go/src/cmd/compile/internal/gc/syntax.go
Austin Clements 3a765430c1 cmd/compile: add go:nowritebarrierrec annotation
This introduces a recursive variant of the go:nowritebarrier
annotation that prohibits write barriers not only in the annotated
function, but in all functions it calls, recursively. The error
message gives the shortest call stack from the annotated function to
the function containing the prohibited write barrier, including the
names of the functions and the line numbers of the calls.

To demonstrate the annotation, we apply it to gcmarkwb_m, the write
barrier itself.

This is a new annotation rather than a modification of the existing
go:nowritebarrier annotation because, for better or worse, there are
many go:nowritebarrier functions that do call functions with write
barriers. In most of these cases this is benign because the annotation
was conservative, but it prohibits simply coopting the existing
annotation.

Change-Id: I225ca483c8f699e8436373ed96349e80ca2c2479
Reviewed-on: https://go-review.googlesource.com/16554
Reviewed-by: Keith Randall <khr@golang.org>
2015-11-04 14:42:04 +00:00

491 lines
15 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// “Abstract” syntax representation.
package gc
// A Node is a single node in the syntax tree.
// Actually the syntax tree is a syntax DAG, because there is only one
// node with Op=ONAME for a given instance of a variable x.
// The same is true for Op=OTYPE and Op=OLITERAL.
type Node struct {
// Tree structure.
// Generic recursive walks should follow these fields.
Left *Node
Right *Node
Ninit *NodeList
Nbody *NodeList
List *NodeList
Rlist *NodeList
// most nodes
Type *Type
Orig *Node // original form, for printing, and tracking copies of ONAMEs
// func
Func *Func
// ONAME
Name *Name
Sym *Sym // various
E interface{} // Opt or Val, see methods below
Xoffset int64
Lineno int32
// OREGISTER, OINDREG
Reg int16
Esc uint16 // EscXXX
Op Op
Nointerface bool
Ullman uint8 // sethi/ullman number
Addable bool // addressable
Etype EType // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg
Bounded bool // bounds check unnecessary
Class Class // PPARAM, PAUTO, PEXTERN, etc
Embedded uint8 // ODCLFIELD embedded type
Colas bool // OAS resulting from :=
Diag uint8 // already printed error about this
Noescape bool // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360)
Walkdef uint8
Typecheck uint8
Local bool
Dodata uint8
Initorder uint8
Used bool
Isddd bool // is the argument variadic
Implicit bool
Addrtaken bool // address taken, even if not moved to heap
Assigned bool // is the variable ever assigned to
Likely int8 // likeliness of if statement
Hasbreak bool // has break statement
hasVal int8 // +1 for Val, -1 for Opt, 0 for not yet set
}
// Val returns the Val for the node.
func (n *Node) Val() Val {
if n.hasVal != +1 {
return Val{}
}
return Val{n.E}
}
// SetVal sets the Val for the node, which must not have been used with SetOpt.
func (n *Node) SetVal(v Val) {
if n.hasVal == -1 {
Debug['h'] = 1
Dump("have Opt", n)
Fatalf("have Opt")
}
n.hasVal = +1
n.E = v.U
}
// Opt returns the optimizer data for the node.
func (n *Node) Opt() interface{} {
if n.hasVal != -1 {
return nil
}
return n.E
}
// SetOpt sets the optimizer data for the node, which must not have been used with SetVal.
// SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.
func (n *Node) SetOpt(x interface{}) {
if x == nil && n.hasVal >= 0 {
return
}
if n.hasVal == +1 {
Debug['h'] = 1
Dump("have Val", n)
Fatalf("have Val")
}
n.hasVal = -1
n.E = x
}
// Name holds Node fields used only by named nodes (ONAME, OPACK, some OLITERAL).
type Name struct {
Pack *Node // real package for import . names
Pkg *Pkg // pkg for OPACK nodes
Heapaddr *Node // temp holding heap address of param
Inlvar *Node // ONAME substitute while inlining
Defn *Node // initializing assignment
Curfn *Node // function for local variables
Param *Param
Decldepth int32 // declaration loop depth, increased for every loop or label
Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one.
Iota int32 // value if this name is iota
Funcdepth int32
Method bool // OCALLMETH name
Readonly bool
Captured bool // is the variable captured by a closure
Byval bool // is the variable captured by value or by reference
Needzero bool // if it contains pointers, needs to be zeroed on function entry
}
type Param struct {
Ntype *Node
// ONAME func param with PHEAP
Outerexpr *Node // expression copied into closure for variable
Stackparam *Node // OPARAM node referring to stack copy of param
// ONAME PPARAM
Field *Type // TFIELD in arg struct
// ONAME closure param with PPARAMREF
Outer *Node // outer PPARAMREF in nested closure
Closure *Node // ONAME/PHEAP <-> ONAME/PPARAMREF
}
// Func holds Node fields used only with function-like nodes.
type Func struct {
Shortname *Node
Enter *NodeList
Exit *NodeList
Cvars *NodeList // closure params
Dcl *NodeList // autodcl for this func/closure
Inldcl *NodeList // copy of dcl for use in inlining
Closgen int
Outerfunc *Node
Fieldtrack []*Type
Outer *Node // outer func for closure
Ntype *Node // signature
Top int // top context (Ecall, Eproc, etc)
Closure *Node // OCLOSURE <-> ODCLFUNC
FCurfn *Node
Nname *Node
Inl *NodeList // copy of the body for use in inlining
InlCost int32
Depth int32
Endlineno int32
Norace bool // func must not have race detector annotations
Nosplit bool // func should not execute on separate stack
Noinline bool // func should not be inlined
Nowritebarrier bool // emit compiler error instead of write barrier
Nowritebarrierrec bool // error on write barrier in this or recursive callees
Dupok bool // duplicate definitions ok
Wrapper bool // is method wrapper
Needctxt bool // function uses context register (has closure variables)
Systemstack bool // must run on system stack
WBLineno int32 // line number of first write barrier
}
type Op uint8
// Node ops.
const (
OXXX = Op(iota)
// names
ONAME // var, const or func name
ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc }
OTYPE // type name
OPACK // import
OLITERAL // literal
// expressions
OADD // Left + Right
OSUB // Left - Right
OOR // Left | Right
OXOR // Left ^ Right
OADDSTR // Left + Right (string addition)
OADDR // &Left
OANDAND // Left && Right
OAPPEND // append(List)
OARRAYBYTESTR // Type(Left) (Type is string, Left is a []byte)
OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
OARRAYRUNESTR // Type(Left) (Type is string, Left is a []rune)
OSTRARRAYBYTE // Type(Left) (Type is []byte, Left is a string)
OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
OSTRARRAYRUNE // Type(Left) (Type is []rune, Left is a string)
OAS // Left = Right or (if Colas=true) Left := Right
OAS2 // List = Rlist (x, y, z = a, b, c)
OAS2FUNC // List = Rlist (x, y = f())
OAS2RECV // List = Rlist (x, ok = <-c)
OAS2MAPR // List = Rlist (x, ok = m["foo"])
OAS2DOTTYPE // List = Rlist (x, ok = I.(int))
OASOP // Left Etype= Right (x += y)
OASWB // Left = Right (with write barrier)
OCALL // Left(List) (function call, method call or type conversion)
OCALLFUNC // Left(List) (function call f(args))
OCALLMETH // Left(List) (direct method call x.Method(args))
OCALLINTER // Left(List) (interface method call x.Method(args))
OCALLPART // Left.Right (method expression x.Method, not called)
OCAP // cap(Left)
OCLOSE // close(Left)
OCLOSURE // func Type { Body } (func literal)
OCMPIFACE // Left Etype Right (interface comparison, x == y or x != y)
OCMPSTR // Left Etype Right (string comparison, x == y, x < y, etc)
OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form)
OMAPLIT // Type{List} (composite literal, Type is map)
OSTRUCTLIT // Type{List} (composite literal, Type is struct)
OARRAYLIT // Type{List} (composite literal, Type is array or slice)
OPTRLIT // &Left (left is composite literal)
OCONV // Type(Left) (type conversion)
OCONVIFACE // Type(Left) (type conversion, to interface)
OCONVNOP // Type(Left) (type conversion, no effect)
OCOPY // copy(Left, Right)
ODCL // var Left (declares Left of type Left.Type)
// Used during parsing but don't last.
ODCLFUNC // func f() or func (r) f()
ODCLFIELD // struct field, interface field, or func/method argument/return value.
ODCLCONST // const pi = 3.14
ODCLTYPE // type Int int
ODELETE // delete(Left, Right)
ODOT // Left.Right (Left is of struct type)
ODOTPTR // Left.Right (Left is of pointer to struct type)
ODOTMETH // Left.Right (Left is non-interface, Right is method name)
ODOTINTER // Left.Right (Left is interface, Right is method name)
OXDOT // Left.Right (before rewrite to one of the preceding)
ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved)
ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE)
OEQ // Left == Right
ONE // Left != Right
OLT // Left < Right
OLE // Left <= Right
OGE // Left >= Right
OGT // Left > Right
OIND // *Left
OINDEX // Left[Right] (index of array or slice)
OINDEXMAP // Left[Right] (index of map)
OKEY // Left:Right (key:value in struct/array/map literal, or slice index pair)
OPARAM // variant of ONAME for on-stack copy of a parameter or return value that escapes.
OLEN // len(Left)
OMAKE // make(List) (before type checking converts to one of the following)
OMAKECHAN // make(Type, Left) (type is chan)
OMAKEMAP // make(Type, Left) (type is map)
OMAKESLICE // make(Type, Left, Right) (type is slice)
OMUL // Left * Right
ODIV // Left / Right
OMOD // Left % Right
OLSH // Left << Right
ORSH // Left >> Right
OAND // Left & Right
OANDNOT // Left &^ Right
ONEW // new(Left)
ONOT // !Left
OCOM // ^Left
OPLUS // +Left
OMINUS // -Left
OOROR // Left || Right
OPANIC // panic(Left)
OPRINT // print(List)
OPRINTN // println(List)
OPAREN // (Left)
OSEND // Left <- Right
OSLICE // Left[Right.Left : Right.Right] (Left is untypechecked or slice; Right.Op==OKEY)
OSLICEARR // Left[Right.Left : Right.Right] (Left is array)
OSLICESTR // Left[Right.Left : Right.Right] (Left is string)
OSLICE3 // Left[R.Left : R.R.Left : R.R.R] (R=Right; Left is untypedchecked or slice; R.Op and R.R.Op==OKEY)
OSLICE3ARR // Left[R.Left : R.R.Left : R.R.R] (R=Right; Left is array; R.Op and R.R.Op==OKEY)
ORECOVER // recover()
ORECV // <-Left
ORUNESTR // Type(Left) (Type is string, Left is rune)
OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
OSELRECV2 // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
OIOTA // iota
OREAL // real(Left)
OIMAG // imag(Left)
OCOMPLEX // complex(Left, Right)
// statements
OBLOCK // { List } (block of code)
OBREAK // break
OCASE // case List: Nbody (select case after processing; List==nil means default)
OXCASE // case List: Nbody (select case before processing; List==nil means default)
OCONTINUE // continue
ODEFER // defer Left (Left must be call)
OEMPTY // no-op (empty statement)
OFALL // fallthrough (after processing)
OXFALL // fallthrough (before processing)
OFOR // for Ninit; Left; Right { Nbody }
OGOTO // goto Left
OIF // if Ninit; Left { Nbody } else { Rlist }
OLABEL // Left:
OPROC // go Left (Left must be call)
ORANGE // for List = range Right { Nbody }
ORETURN // return List
OSELECT // select { List } (List is list of OXCASE or OCASE)
OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE)
OTYPESW // List = Left.(type) (appears as .Left of OSWITCH)
// types
OTCHAN // chan int
OTMAP // map[string]int
OTSTRUCT // struct{}
OTINTER // interface{}
OTFUNC // func()
OTARRAY // []int, [8]int, [N]int or [...]int
// misc
ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
ODDDARG // func f(args ...int), introduced by escape analysis.
OINLCALL // intermediary representation of an inlined call.
OEFACE // itable and data words of an empty-interface value.
OITAB // itable word of an interface value.
OSPTR // base pointer of a slice or string.
OCLOSUREVAR // variable reference at beginning of closure function
OCFUNC // reference to c function pointer (not go func value)
OCHECKNIL // emit code to ensure pointer/interface not nil
OVARKILL // variable is dead
// thearch-specific registers
OREGISTER // a register, such as AX.
OINDREG // offset plus indirect of a register, such as 8(SP).
// arch-specific opcodes
OCMP // compare: ACMP.
ODEC // decrement: ADEC.
OINC // increment: AINC.
OEXTEND // extend: ACWD/ACDQ/ACQO.
OHMUL // high mul: AMUL/AIMUL for unsigned/signed (OMUL uses AIMUL for both).
OLROT // left rotate: AROL.
ORROTC // right rotate-carry: ARCR.
ORETJMP // return to other function
OPS // compare parity set (for x86 NaN check)
OPC // compare parity clear (for x86 NaN check)
OSQRT // sqrt(float64), on systems that have hw support
OGETG // runtime.getg() (read g pointer)
OEND
)
// A NodeList is a linked list of nodes.
// TODO(rsc): Some uses of NodeList should be made into slices.
// The remaining ones probably just need a simple linked list,
// not one with concatenation support.
type NodeList struct {
N *Node
Next *NodeList
End *NodeList
}
// concat returns the concatenation of the lists a and b.
// The storage taken by both is reused for the result.
func concat(a *NodeList, b *NodeList) *NodeList {
if a == nil {
return b
}
if b == nil {
return a
}
a.End.Next = b
a.End = b.End
b.End = nil
return a
}
// list1 returns a one-element list containing n.
func list1(n *Node) *NodeList {
if n == nil {
return nil
}
if n.Op == OBLOCK && n.Ninit == nil {
// Flatten list and steal storage.
// Poison pointer to catch errant uses.
l := n.List
n.List = nil
return l
}
l := new(NodeList)
l.N = n
l.End = l
return l
}
// list returns the result of appending n to l.
func list(l *NodeList, n *Node) *NodeList {
return concat(l, list1(n))
}
// listsort sorts *l in place according to the comparison function lt.
// The algorithm expects lt(a, b) to be equivalent to a < b.
// The algorithm is mergesort, so it is guaranteed to be O(n log n).
func listsort(l **NodeList, lt func(*Node, *Node) bool) {
if *l == nil || (*l).Next == nil {
return
}
l1 := *l
l2 := *l
for {
l2 = l2.Next
if l2 == nil {
break
}
l2 = l2.Next
if l2 == nil {
break
}
l1 = l1.Next
}
l2 = l1.Next
l1.Next = nil
l2.End = (*l).End
(*l).End = l1
l1 = *l
listsort(&l1, lt)
listsort(&l2, lt)
if lt(l1.N, l2.N) {
*l = l1
} else {
*l = l2
l2 = l1
l1 = *l
}
// now l1 == *l; and l1 < l2
var le *NodeList
for (l1 != nil) && (l2 != nil) {
for (l1.Next != nil) && lt(l1.Next.N, l2.N) {
l1 = l1.Next
}
// l1 is last one from l1 that is < l2
le = l1.Next // le is the rest of l1, first one that is >= l2
if le != nil {
le.End = (*l).End
}
(*l).End = l1 // cut *l at l1
*l = concat(*l, l2) // glue l2 to *l's tail
l1 = l2 // l1 is the first element of *l that is < the new l2
l2 = le // ... because l2 now is the old tail of l1
}
*l = concat(*l, l2) // any remainder
}
// count returns the length of the list l.
func count(l *NodeList) int {
n := int64(0)
for ; l != nil; l = l.Next {
n++
}
if int64(int(n)) != n { // Overflow.
Yyerror("too many elements in list")
}
return int(n)
}