go/src/regexp/exec.go
Russ Cox 3ca1f28e54 regexp: evaluate context flags lazily
There's no point in computing whether we're at the
beginning of the line if the NFA isn't going to ask.
Wait to compute that until asked.

Whatever minor slowdowns were introduced by
the conversion to pools that were not repaid by
other optimizations are taken care of by this one.

name                             old time/op    new time/op    delta
Find-12                             252ns ± 0%     260ns ± 0%   +3.34%  (p=0.000 n=10+8)
FindAllNoMatches-12                 136ns ± 4%     134ns ± 4%   -0.96%  (p=0.033 n=10+10)
FindString-12                       246ns ± 0%     250ns ± 0%   +1.46%  (p=0.000 n=8+10)
FindSubmatch-12                     332ns ± 1%     332ns ± 0%     ~     (p=0.101 n=9+10)
FindStringSubmatch-12               321ns ± 1%     322ns ± 1%     ~     (p=0.717 n=9+10)
Literal-12                         91.6ns ± 0%    92.3ns ± 0%   +0.74%  (p=0.000 n=9+9)
NotLiteral-12                      1.47µs ± 0%    1.47µs ± 0%   +0.38%  (p=0.000 n=9+8)
MatchClass-12                      2.15µs ± 0%    2.15µs ± 0%   +0.39%  (p=0.000 n=10+10)
MatchClass_InRange-12              2.09µs ± 0%    2.11µs ± 0%   +0.75%  (p=0.000 n=9+9)
ReplaceAll-12                      1.40µs ± 0%    1.40µs ± 0%     ~     (p=0.525 n=10+10)
AnchoredLiteralShortNonMatch-12    83.5ns ± 0%    81.6ns ± 0%   -2.28%  (p=0.000 n=9+10)
AnchoredLiteralLongNonMatch-12      101ns ± 0%      97ns ± 1%   -3.54%  (p=0.000 n=10+10)
AnchoredShortMatch-12               131ns ± 0%     128ns ± 0%   -2.29%  (p=0.000 n=10+9)
AnchoredLongMatch-12                268ns ± 1%     252ns ± 1%   -6.04%  (p=0.000 n=10+10)
OnePassShortA-12                    614ns ± 0%     587ns ± 1%   -4.33%  (p=0.000 n=6+10)
NotOnePassShortA-12                 552ns ± 0%     547ns ± 1%   -0.89%  (p=0.000 n=10+10)
OnePassShortB-12                    494ns ± 0%     455ns ± 0%   -7.96%  (p=0.000 n=9+9)
NotOnePassShortB-12                 411ns ± 0%     406ns ± 0%   -1.30%  (p=0.000 n=9+9)
OnePassLongPrefix-12                109ns ± 0%     108ns ± 1%     ~     (p=0.064 n=8+9)
OnePassLongNotPrefix-12             403ns ± 0%     349ns ± 0%  -13.30%  (p=0.000 n=9+8)
MatchParallelShared-12             38.9ns ± 1%    37.9ns ± 1%   -2.65%  (p=0.000 n=10+8)
MatchParallelCopied-12             39.2ns ± 1%    38.3ns ± 2%   -2.20%  (p=0.001 n=10+10)
QuoteMetaAll-12                    94.5ns ± 0%    94.7ns ± 0%   +0.18%  (p=0.043 n=10+9)
QuoteMetaNone-12                   52.7ns ± 0%    52.7ns ± 0%     ~     (all equal)
Match/Easy0/32-12                  72.2ns ± 0%    71.9ns ± 0%   -0.38%  (p=0.009 n=8+10)
Match/Easy0/1K-12                   296ns ± 1%     297ns ± 0%   +0.51%  (p=0.001 n=10+9)
Match/Easy0/32K-12                 4.57µs ± 3%    4.61µs ± 2%     ~     (p=0.280 n=10+10)
Match/Easy0/1M-12                   234µs ± 0%     234µs ± 0%     ~     (p=0.986 n=10+10)
Match/Easy0/32M-12                 7.96ms ± 0%    7.98ms ± 0%   +0.22%  (p=0.010 n=10+9)
Match/Easy0i/32-12                 1.09µs ± 0%    1.10µs ± 0%   +0.23%  (p=0.000 n=8+9)
Match/Easy0i/1K-12                 31.7µs ± 0%    31.7µs ± 0%   +0.09%  (p=0.003 n=9+8)
Match/Easy0i/32K-12                1.61ms ± 0%    1.27ms ± 1%  -21.03%  (p=0.000 n=8+10)
Match/Easy0i/1M-12                 51.4ms ± 0%    40.4ms ± 0%  -21.29%  (p=0.000 n=8+8)
Match/Easy0i/32M-12                 1.65s ± 0%     1.30s ± 1%  -21.22%  (p=0.000 n=9+9)
Match/Easy1/32-12                  67.6ns ± 1%    67.2ns ± 0%     ~     (p=0.085 n=10+9)
Match/Easy1/1K-12                   873ns ± 2%     880ns ± 0%   +0.78%  (p=0.006 n=9+7)
Match/Easy1/32K-12                 39.7µs ± 1%    34.3µs ± 3%  -13.53%  (p=0.000 n=10+10)
Match/Easy1/1M-12                  1.41ms ± 1%    1.19ms ± 3%  -15.48%  (p=0.000 n=10+10)
Match/Easy1/32M-12                 44.9ms ± 1%    38.0ms ± 2%  -15.21%  (p=0.000 n=10+10)
Match/Medium/32-12                 1.04µs ± 0%    1.03µs ± 0%   -0.57%  (p=0.000 n=9+9)
Match/Medium/1K-12                 31.2µs ± 0%    31.4µs ± 1%   +0.61%  (p=0.000 n=8+10)
Match/Medium/32K-12                1.45ms ± 1%    1.20ms ± 0%  -17.70%  (p=0.000 n=10+8)
Match/Medium/1M-12                 46.4ms ± 0%    38.4ms ± 2%  -17.32%  (p=0.000 n=6+9)
Match/Medium/32M-12                 1.49s ± 1%     1.24s ± 1%  -16.81%  (p=0.000 n=10+10)
Match/Hard/32-12                   1.47µs ± 0%    1.47µs ± 0%   -0.31%  (p=0.000 n=9+10)
Match/Hard/1K-12                   44.5µs ± 1%    44.4µs ± 0%     ~     (p=0.075 n=10+10)
Match/Hard/32K-12                  2.09ms ± 0%    1.78ms ± 7%  -14.88%  (p=0.000 n=8+10)
Match/Hard/1M-12                   67.8ms ± 5%    56.9ms ± 7%  -16.05%  (p=0.000 n=10+10)
Match/Hard/32M-12                   2.17s ± 5%     1.84s ± 6%  -15.21%  (p=0.000 n=10+10)
Match/Hard1/32-12                  7.89µs ± 0%    7.94µs ± 0%   +0.61%  (p=0.000 n=9+9)
Match/Hard1/1K-12                   246µs ± 0%     245µs ± 0%   -0.30%  (p=0.010 n=9+10)
Match/Hard1/32K-12                 8.93ms ± 0%    8.17ms ± 0%   -8.44%  (p=0.000 n=9+8)
Match/Hard1/1M-12                   286ms ± 0%     269ms ± 9%   -5.66%  (p=0.028 n=9+10)
Match/Hard1/32M-12                  9.16s ± 0%     8.61s ± 8%   -5.98%  (p=0.028 n=9+10)
Match_onepass_regex/32-12           825ns ± 0%     712ns ± 0%  -13.75%  (p=0.000 n=8+8)
Match_onepass_regex/1K-12          28.7µs ± 1%    19.8µs ± 0%  -30.99%  (p=0.000 n=9+8)
Match_onepass_regex/32K-12          950µs ± 1%     628µs ± 0%  -33.83%  (p=0.000 n=9+8)
Match_onepass_regex/1M-12          30.4ms ± 0%    20.1ms ± 0%  -33.74%  (p=0.000 n=9+8)
Match_onepass_regex/32M-12          974ms ± 1%     646ms ± 0%  -33.73%  (p=0.000 n=9+8)
CompileOnepass-12                  4.60µs ± 0%    4.59µs ± 0%     ~     (p=0.063 n=8+9)
[Geo mean]                         23.1µs         21.3µs        -7.44%

https://perf.golang.org/search?q=upload:20181004.4

Change-Id: I47cdd09f6dcde1d7c317080e9b4df42c7d0a8d24
Reviewed-on: https://go-review.googlesource.com/c/139782
Run-TryBot: Russ Cox <rsc@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2018-10-12 17:48:41 +00:00

550 lines
12 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package regexp
import (
"io"
"regexp/syntax"
"sync"
)
// A queue is a 'sparse array' holding pending threads of execution.
// See https://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html
type queue struct {
sparse []uint32
dense []entry
}
// An entry is an entry on a queue.
// It holds both the instruction pc and the actual thread.
// Some queue entries are just place holders so that the machine
// knows it has considered that pc. Such entries have t == nil.
type entry struct {
pc uint32
t *thread
}
// A thread is the state of a single path through the machine:
// an instruction and a corresponding capture array.
// See https://swtch.com/~rsc/regexp/regexp2.html
type thread struct {
inst *syntax.Inst
cap []int
}
// A machine holds all the state during an NFA simulation for p.
type machine struct {
re *Regexp // corresponding Regexp
p *syntax.Prog // compiled program
q0, q1 queue // two queues for runq, nextq
pool []*thread // pool of available threads
matched bool // whether a match was found
matchcap []int // capture information for the match
inputs inputs
}
type inputs struct {
// cached inputs, to avoid allocation
bytes inputBytes
string inputString
reader inputReader
}
func (i *inputs) newBytes(b []byte) input {
i.bytes.str = b
return &i.bytes
}
func (i *inputs) newString(s string) input {
i.string.str = s
return &i.string
}
func (i *inputs) newReader(r io.RuneReader) input {
i.reader.r = r
i.reader.atEOT = false
i.reader.pos = 0
return &i.reader
}
func (i *inputs) clear() {
// We need to clear 1 of these.
// Avoid the expense of clearing the others (pointer write barrier).
if i.bytes.str != nil {
i.bytes.str = nil
} else if i.reader.r != nil {
i.reader.r = nil
} else {
i.string.str = ""
}
}
func (i *inputs) init(r io.RuneReader, b []byte, s string) (input, int) {
if r != nil {
return i.newReader(r), 0
}
if b != nil {
return i.newBytes(b), len(b)
}
return i.newString(s), len(s)
}
func (m *machine) init(ncap int) {
for _, t := range m.pool {
t.cap = t.cap[:ncap]
}
m.matchcap = m.matchcap[:ncap]
}
// alloc allocates a new thread with the given instruction.
// It uses the free pool if possible.
func (m *machine) alloc(i *syntax.Inst) *thread {
var t *thread
if n := len(m.pool); n > 0 {
t = m.pool[n-1]
m.pool = m.pool[:n-1]
} else {
t = new(thread)
t.cap = make([]int, len(m.matchcap), cap(m.matchcap))
}
t.inst = i
return t
}
// A lazyFlag is a lazily-evaluated syntax.EmptyOp,
// for checking zero-width flags like ^ $ \A \z \B \b.
// It records the pair of relevant runes and does not
// determine the implied flags until absolutely necessary
// (most of the time, that means never).
type lazyFlag uint64
func newLazyFlag(r1, r2 rune) lazyFlag {
return lazyFlag(uint64(r1)<<32 | uint64(uint32(r2)))
}
func (f lazyFlag) match(op syntax.EmptyOp) bool {
if op == 0 {
return true
}
r1 := rune(f >> 32)
if op&syntax.EmptyBeginLine != 0 {
if r1 != '\n' && r1 >= 0 {
return false
}
op &^= syntax.EmptyBeginLine
}
if op&syntax.EmptyBeginText != 0 {
if r1 >= 0 {
return false
}
op &^= syntax.EmptyBeginText
}
if op == 0 {
return true
}
r2 := rune(f)
if op&syntax.EmptyEndLine != 0 {
if r2 != '\n' && r2 >= 0 {
return false
}
op &^= syntax.EmptyEndLine
}
if op&syntax.EmptyEndText != 0 {
if r2 >= 0 {
return false
}
op &^= syntax.EmptyEndText
}
if op == 0 {
return true
}
if syntax.IsWordChar(r1) != syntax.IsWordChar(r2) {
op &^= syntax.EmptyWordBoundary
} else {
op &^= syntax.EmptyNoWordBoundary
}
return op == 0
}
// match runs the machine over the input starting at pos.
// It reports whether a match was found.
// If so, m.matchcap holds the submatch information.
func (m *machine) match(i input, pos int) bool {
startCond := m.re.cond
if startCond == ^syntax.EmptyOp(0) { // impossible
return false
}
m.matched = false
for i := range m.matchcap {
m.matchcap[i] = -1
}
runq, nextq := &m.q0, &m.q1
r, r1 := endOfText, endOfText
width, width1 := 0, 0
r, width = i.step(pos)
if r != endOfText {
r1, width1 = i.step(pos + width)
}
var flag lazyFlag
if pos == 0 {
flag = newLazyFlag(-1, r)
} else {
flag = i.context(pos)
}
for {
if len(runq.dense) == 0 {
if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
// Anchored match, past beginning of text.
break
}
if m.matched {
// Have match; finished exploring alternatives.
break
}
if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() {
// Match requires literal prefix; fast search for it.
advance := i.index(m.re, pos)
if advance < 0 {
break
}
pos += advance
r, width = i.step(pos)
r1, width1 = i.step(pos + width)
}
}
if !m.matched {
if len(m.matchcap) > 0 {
m.matchcap[0] = pos
}
m.add(runq, uint32(m.p.Start), pos, m.matchcap, &flag, nil)
}
flag = newLazyFlag(r, r1)
m.step(runq, nextq, pos, pos+width, r, &flag)
if width == 0 {
break
}
if len(m.matchcap) == 0 && m.matched {
// Found a match and not paying attention
// to where it is, so any match will do.
break
}
pos += width
r, width = r1, width1
if r != endOfText {
r1, width1 = i.step(pos + width)
}
runq, nextq = nextq, runq
}
m.clear(nextq)
return m.matched
}
// clear frees all threads on the thread queue.
func (m *machine) clear(q *queue) {
for _, d := range q.dense {
if d.t != nil {
m.pool = append(m.pool, d.t)
}
}
q.dense = q.dense[:0]
}
// step executes one step of the machine, running each of the threads
// on runq and appending new threads to nextq.
// The step processes the rune c (which may be endOfText),
// which starts at position pos and ends at nextPos.
// nextCond gives the setting for the empty-width flags after c.
func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond *lazyFlag) {
longest := m.re.longest
for j := 0; j < len(runq.dense); j++ {
d := &runq.dense[j]
t := d.t
if t == nil {
continue
}
if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] {
m.pool = append(m.pool, t)
continue
}
i := t.inst
add := false
switch i.Op {
default:
panic("bad inst")
case syntax.InstMatch:
if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) {
t.cap[1] = pos
copy(m.matchcap, t.cap)
}
if !longest {
// First-match mode: cut off all lower-priority threads.
for _, d := range runq.dense[j+1:] {
if d.t != nil {
m.pool = append(m.pool, d.t)
}
}
runq.dense = runq.dense[:0]
}
m.matched = true
case syntax.InstRune:
add = i.MatchRune(c)
case syntax.InstRune1:
add = c == i.Rune[0]
case syntax.InstRuneAny:
add = true
case syntax.InstRuneAnyNotNL:
add = c != '\n'
}
if add {
t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t)
}
if t != nil {
m.pool = append(m.pool, t)
}
}
runq.dense = runq.dense[:0]
}
// add adds an entry to q for pc, unless the q already has such an entry.
// It also recursively adds an entry for all instructions reachable from pc by following
// empty-width conditions satisfied by cond. pos gives the current position
// in the input.
func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond *lazyFlag, t *thread) *thread {
Again:
if pc == 0 {
return t
}
if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc {
return t
}
j := len(q.dense)
q.dense = q.dense[:j+1]
d := &q.dense[j]
d.t = nil
d.pc = pc
q.sparse[pc] = uint32(j)
i := &m.p.Inst[pc]
switch i.Op {
default:
panic("unhandled")
case syntax.InstFail:
// nothing
case syntax.InstAlt, syntax.InstAltMatch:
t = m.add(q, i.Out, pos, cap, cond, t)
pc = i.Arg
goto Again
case syntax.InstEmptyWidth:
if cond.match(syntax.EmptyOp(i.Arg)) {
pc = i.Out
goto Again
}
case syntax.InstNop:
pc = i.Out
goto Again
case syntax.InstCapture:
if int(i.Arg) < len(cap) {
opos := cap[i.Arg]
cap[i.Arg] = pos
m.add(q, i.Out, pos, cap, cond, nil)
cap[i.Arg] = opos
} else {
pc = i.Out
goto Again
}
case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
if t == nil {
t = m.alloc(i)
} else {
t.inst = i
}
if len(cap) > 0 && &t.cap[0] != &cap[0] {
copy(t.cap, cap)
}
d.t = t
t = nil
}
return t
}
type onePassMachine struct {
inputs inputs
matchcap []int
}
var onePassPool sync.Pool
func newOnePassMachine() *onePassMachine {
m, ok := onePassPool.Get().(*onePassMachine)
if !ok {
m = new(onePassMachine)
}
return m
}
func freeOnePassMachine(m *onePassMachine) {
m.inputs.clear()
onePassPool.Put(m)
}
// doOnePass implements r.doExecute using the one-pass execution engine.
func (re *Regexp) doOnePass(ir io.RuneReader, ib []byte, is string, pos, ncap int, dstCap []int) []int {
startCond := re.cond
if startCond == ^syntax.EmptyOp(0) { // impossible
return nil
}
m := newOnePassMachine()
if cap(m.matchcap) < ncap {
m.matchcap = make([]int, ncap)
} else {
m.matchcap = m.matchcap[:ncap]
}
matched := false
for i := range m.matchcap {
m.matchcap[i] = -1
}
i, _ := m.inputs.init(ir, ib, is)
r, r1 := endOfText, endOfText
width, width1 := 0, 0
r, width = i.step(pos)
if r != endOfText {
r1, width1 = i.step(pos + width)
}
var flag lazyFlag
if pos == 0 {
flag = newLazyFlag(-1, r)
} else {
flag = i.context(pos)
}
pc := re.onepass.Start
inst := re.onepass.Inst[pc]
// If there is a simple literal prefix, skip over it.
if pos == 0 && flag.match(syntax.EmptyOp(inst.Arg)) &&
len(re.prefix) > 0 && i.canCheckPrefix() {
// Match requires literal prefix; fast search for it.
if !i.hasPrefix(re) {
goto Return
}
pos += len(re.prefix)
r, width = i.step(pos)
r1, width1 = i.step(pos + width)
flag = i.context(pos)
pc = int(re.prefixEnd)
}
for {
inst = re.onepass.Inst[pc]
pc = int(inst.Out)
switch inst.Op {
default:
panic("bad inst")
case syntax.InstMatch:
matched = true
if len(m.matchcap) > 0 {
m.matchcap[0] = 0
m.matchcap[1] = pos
}
goto Return
case syntax.InstRune:
if !inst.MatchRune(r) {
goto Return
}
case syntax.InstRune1:
if r != inst.Rune[0] {
goto Return
}
case syntax.InstRuneAny:
// Nothing
case syntax.InstRuneAnyNotNL:
if r == '\n' {
goto Return
}
// peek at the input rune to see which branch of the Alt to take
case syntax.InstAlt, syntax.InstAltMatch:
pc = int(onePassNext(&inst, r))
continue
case syntax.InstFail:
goto Return
case syntax.InstNop:
continue
case syntax.InstEmptyWidth:
if !flag.match(syntax.EmptyOp(inst.Arg)) {
goto Return
}
continue
case syntax.InstCapture:
if int(inst.Arg) < len(m.matchcap) {
m.matchcap[inst.Arg] = pos
}
continue
}
if width == 0 {
break
}
flag = newLazyFlag(r, r1)
pos += width
r, width = r1, width1
if r != endOfText {
r1, width1 = i.step(pos + width)
}
}
Return:
if !matched {
freeOnePassMachine(m)
return nil
}
dstCap = append(dstCap, m.matchcap...)
freeOnePassMachine(m)
return dstCap
}
// doMatch reports whether either r, b or s match the regexp.
func (re *Regexp) doMatch(r io.RuneReader, b []byte, s string) bool {
return re.doExecute(r, b, s, 0, 0, nil) != nil
}
// doExecute finds the leftmost match in the input, appends the position
// of its subexpressions to dstCap and returns dstCap.
//
// nil is returned if no matches are found and non-nil if matches are found.
func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int, dstCap []int) []int {
if dstCap == nil {
// Make sure 'return dstCap' is non-nil.
dstCap = arrayNoInts[:0:0]
}
if re.onepass != nil {
return re.doOnePass(r, b, s, pos, ncap, dstCap)
}
if r == nil && len(b)+len(s) < re.maxBitStateLen {
return re.backtrack(b, s, pos, ncap, dstCap)
}
m := re.get()
i, _ := m.inputs.init(r, b, s)
m.init(ncap)
if !m.match(i, pos) {
re.put(m)
return nil
}
dstCap = append(dstCap, m.matchcap...)
re.put(m)
return dstCap
}
// arrayNoInts is returned by doExecute match if nil dstCap is passed
// to it with ncap=0.
var arrayNoInts [0]int