
|
// to the caller.
|
|
hasbyte := false
|
|
|
|
haslit := false
|
|
for l := n.List; l != nil; l = l.Next {
|
|
hasbyte = hasbyte || l.N.Op == OARRAYBYTESTR
|
|
haslit = haslit || l.N.Op == OLITERAL && len(l.N.Val.U.Sval.S) != 0
|
|
}
|
|
|
|
if haslit && hasbyte {
|
|
for l := n.List; l != nil; l = l.Next {
|
|
if l.N.Op == OARRAYBYTESTR {
|
|
l.N.Op = OARRAYBYTESTRTMP
|
|
}
|
|
}
|
|
}
|
|
|
|
case OCMPSTR:
|
|
orderexpr(&n.Left, order)
|
|
orderexpr(&n.Right, order)
|
|
|
|
// Mark string(byteSlice) arguments to reuse byteSlice backing
|
|
// buffer during conversion. String comparison does not
|
|
// memorize the strings for later use, so it is safe.
|
|
if n.Left.Op == OARRAYBYTESTR {
|
|
n.Left.Op = OARRAYBYTESTRTMP
|
|
}
|
|
if n.Right.Op == OARRAYBYTESTR {
|
|
n.Right.Op = OARRAYBYTESTRTMP
|
|
}
|
|
|
|
// key must be addressable
|
|
case OINDEXMAP:
|
|
orderexpr(&n.Left, order)
|
|
|
|
orderexpr(&n.Right, order)
|
|
|
|
// For x = m[string(k)] where k is []byte, the allocation of
|
|
// backing bytes for the string can be avoided by reusing
|
|
// the []byte backing array. This is a special case that it
|
|
// would be nice to handle more generally, but because
|
|
// there are no []byte-keyed maps, this specific case comes
|
|
// up in important cases in practice. See issue 3512.
|
|
// Nothing can change the []byte we are not copying before
|
|
// the map index, because the map access is going to
|
|
// be forced to happen immediately following this
|
|
// conversion (by the ordercopyexpr a few lines below).
|
|
if n.Etype == 0 && n.Right.Op == OARRAYBYTESTR {
|
|
n.Right.Op = OARRAYBYTESTRTMP
|
|
}
|
|
|
|
orderaddrtemp(&n.Right, order)
|
|
if n.Etype == 0 {
|
|
// use of value (not being assigned);
|
|
// make copy in temporary.
|
|
n = ordercopyexpr(n, n.Type, order, 0)
|
|
}
|
|
|
|
// concrete type (not interface) argument must be addressable
|
|
// temporary to pass to runtime.
|
|
case OCONVIFACE:
|
|
orderexpr(&n.Left, order)
|
|
|
|
if !Isinter(n.Left.Type) {
|
|
orderaddrtemp(&n.Left, order)
|
|
}
|
|
|
|
case OANDAND,
|
|
OOROR:
|
|
mark := marktemp(order)
|
|
orderexpr(&n.Left, order)
|
|
|
|
// Clean temporaries from first branch at beginning of second.
|
|
// Leave them on the stack so that they can be killed in the outer
|
|
// context in case the short circuit is taken.
|
|
l := (*NodeList)(nil)
|
|
|
|
cleantempnopop(mark, order, &l)
|
|
n.Right.Ninit = concat(l, n.Right.Ninit)
|
|
orderexprinplace(&n.Right, order)
|
|
|
|
case OAPPEND,
|
|
OCALLFUNC,
|
|
OCALLINTER,
|
|
OCALLMETH,
|
|
OCAP,
|
|
OCOMPLEX,
|
|
OCOPY,
|
|
OIMAG,
|
|
OLEN,
|
|
OMAKECHAN,
|
|
OMAKEMAP,
|
|
OMAKESLICE,
|
|
ONEW,
|
|
OREAL,
|
|
ORECOVER:
|
|
ordercall(n, order)
|
|
n = ordercopyexpr(n, n.Type, order, 0)
|
|
|
|
case OCLOSURE:
|
|
if n.Noescape && n.Cvars != nil {
|
|
n.Alloc = ordertemp(Types[TUINT8], order, false) // walk will fill in correct type
|
|
}
|
|
|
|
case OARRAYLIT,
|
|
OCALLPART:
|
|
orderexpr(&n.Left, order)
|
|
orderexpr(&n.Right, order)
|
|
orderexprlist(n.List, order)
|
|
orderexprlist(n.Rlist, order)
|
|
if n.Noescape {
|
|
n.Alloc = ordertemp(Types[TUINT8], order, false) // walk will fill in correct type
|
|
}
|
|
|
|
case ODDDARG:
|
|
if n.Noescape {
|
|
// The ddd argument does not live beyond the call it is created for.
|
|
// Allocate a temporary that will be cleaned up when this statement
|
|
// completes. We could be more aggressive and try to arrange for it
|
|
// to be cleaned up when the call completes.
|
|
n.Alloc = ordertemp(n.Type.Type, order, false)
|
|
}
|
|
|
|
case ORECV,
|
|
ODOTTYPE:
|
|
orderexpr(&n.Left, order)
|
|
n = ordercopyexpr(n, n.Type, order, 1)
|
|
|
|
case OEQ,
|
|
ONE:
|
|
orderexpr(&n.Left, order)
|
|
orderexpr(&n.Right, order)
|
|
t := n.Left.Type
|
|
if t.Etype == TSTRUCT || Isfixedarray(t) {
|
|
// for complex comparisons, we need both args to be
|
|
// addressable so we can pass them to the runtime.
|
|
orderaddrtemp(&n.Left, order)
|
|
|
|
orderaddrtemp(&n.Right, order)
|
|
}
|
|
}
|
|
|
|
lineno = int32(lno)
|
|
|
|
*np = n
|
|
}
|