go/src/cmd/compile/internal/gc/fmt.go
Matthew Dempsky 3f2cb493e5 cmd/compile: handle unsafe builtins like universal builtins
Reuse the same mechanisms for handling universal builtins like len to
handle unsafe.Sizeof, etc. Allows us to drop package unsafe's export
data, and simplifies some code.

Updates #17508.

Change-Id: I620e0617c24e57e8a2d7cccd0e2de34608779656
Reviewed-on: https://go-review.googlesource.com/31433
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
2016-10-18 22:34:44 +00:00

1826 lines
37 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/internal/obj"
"fmt"
"strconv"
"strings"
"unicode/utf8"
)
// A FmtFlag value is a set of flags (or 0).
// They control how the Xconv functions format their values.
// See the respective function's documentation for details.
type FmtFlag int
// TODO(gri) The ' ' flag is not used anymore in %-formats.
// Eliminate eventually.
const ( // fmt.Format flag/prec or verb
FmtLeft FmtFlag = 1 << iota // '-'
FmtSharp // '#'
FmtSign // '+'
FmtUnsigned // ' ' (historic: u flag)
FmtShort // verb == 'S' (historic: h flag)
FmtLong // verb == 'L' (historic: l flag)
FmtComma // '.' (== hasPrec) (historic: , flag)
FmtByte // '0' (historic: hh flag)
)
// fmtFlag computes the (internal) FmtFlag
// value given the fmt.State and format verb.
func fmtFlag(s fmt.State, verb rune) FmtFlag {
var flag FmtFlag
if s.Flag('-') {
flag |= FmtLeft
}
if s.Flag('#') {
flag |= FmtSharp
}
if s.Flag('+') {
flag |= FmtSign
}
if s.Flag(' ') {
flag |= FmtUnsigned
}
if _, ok := s.Precision(); ok {
flag |= FmtComma
}
if s.Flag('0') {
flag |= FmtByte
}
switch verb {
case 'S':
flag |= FmtShort
case 'L':
flag |= FmtLong
}
return flag
}
// Format conversions:
// TODO(gri) verify these; eliminate those not used anymore
//
// %v Op Node opcodes
// Flags: #: print Go syntax (automatic unless fmtmode == FDbg)
//
// %j *Node Node details
// Flags: 0: suppresses things not relevant until walk
//
// %v *Val Constant values
//
// %v *Sym Symbols
// %S unqualified identifier in any mode
// Flags: +,- #: mode (see below)
// 0: in export mode: unqualified identifier if exported, qualified if not
//
// %v *Type Types
// %S omit "func" and receiver in function types
// %L definition instead of name.
// Flags: +,- #: mode (see below)
// ' ' (only in -/Sym mode) print type identifiers wit package name instead of prefix.
//
// %v *Node Nodes
// %S (only in +/debug mode) suppress recursion
// %L (only in Error mode) print "foo (type Bar)"
// Flags: +,- #: mode (see below)
//
// %v Nodes Node lists
// Flags: those of *Node
// .: separate items with ',' instead of ';'
// *Sym, *Type, and *Node types use the flags below to set the format mode
const (
FErr = iota
FDbg
FTypeId
)
var fmtmode int = FErr
var fmtpkgpfx int // "% v" stickyness for *Type objects
// The mode flags '+', '-', and '#' are sticky; they persist through
// recursions of *Node, *Type, and *Sym values. The ' ' flag is
// sticky only on *Type recursions and only used in %-/*Sym mode.
//
// Example: given a *Sym: %+v %#v %-v print an identifier properly qualified for debug/export/internal mode
// Useful format combinations:
// TODO(gri): verify these
//
// *Node, Nodes:
// %+v multiline recursive debug dump of *Node/Nodes
// %+S non-recursive debug dump
//
// *Node:
// %#v Go format
// %L "foo (type Bar)" for error messages
//
// *Type:
// %#v Go format
// %#L type definition instead of name
// %#S omit"func" and receiver in function signature
//
// %-v type identifiers
// %-S type identifiers without "func" and arg names in type signatures (methodsym)
// %- v type identifiers with package name instead of prefix (typesym, dcommontype, typehash)
func setfmode(flags *FmtFlag) (fm int) {
fm = fmtmode
if *flags&FmtSign != 0 {
fmtmode = FDbg
} else if *flags&FmtSharp != 0 {
// ignore (textual export format no longer supported)
} else if *flags&FmtLeft != 0 {
fmtmode = FTypeId
}
*flags &^= (FmtSharp | FmtLeft | FmtSign)
return
}
var goopnames = []string{
OADDR: "&",
OADD: "+",
OADDSTR: "+",
OALIGNOF: "unsafe.Alignof",
OANDAND: "&&",
OANDNOT: "&^",
OAND: "&",
OAPPEND: "append",
OAS: "=",
OAS2: "=",
OBREAK: "break",
OCALL: "function call", // not actual syntax
OCAP: "cap",
OCASE: "case",
OCLOSE: "close",
OCOMPLEX: "complex",
OCOM: "^",
OCONTINUE: "continue",
OCOPY: "copy",
ODEC: "--",
ODELETE: "delete",
ODEFER: "defer",
ODIV: "/",
OEQ: "==",
OFALL: "fallthrough",
OFOR: "for",
OGE: ">=",
OGOTO: "goto",
OGT: ">",
OIF: "if",
OIMAG: "imag",
OINC: "++",
OIND: "*",
OLEN: "len",
OLE: "<=",
OLSH: "<<",
OLT: "<",
OMAKE: "make",
OMINUS: "-",
OMOD: "%",
OMUL: "*",
ONEW: "new",
ONE: "!=",
ONOT: "!",
OOFFSETOF: "unsafe.Offsetof",
OOROR: "||",
OOR: "|",
OPANIC: "panic",
OPLUS: "+",
OPRINTN: "println",
OPRINT: "print",
ORANGE: "range",
OREAL: "real",
ORECV: "<-",
ORECOVER: "recover",
ORETURN: "return",
ORSH: ">>",
OSELECT: "select",
OSEND: "<-",
OSIZEOF: "unsafe.Sizeof",
OSUB: "-",
OSWITCH: "switch",
OXOR: "^",
OXFALL: "fallthrough",
}
func (o Op) String() string {
return fmt.Sprint(o)
}
func (o Op) GoString() string {
return fmt.Sprintf("%#v", o)
}
func (o Op) Format(s fmt.State, verb rune) {
switch verb {
case 'v':
o.oconv(s, fmtFlag(s, verb))
default:
fmt.Fprintf(s, "%%!%c(Op=%d)", verb, int(o))
}
}
func (o Op) oconv(s fmt.State, flag FmtFlag) {
if (flag&FmtSharp != 0) || fmtmode != FDbg {
if o >= 0 && int(o) < len(goopnames) && goopnames[o] != "" {
fmt.Fprint(s, goopnames[o])
return
}
}
if o >= 0 && int(o) < len(opnames) && opnames[o] != "" {
fmt.Fprint(s, opnames[o])
return
}
fmt.Fprintf(s, "O-%d", int(o))
}
var classnames = []string{
"Pxxx",
"PEXTERN",
"PAUTO",
"PAUTOHEAP",
"PPARAM",
"PPARAMOUT",
"PFUNC",
}
func (n *Node) Format(s fmt.State, verb rune) {
switch verb {
case 'v', 'S', 'L':
n.Nconv(s, fmtFlag(s, verb))
case 'j':
n.jconv(s, fmtFlag(s, verb))
default:
fmt.Fprintf(s, "%%!%c(*Node=%p)", verb, n)
}
}
// *Node details
func (n *Node) jconv(s fmt.State, flag FmtFlag) {
c := flag & FmtShort
if c == 0 && n.Ullman != 0 {
fmt.Fprintf(s, " u(%d)", n.Ullman)
}
if c == 0 && n.Addable {
fmt.Fprintf(s, " a(%v)", n.Addable)
}
if c == 0 && n.Name != nil && n.Name.Vargen != 0 {
fmt.Fprintf(s, " g(%d)", n.Name.Vargen)
}
if n.Lineno != 0 {
fmt.Fprintf(s, " l(%d)", n.Lineno)
}
if c == 0 && n.Xoffset != BADWIDTH {
fmt.Fprintf(s, " x(%d)", n.Xoffset)
}
if n.Class != 0 {
if int(n.Class) < len(classnames) {
fmt.Fprintf(s, " class(%s)", classnames[n.Class])
} else {
fmt.Fprintf(s, " class(%d?)", n.Class)
}
}
if n.Colas {
fmt.Fprintf(s, " colas(%v)", n.Colas)
}
if n.Name != nil && n.Name.Funcdepth != 0 {
fmt.Fprintf(s, " f(%d)", n.Name.Funcdepth)
}
if n.Func != nil && n.Func.Depth != 0 {
fmt.Fprintf(s, " ff(%d)", n.Func.Depth)
}
switch n.Esc {
case EscUnknown:
break
case EscHeap:
fmt.Fprint(s, " esc(h)")
case EscScope:
fmt.Fprint(s, " esc(s)")
case EscNone:
fmt.Fprint(s, " esc(no)")
case EscNever:
if c == 0 {
fmt.Fprint(s, " esc(N)")
}
default:
fmt.Fprintf(s, " esc(%d)", n.Esc)
}
if e, ok := n.Opt().(*NodeEscState); ok && e.Loopdepth != 0 {
fmt.Fprintf(s, " ld(%d)", e.Loopdepth)
}
if c == 0 && n.Typecheck != 0 {
fmt.Fprintf(s, " tc(%d)", n.Typecheck)
}
if c == 0 && n.IsStatic {
fmt.Fprint(s, " static")
}
if n.Isddd {
fmt.Fprintf(s, " isddd(%v)", n.Isddd)
}
if n.Implicit {
fmt.Fprintf(s, " implicit(%v)", n.Implicit)
}
if n.Embedded != 0 {
fmt.Fprintf(s, " embedded(%d)", n.Embedded)
}
if n.Addrtaken {
fmt.Fprint(s, " addrtaken")
}
if n.Assigned {
fmt.Fprint(s, " assigned")
}
if n.Bounded {
fmt.Fprint(s, " bounded")
}
if n.NonNil {
fmt.Fprint(s, " nonnil")
}
if c == 0 && n.Used {
fmt.Fprintf(s, " used(%v)", n.Used)
}
}
func (v Val) Format(s fmt.State, verb rune) {
switch verb {
case 'v':
v.vconv(s, fmtFlag(s, verb))
default:
fmt.Fprintf(s, "%%!%c(Val=%T)", verb, v)
}
}
func (v Val) vconv(s fmt.State, flag FmtFlag) {
switch u := v.U.(type) {
case *Mpint:
if !u.Rune {
if flag&FmtSharp != 0 {
fmt.Fprint(s, bconv(u, FmtSharp))
return
}
fmt.Fprint(s, bconv(u, 0))
return
}
switch x := u.Int64(); {
case ' ' <= x && x < utf8.RuneSelf && x != '\\' && x != '\'':
fmt.Fprintf(s, "'%c'", int(x))
case 0 <= x && x < 1<<16:
fmt.Fprintf(s, "'\\u%04x'", uint(int(x)))
case 0 <= x && x <= utf8.MaxRune:
fmt.Fprintf(s, "'\\U%08x'", uint64(x))
default:
fmt.Fprintf(s, "('\\x00' + %v)", u)
}
case *Mpflt:
if flag&FmtSharp != 0 {
fmt.Fprint(s, fconv(u, 0))
return
}
fmt.Fprint(s, fconv(u, FmtSharp))
return
case *Mpcplx:
switch {
case flag&FmtSharp != 0:
fmt.Fprintf(s, "(%v+%vi)", &u.Real, &u.Imag)
case v.U.(*Mpcplx).Real.CmpFloat64(0) == 0:
fmt.Fprintf(s, "%vi", fconv(&u.Imag, FmtSharp))
case v.U.(*Mpcplx).Imag.CmpFloat64(0) == 0:
fmt.Fprint(s, fconv(&u.Real, FmtSharp))
case v.U.(*Mpcplx).Imag.CmpFloat64(0) < 0:
fmt.Fprintf(s, "(%v%vi)", fconv(&u.Real, FmtSharp), fconv(&u.Imag, FmtSharp))
default:
fmt.Fprintf(s, "(%v+%vi)", fconv(&u.Real, FmtSharp), fconv(&u.Imag, FmtSharp))
}
case string:
fmt.Fprint(s, strconv.Quote(u))
case bool:
t := "false"
if u {
t = "true"
}
fmt.Fprint(s, t)
case *NilVal:
fmt.Fprint(s, "nil")
default:
fmt.Fprintf(s, "<ctype=%d>", v.Ctype())
}
}
/*
s%,%,\n%g
s%\n+%\n%g
s%^[ ]*T%%g
s%,.*%%g
s%.+% [T&] = "&",%g
s%^ ........*\]%&~%g
s%~ %%g
*/
var etnames = []string{
Txxx: "Txxx",
TINT: "INT",
TUINT: "UINT",
TINT8: "INT8",
TUINT8: "UINT8",
TINT16: "INT16",
TUINT16: "UINT16",
TINT32: "INT32",
TUINT32: "UINT32",
TINT64: "INT64",
TUINT64: "UINT64",
TUINTPTR: "UINTPTR",
TFLOAT32: "FLOAT32",
TFLOAT64: "FLOAT64",
TCOMPLEX64: "COMPLEX64",
TCOMPLEX128: "COMPLEX128",
TBOOL: "BOOL",
TPTR32: "PTR32",
TPTR64: "PTR64",
TFUNC: "FUNC",
TARRAY: "ARRAY",
TSLICE: "SLICE",
TSTRUCT: "STRUCT",
TCHAN: "CHAN",
TMAP: "MAP",
TINTER: "INTER",
TFORW: "FORW",
TSTRING: "STRING",
TUNSAFEPTR: "TUNSAFEPTR",
TANY: "ANY",
TIDEAL: "TIDEAL",
TNIL: "TNIL",
TBLANK: "TBLANK",
TFUNCARGS: "TFUNCARGS",
TCHANARGS: "TCHANARGS",
TINTERMETH: "TINTERMETH",
TDDDFIELD: "TDDDFIELD",
}
func (et EType) String() string {
if int(et) < len(etnames) && etnames[et] != "" {
return etnames[et]
}
return fmt.Sprintf("E-%d", et)
}
func (s *Sym) symfmt(flag FmtFlag) string {
if s.Pkg != nil && flag&FmtShort == 0 {
switch fmtmode {
case FErr: // This is for the user
if s.Pkg == builtinpkg || s.Pkg == localpkg {
return s.Name
}
// If the name was used by multiple packages, display the full path,
if s.Pkg.Name != "" && numImport[s.Pkg.Name] > 1 {
return fmt.Sprintf("%q.%s", s.Pkg.Path, s.Name)
}
return s.Pkg.Name + "." + s.Name
case FDbg:
return s.Pkg.Name + "." + s.Name
case FTypeId:
if flag&FmtUnsigned != 0 {
return s.Pkg.Name + "." + s.Name // dcommontype, typehash
}
return s.Pkg.Prefix + "." + s.Name // (methodsym), typesym, weaksym
}
}
if flag&FmtByte != 0 {
// FmtByte (hh) implies FmtShort (h)
// skip leading "type." in method name
name := s.Name
if i := strings.LastIndex(name, "."); i >= 0 {
name = name[i+1:]
}
if fmtmode == FDbg {
return fmt.Sprintf("@%q.%s", s.Pkg.Path, name)
}
return name
}
return s.Name
}
var basicnames = []string{
TINT: "int",
TUINT: "uint",
TINT8: "int8",
TUINT8: "uint8",
TINT16: "int16",
TUINT16: "uint16",
TINT32: "int32",
TUINT32: "uint32",
TINT64: "int64",
TUINT64: "uint64",
TUINTPTR: "uintptr",
TFLOAT32: "float32",
TFLOAT64: "float64",
TCOMPLEX64: "complex64",
TCOMPLEX128: "complex128",
TBOOL: "bool",
TANY: "any",
TSTRING: "string",
TNIL: "nil",
TIDEAL: "untyped number",
TBLANK: "blank",
}
func (t *Type) typefmt(flag FmtFlag) string {
if t == nil {
return "<T>"
}
if t == bytetype || t == runetype {
// in %-T mode collapse rune and byte with their originals.
if fmtmode != FTypeId {
return t.Sym.sconv(FmtShort)
}
t = Types[t.Etype]
}
if t == errortype {
return "error"
}
// Unless the 'l' flag was specified, if the type has a name, just print that name.
if flag&FmtLong == 0 && t.Sym != nil && t != Types[t.Etype] {
switch fmtmode {
case FTypeId:
if flag&FmtShort != 0 {
if t.Vargen != 0 {
return fmt.Sprintf("%v·%d", t.Sym.sconv(FmtShort), t.Vargen)
}
return t.Sym.sconv(FmtShort)
}
if flag&FmtUnsigned != 0 {
return t.Sym.sconv(FmtUnsigned)
}
if t.Sym.Pkg == localpkg && t.Vargen != 0 {
return fmt.Sprintf("%v·%d", t.Sym, t.Vargen)
}
}
return t.Sym.String()
}
if int(t.Etype) < len(basicnames) && basicnames[t.Etype] != "" {
prefix := ""
if fmtmode == FErr && (t == idealbool || t == idealstring) {
prefix = "untyped "
}
return prefix + basicnames[t.Etype]
}
if fmtmode == FDbg {
fmtmode = 0
str := t.Etype.String() + "-" + t.typefmt(flag)
fmtmode = FDbg
return str
}
switch t.Etype {
case TPTR32, TPTR64:
if fmtmode == FTypeId && (flag&FmtShort != 0) {
return "*" + t.Elem().tconv(FmtShort)
}
return "*" + t.Elem().String()
case TARRAY:
if t.isDDDArray() {
return "[...]" + t.Elem().String()
}
return fmt.Sprintf("[%d]%v", t.NumElem(), t.Elem())
case TSLICE:
return "[]" + t.Elem().String()
case TCHAN:
switch t.ChanDir() {
case Crecv:
return "<-chan " + t.Elem().String()
case Csend:
return "chan<- " + t.Elem().String()
}
if t.Elem() != nil && t.Elem().IsChan() && t.Elem().Sym == nil && t.Elem().ChanDir() == Crecv {
return "chan (" + t.Elem().String() + ")"
}
return "chan " + t.Elem().String()
case TMAP:
return "map[" + t.Key().String() + "]" + t.Val().String()
case TINTER:
if t.IsEmptyInterface() {
return "interface {}"
}
buf := make([]byte, 0, 64)
buf = append(buf, "interface {"...)
for i, f := range t.Fields().Slice() {
if i != 0 {
buf = append(buf, ';')
}
buf = append(buf, ' ')
switch {
case f.Sym == nil:
// Check first that a symbol is defined for this type.
// Wrong interface definitions may have types lacking a symbol.
break
case exportname(f.Sym.Name):
buf = append(buf, f.Sym.sconv(FmtShort)...)
default:
buf = append(buf, f.Sym.sconv(FmtUnsigned)...)
}
buf = append(buf, f.Type.tconv(FmtShort)...)
}
if t.NumFields() != 0 {
buf = append(buf, ' ')
}
buf = append(buf, '}')
return string(buf)
case TFUNC:
buf := make([]byte, 0, 64)
if flag&FmtShort != 0 {
// no leading func
} else {
if t.Recv() != nil {
buf = append(buf, "method"...)
buf = append(buf, t.Recvs().String()...)
buf = append(buf, ' ')
}
buf = append(buf, "func"...)
}
buf = append(buf, t.Params().String()...)
switch t.Results().NumFields() {
case 0:
// nothing to do
case 1:
buf = append(buf, ' ')
buf = append(buf, t.Results().Field(0).Type.String()...) // struct->field->field's type
default:
buf = append(buf, ' ')
buf = append(buf, t.Results().String()...)
}
return string(buf)
case TSTRUCT:
if m := t.StructType().Map; m != nil {
mt := m.MapType()
// Format the bucket struct for map[x]y as map.bucket[x]y.
// This avoids a recursive print that generates very long names.
if mt.Bucket == t {
return "map.bucket[" + m.Key().String() + "]" + m.Val().String()
}
if mt.Hmap == t {
return "map.hdr[" + m.Key().String() + "]" + m.Val().String()
}
if mt.Hiter == t {
return "map.iter[" + m.Key().String() + "]" + m.Val().String()
}
yyerror("unknown internal map type")
}
buf := make([]byte, 0, 64)
if t.IsFuncArgStruct() {
buf = append(buf, '(')
var flag1 FmtFlag
if fmtmode == FTypeId || fmtmode == FErr { // no argument names on function signature, and no "noescape"/"nosplit" tags
flag1 = FmtShort
}
for i, f := range t.Fields().Slice() {
if i != 0 {
buf = append(buf, ", "...)
}
buf = append(buf, fldconv(f, flag1)...)
}
buf = append(buf, ')')
} else {
buf = append(buf, "struct {"...)
for i, f := range t.Fields().Slice() {
if i != 0 {
buf = append(buf, ';')
}
buf = append(buf, ' ')
buf = append(buf, fldconv(f, FmtLong)...)
}
if t.NumFields() != 0 {
buf = append(buf, ' ')
}
buf = append(buf, '}')
}
return string(buf)
case TFORW:
if t.Sym != nil {
return "undefined " + t.Sym.String()
}
return "undefined"
case TUNSAFEPTR:
return "unsafe.Pointer"
case TDDDFIELD:
return fmt.Sprintf("%v <%v> %v", t.Etype, t.Sym, t.DDDField())
case Txxx:
return "Txxx"
}
// Don't know how to handle - fall back to detailed prints.
return fmt.Sprintf("%v <%v> %v", t.Etype, t.Sym, t.Elem())
}
// Statements which may be rendered with a simplestmt as init.
func stmtwithinit(op Op) bool {
switch op {
case OIF, OFOR, OSWITCH:
return true
}
return false
}
func (n *Node) stmtfmt(s fmt.State) {
// some statements allow for an init, but at most one,
// but we may have an arbitrary number added, eg by typecheck
// and inlining. If it doesn't fit the syntax, emit an enclosing
// block starting with the init statements.
// if we can just say "for" n->ninit; ... then do so
simpleinit := n.Ninit.Len() == 1 && n.Ninit.First().Ninit.Len() == 0 && stmtwithinit(n.Op)
// otherwise, print the inits as separate statements
complexinit := n.Ninit.Len() != 0 && !simpleinit && (fmtmode != FErr)
// but if it was for if/for/switch, put in an extra surrounding block to limit the scope
extrablock := complexinit && stmtwithinit(n.Op)
if extrablock {
fmt.Fprint(s, "{")
}
if complexinit {
fmt.Fprintf(s, " %v; ", n.Ninit)
}
switch n.Op {
case ODCL:
fmt.Fprintf(s, "var %v %v", n.Left.Sym, n.Left.Type)
case ODCLFIELD:
if n.Left != nil {
fmt.Fprintf(s, "%v %v", n.Left, n.Right)
} else {
fmt.Fprintf(s, "%v", n.Right)
}
// Don't export "v = <N>" initializing statements, hope they're always
// preceded by the DCL which will be re-parsed and typechecked to reproduce
// the "v = <N>" again.
case OAS, OASWB:
if n.Colas && !complexinit {
fmt.Fprintf(s, "%v := %v", n.Left, n.Right)
} else {
fmt.Fprintf(s, "%v = %v", n.Left, n.Right)
}
case OASOP:
if n.Implicit {
if Op(n.Etype) == OADD {
fmt.Fprintf(s, "%v++", n.Left)
} else {
fmt.Fprintf(s, "%v--", n.Left)
}
break
}
fmt.Fprintf(s, "%v %#v= %v", n.Left, Op(n.Etype), n.Right)
case OAS2:
if n.Colas && !complexinit {
fmt.Fprintf(s, "%.v := %.v", n.List, n.Rlist)
break
}
fallthrough
case OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV:
fmt.Fprintf(s, "%.v = %.v", n.List, n.Rlist)
case ORETURN:
fmt.Fprintf(s, "return %.v", n.List)
case ORETJMP:
fmt.Fprintf(s, "retjmp %v", n.Sym)
case OPROC:
fmt.Fprintf(s, "go %v", n.Left)
case ODEFER:
fmt.Fprintf(s, "defer %v", n.Left)
case OIF:
if simpleinit {
fmt.Fprintf(s, "if %v; %v { %v }", n.Ninit.First(), n.Left, n.Nbody)
} else {
fmt.Fprintf(s, "if %v { %v }", n.Left, n.Nbody)
}
if n.Rlist.Len() != 0 {
fmt.Fprintf(s, " else { %v }", n.Rlist)
}
case OFOR:
if fmtmode == FErr { // TODO maybe only if FmtShort, same below
fmt.Fprint(s, "for loop")
break
}
fmt.Fprint(s, "for")
if simpleinit {
fmt.Fprintf(s, " %v;", n.Ninit.First())
} else if n.Right != nil {
fmt.Fprint(s, " ;")
}
if n.Left != nil {
fmt.Fprintf(s, " %v", n.Left)
}
if n.Right != nil {
fmt.Fprintf(s, "; %v", n.Right)
} else if simpleinit {
fmt.Fprint(s, ";")
}
fmt.Fprintf(s, " { %v }", n.Nbody)
case ORANGE:
if fmtmode == FErr {
fmt.Fprint(s, "for loop")
break
}
if n.List.Len() == 0 {
fmt.Fprintf(s, "for range %v { %v }", n.Right, n.Nbody)
break
}
fmt.Fprintf(s, "for %.v = range %v { %v }", n.List, n.Right, n.Nbody)
case OSELECT, OSWITCH:
if fmtmode == FErr {
fmt.Fprintf(s, "%v statement", n.Op)
break
}
fmt.Fprint(s, n.Op.GoString()) // %#v
if simpleinit {
fmt.Fprintf(s, " %v;", n.Ninit.First())
}
if n.Left != nil {
fmt.Fprintf(s, " %v ", n.Left)
}
fmt.Fprintf(s, " { %v }", n.List)
case OXCASE:
if n.List.Len() != 0 {
fmt.Fprintf(s, "case %.v", n.List)
} else {
fmt.Fprint(s, "default")
}
fmt.Fprintf(s, ": %v", n.Nbody)
case OCASE:
switch {
case n.Left != nil:
// single element
fmt.Fprintf(s, "case %v", n.Left)
case n.List.Len() > 0:
// range
if n.List.Len() != 2 {
Fatalf("bad OCASE list length %d", n.List.Len())
}
fmt.Fprintf(s, "case %v..%v", n.List.First(), n.List.Second())
default:
fmt.Fprint(s, "default")
}
fmt.Fprintf(s, ": %v", n.Nbody)
case OBREAK,
OCONTINUE,
OGOTO,
OFALL,
OXFALL:
if n.Left != nil {
fmt.Fprintf(s, "%#v %v", n.Op, n.Left)
} else {
fmt.Fprint(s, n.Op.GoString()) // %#v
}
case OEMPTY:
break
case OLABEL:
fmt.Fprintf(s, "%v: ", n.Left)
}
if extrablock {
fmt.Fprint(s, "}")
}
}
var opprec = []int{
OALIGNOF: 8,
OAPPEND: 8,
OARRAYBYTESTR: 8,
OARRAYLIT: 8,
OSLICELIT: 8,
OARRAYRUNESTR: 8,
OCALLFUNC: 8,
OCALLINTER: 8,
OCALLMETH: 8,
OCALL: 8,
OCAP: 8,
OCLOSE: 8,
OCONVIFACE: 8,
OCONVNOP: 8,
OCONV: 8,
OCOPY: 8,
ODELETE: 8,
OGETG: 8,
OLEN: 8,
OLITERAL: 8,
OMAKESLICE: 8,
OMAKE: 8,
OMAPLIT: 8,
ONAME: 8,
ONEW: 8,
ONONAME: 8,
OOFFSETOF: 8,
OPACK: 8,
OPANIC: 8,
OPAREN: 8,
OPRINTN: 8,
OPRINT: 8,
ORUNESTR: 8,
OSIZEOF: 8,
OSTRARRAYBYTE: 8,
OSTRARRAYRUNE: 8,
OSTRUCTLIT: 8,
OTARRAY: 8,
OTCHAN: 8,
OTFUNC: 8,
OTINTER: 8,
OTMAP: 8,
OTSTRUCT: 8,
OINDEXMAP: 8,
OINDEX: 8,
OSLICE: 8,
OSLICESTR: 8,
OSLICEARR: 8,
OSLICE3: 8,
OSLICE3ARR: 8,
ODOTINTER: 8,
ODOTMETH: 8,
ODOTPTR: 8,
ODOTTYPE2: 8,
ODOTTYPE: 8,
ODOT: 8,
OXDOT: 8,
OCALLPART: 8,
OPLUS: 7,
ONOT: 7,
OCOM: 7,
OMINUS: 7,
OADDR: 7,
OIND: 7,
ORECV: 7,
OMUL: 6,
ODIV: 6,
OMOD: 6,
OLSH: 6,
ORSH: 6,
OAND: 6,
OANDNOT: 6,
OADD: 5,
OSUB: 5,
OOR: 5,
OXOR: 5,
OEQ: 4,
OLT: 4,
OLE: 4,
OGE: 4,
OGT: 4,
ONE: 4,
OCMPSTR: 4,
OCMPIFACE: 4,
OSEND: 3,
OANDAND: 2,
OOROR: 1,
// Statements handled by stmtfmt
OAS: -1,
OAS2: -1,
OAS2DOTTYPE: -1,
OAS2FUNC: -1,
OAS2MAPR: -1,
OAS2RECV: -1,
OASOP: -1,
OBREAK: -1,
OCASE: -1,
OCONTINUE: -1,
ODCL: -1,
ODCLFIELD: -1,
ODEFER: -1,
OEMPTY: -1,
OFALL: -1,
OFOR: -1,
OGOTO: -1,
OIF: -1,
OLABEL: -1,
OPROC: -1,
ORANGE: -1,
ORETURN: -1,
OSELECT: -1,
OSWITCH: -1,
OXCASE: -1,
OXFALL: -1,
OEND: 0,
}
func (n *Node) exprfmt(s fmt.State, prec int) {
for n != nil && n.Implicit && (n.Op == OIND || n.Op == OADDR) {
n = n.Left
}
if n == nil {
fmt.Fprint(s, "<N>")
return
}
nprec := opprec[n.Op]
if n.Op == OTYPE && n.Sym != nil {
nprec = 8
}
if prec > nprec {
fmt.Fprintf(s, "(%v)", n)
return
}
switch n.Op {
case OPAREN:
fmt.Fprintf(s, "(%v)", n.Left)
case ODDDARG:
fmt.Fprint(s, "... argument")
case OREGISTER:
fmt.Fprint(s, obj.Rconv(int(n.Reg)))
case OLITERAL: // this is a bit of a mess
if fmtmode == FErr {
if n.Orig != nil && n.Orig != n {
n.Orig.exprfmt(s, prec)
return
}
if n.Sym != nil {
fmt.Fprint(s, n.Sym.String())
return
}
}
if n.Val().Ctype() == CTNIL && n.Orig != nil && n.Orig != n {
n.Orig.exprfmt(s, prec)
return
}
if n.Type != nil && n.Type.Etype != TIDEAL && n.Type.Etype != TNIL && n.Type != idealbool && n.Type != idealstring {
// Need parens when type begins with what might
// be misinterpreted as a unary operator: * or <-.
if n.Type.IsPtr() || (n.Type.IsChan() && n.Type.ChanDir() == Crecv) {
fmt.Fprintf(s, "(%v)(%v)", n.Type, n.Val())
return
} else {
fmt.Fprintf(s, "%v(%v)", n.Type, n.Val())
return
}
}
fmt.Fprintf(s, "%v", n.Val())
// Special case: name used as local variable in export.
// _ becomes ~b%d internally; print as _ for export
case ONAME:
if fmtmode == FErr && n.Sym != nil && n.Sym.Name[0] == '~' && n.Sym.Name[1] == 'b' {
fmt.Fprint(s, "_")
return
}
fallthrough
case OPACK, ONONAME:
fmt.Fprint(s, n.Sym.String())
case OTYPE:
if n.Type == nil && n.Sym != nil {
fmt.Fprint(s, n.Sym.String())
return
}
fmt.Fprintf(s, "%v", n.Type)
case OTARRAY:
if n.Left != nil {
fmt.Fprintf(s, "[]%v", n.Left)
return
}
fmt.Fprintf(s, "[]%v", n.Right) // happens before typecheck
case OTMAP:
fmt.Fprintf(s, "map[%v]%v", n.Left, n.Right)
case OTCHAN:
switch ChanDir(n.Etype) {
case Crecv:
fmt.Fprintf(s, "<-chan %v", n.Left)
case Csend:
fmt.Fprintf(s, "chan<- %v", n.Left)
default:
if n.Left != nil && n.Left.Op == OTCHAN && n.Left.Sym == nil && ChanDir(n.Left.Etype) == Crecv {
fmt.Fprintf(s, "chan (%v)", n.Left)
} else {
fmt.Fprintf(s, "chan %v", n.Left)
}
}
case OTSTRUCT:
fmt.Fprint(s, "<struct>")
case OTINTER:
fmt.Fprint(s, "<inter>")
case OTFUNC:
fmt.Fprint(s, "<func>")
case OCLOSURE:
if fmtmode == FErr {
fmt.Fprint(s, "func literal")
return
}
if n.Nbody.Len() != 0 {
fmt.Fprintf(s, "%v { %v }", n.Type, n.Nbody)
return
}
fmt.Fprintf(s, "%v { %v }", n.Type, n.Func.Closure.Nbody)
case OCOMPLIT:
ptrlit := n.Right != nil && n.Right.Implicit && n.Right.Type != nil && n.Right.Type.IsPtr()
if fmtmode == FErr {
if n.Right != nil && n.Right.Type != nil && !n.Implicit {
if ptrlit {
fmt.Fprintf(s, "&%v literal", n.Right.Type.Elem())
return
} else {
fmt.Fprintf(s, "%v literal", n.Right.Type)
return
}
}
fmt.Fprint(s, "composite literal")
return
}
fmt.Fprintf(s, "(%v{ %.v })", n.Right, n.List)
case OPTRLIT:
fmt.Fprintf(s, "&%v", n.Left)
case OSTRUCTLIT, OARRAYLIT, OSLICELIT, OMAPLIT:
if fmtmode == FErr {
fmt.Fprintf(s, "%v literal", n.Type)
return
}
fmt.Fprintf(s, "(%v{ %.v })", n.Type, n.List)
case OKEY:
if n.Left != nil && n.Right != nil {
fmt.Fprintf(s, "%v:%v", n.Left, n.Right)
return
}
if n.Left == nil && n.Right != nil {
fmt.Fprintf(s, ":%v", n.Right)
return
}
if n.Left != nil && n.Right == nil {
fmt.Fprintf(s, "%v:", n.Left)
return
}
fmt.Fprint(s, ":")
case OSTRUCTKEY:
fmt.Fprintf(s, "%v:%v", n.Sym, n.Left)
case OCALLPART:
n.Left.exprfmt(s, nprec)
if n.Right == nil || n.Right.Sym == nil {
fmt.Fprint(s, ".<nil>")
return
}
fmt.Fprintf(s, ".%0S", n.Right.Sym)
case OXDOT, ODOT, ODOTPTR, ODOTINTER, ODOTMETH:
n.Left.exprfmt(s, nprec)
if n.Sym == nil {
fmt.Fprint(s, ".<nil>")
return
}
fmt.Fprintf(s, ".%0S", n.Sym)
case ODOTTYPE, ODOTTYPE2:
n.Left.exprfmt(s, nprec)
if n.Right != nil {
fmt.Fprintf(s, ".(%v)", n.Right)
return
}
fmt.Fprintf(s, ".(%v)", n.Type)
case OINDEX, OINDEXMAP:
n.Left.exprfmt(s, nprec)
fmt.Fprintf(s, "[%v]", n.Right)
case OSLICE, OSLICESTR, OSLICEARR, OSLICE3, OSLICE3ARR:
n.Left.exprfmt(s, nprec)
fmt.Fprint(s, "[")
low, high, max := n.SliceBounds()
if low != nil {
fmt.Fprint(s, low.String())
}
fmt.Fprint(s, ":")
if high != nil {
fmt.Fprint(s, high.String())
}
if n.Op.IsSlice3() {
fmt.Fprint(s, ":")
if max != nil {
fmt.Fprint(s, max.String())
}
}
fmt.Fprint(s, "]")
case OCOPY, OCOMPLEX:
fmt.Fprintf(s, "%#v(%v, %v)", n.Op, n.Left, n.Right)
case OCONV,
OCONVIFACE,
OCONVNOP,
OARRAYBYTESTR,
OARRAYRUNESTR,
OSTRARRAYBYTE,
OSTRARRAYRUNE,
ORUNESTR:
if n.Type == nil || n.Type.Sym == nil {
fmt.Fprintf(s, "(%v)(%v)", n.Type, n.Left)
return
}
if n.Left != nil {
fmt.Fprintf(s, "%v(%v)", n.Type, n.Left)
return
}
fmt.Fprintf(s, "%v(%.v)", n.Type, n.List)
case OREAL,
OIMAG,
OAPPEND,
OCAP,
OCLOSE,
ODELETE,
OLEN,
OMAKE,
ONEW,
OPANIC,
ORECOVER,
OALIGNOF,
OOFFSETOF,
OSIZEOF,
OPRINT,
OPRINTN:
if n.Left != nil {
fmt.Fprintf(s, "%#v(%v)", n.Op, n.Left)
return
}
if n.Isddd {
fmt.Fprintf(s, "%#v(%.v...)", n.Op, n.List)
return
}
fmt.Fprintf(s, "%#v(%.v)", n.Op, n.List)
case OCALL, OCALLFUNC, OCALLINTER, OCALLMETH, OGETG:
n.Left.exprfmt(s, nprec)
if n.Isddd {
fmt.Fprintf(s, "(%.v...)", n.List)
return
}
fmt.Fprintf(s, "(%.v)", n.List)
case OMAKEMAP, OMAKECHAN, OMAKESLICE:
if n.List.Len() != 0 { // pre-typecheck
fmt.Fprintf(s, "make(%v, %.v)", n.Type, n.List)
return
}
if n.Right != nil {
fmt.Fprintf(s, "make(%v, %v, %v)", n.Type, n.Left, n.Right)
return
}
if n.Left != nil && (n.Op == OMAKESLICE || !n.Left.Type.IsUntyped()) {
fmt.Fprintf(s, "make(%v, %v)", n.Type, n.Left)
return
}
fmt.Fprintf(s, "make(%v)", n.Type)
// Unary
case OPLUS,
OMINUS,
OADDR,
OCOM,
OIND,
ONOT,
ORECV:
fmt.Fprint(s, n.Op.GoString()) // %#v
if n.Left.Op == n.Op {
fmt.Fprint(s, " ")
}
n.Left.exprfmt(s, nprec+1)
// Binary
case OADD,
OAND,
OANDAND,
OANDNOT,
ODIV,
OEQ,
OGE,
OGT,
OLE,
OLT,
OLSH,
OMOD,
OMUL,
ONE,
OOR,
OOROR,
ORSH,
OSEND,
OSUB,
OXOR:
n.Left.exprfmt(s, nprec)
fmt.Fprintf(s, " %#v ", n.Op)
n.Right.exprfmt(s, nprec+1)
case OADDSTR:
i := 0
for _, n1 := range n.List.Slice() {
if i != 0 {
fmt.Fprint(s, " + ")
}
n1.exprfmt(s, nprec)
i++
}
case OCMPSTR, OCMPIFACE:
n.Left.exprfmt(s, nprec)
// TODO(marvin): Fix Node.EType type union.
fmt.Fprintf(s, " %#v ", Op(n.Etype))
n.Right.exprfmt(s, nprec+1)
default:
fmt.Fprintf(s, "<node %v>", n.Op)
}
}
func (n *Node) nodefmt(s fmt.State, flag FmtFlag) {
t := n.Type
// we almost always want the original, except in export mode for literals
// this saves the importer some work, and avoids us having to redo some
// special casing for package unsafe
if n.Op != OLITERAL && n.Orig != nil {
n = n.Orig
}
if flag&FmtLong != 0 && t != nil {
if t.Etype == TNIL {
fmt.Fprint(s, "nil")
} else {
fmt.Fprintf(s, "%v (type %v)", n, t)
}
return
}
// TODO inlining produces expressions with ninits. we can't print these yet.
if opprec[n.Op] < 0 {
n.stmtfmt(s)
return
}
n.exprfmt(s, 0)
}
func (n *Node) nodedump(s fmt.State, flag FmtFlag) {
if n == nil {
return
}
recur := flag&FmtShort == 0
if recur {
indent(s)
if dumpdepth > 10 {
fmt.Fprint(s, "...")
return
}
if n.Ninit.Len() != 0 {
fmt.Fprintf(s, "%v-init%v", n.Op, n.Ninit)
indent(s)
}
}
switch n.Op {
default:
fmt.Fprintf(s, "%v%j", n.Op, n)
case OREGISTER, OINDREG:
fmt.Fprintf(s, "%v-%v%j", n.Op, obj.Rconv(int(n.Reg)), n)
case OLITERAL:
fmt.Fprintf(s, "%v-%v%j", n.Op, n.Val(), n)
case ONAME, ONONAME:
if n.Sym != nil {
fmt.Fprintf(s, "%v-%v%j", n.Op, n.Sym, n)
} else {
fmt.Fprintf(s, "%v%j", n.Op, n)
}
if recur && n.Type == nil && n.Name != nil && n.Name.Param != nil && n.Name.Param.Ntype != nil {
indent(s)
fmt.Fprintf(s, "%v-ntype%v", n.Op, n.Name.Param.Ntype)
}
case OASOP:
fmt.Fprintf(s, "%v-%v%j", n.Op, Op(n.Etype), n)
case OTYPE:
fmt.Fprintf(s, "%v %v%j type=%v", n.Op, n.Sym, n, n.Type)
if recur && n.Type == nil && n.Name.Param.Ntype != nil {
indent(s)
fmt.Fprintf(s, "%v-ntype%v", n.Op, n.Name.Param.Ntype)
}
}
if n.Sym != nil && n.Op != ONAME {
fmt.Fprintf(s, " %v", n.Sym)
}
if n.Type != nil {
fmt.Fprintf(s, " %v", n.Type)
}
if recur {
if n.Left != nil {
fmt.Fprintf(s, "%v", n.Left)
}
if n.Right != nil {
fmt.Fprintf(s, "%v", n.Right)
}
if n.List.Len() != 0 {
indent(s)
fmt.Fprintf(s, "%v-list%v", n.Op, n.List)
}
if n.Rlist.Len() != 0 {
indent(s)
fmt.Fprintf(s, "%v-rlist%v", n.Op, n.Rlist)
}
if n.Nbody.Len() != 0 {
indent(s)
fmt.Fprintf(s, "%v-body%v", n.Op, n.Nbody)
}
}
}
// "%S" suppresses qualifying with package
func (s *Sym) Format(f fmt.State, verb rune) {
switch verb {
case 'v', 'S':
fmt.Fprint(f, s.sconv(fmtFlag(f, verb)))
default:
fmt.Fprintf(f, "%%!%c(*Sym=%p)", verb, s)
}
}
func (s *Sym) String() string {
return s.sconv(0)
}
// See #16897 before changing the implementation of sconv.
func (s *Sym) sconv(flag FmtFlag) string {
if flag&FmtLong != 0 {
panic("linksymfmt")
}
if s == nil {
return "<S>"
}
if s.Name == "_" {
return "_"
}
sf := flag
sm := setfmode(&flag)
str := s.symfmt(flag)
flag = sf
fmtmode = sm
return str
}
func (t *Type) String() string {
return t.tconv(0)
}
func fldconv(f *Field, flag FmtFlag) string {
if f == nil {
return "<T>"
}
sf := flag
sm := setfmode(&flag)
if fmtmode == FTypeId && (sf&FmtUnsigned != 0) {
fmtpkgpfx++
}
if fmtpkgpfx != 0 {
flag |= FmtUnsigned
}
var name string
if flag&FmtShort == 0 {
s := f.Sym
// Take the name from the original, lest we substituted it with ~r%d or ~b%d.
// ~r%d is a (formerly) unnamed result.
if fmtmode == FErr && f.Nname != nil {
if f.Nname.Orig != nil {
s = f.Nname.Orig.Sym
if s != nil && s.Name[0] == '~' {
if s.Name[1] == 'r' { // originally an unnamed result
s = nil
} else if s.Name[1] == 'b' { // originally the blank identifier _
s = lookup("_")
}
}
} else {
s = nil
}
}
if s != nil && f.Embedded == 0 {
if f.Funarg != FunargNone {
name = f.Nname.String()
} else if flag&FmtLong != 0 {
name = fmt.Sprintf("%0S", s)
if !exportname(name) && flag&FmtUnsigned == 0 {
name = s.String() // qualify non-exported names (used on structs, not on funarg)
}
} else {
name = s.String()
}
}
}
var typ string
if f.Isddd {
typ = fmt.Sprintf("...%v", f.Type.Elem())
} else {
typ = fmt.Sprintf("%v", f.Type)
}
str := typ
if name != "" {
str = name + " " + typ
}
if flag&FmtShort == 0 && f.Funarg == FunargNone && f.Note != "" {
str += " " + strconv.Quote(f.Note)
}
if fmtmode == FTypeId && (sf&FmtUnsigned != 0) {
fmtpkgpfx--
}
flag = sf
fmtmode = sm
return str
}
// "%L" print definition, not name
// "%S" omit 'func' and receiver from function types, short type names
// "% v" package name, not prefix (FTypeId mode, sticky)
func (t *Type) Format(s fmt.State, verb rune) {
switch verb {
case 'v', 'S', 'L':
fmt.Fprint(s, t.tconv(fmtFlag(s, verb)))
default:
fmt.Fprintf(s, "%%!%c(*Type=%p)", verb, t)
}
}
// See #16897 before changing the implementation of tconv.
func (t *Type) tconv(flag FmtFlag) string {
if t == nil {
return "<T>"
}
if t.Trecur > 4 {
return "<...>"
}
t.Trecur++
sf := flag
sm := setfmode(&flag)
if fmtmode == FTypeId && (sf&FmtUnsigned != 0) {
fmtpkgpfx++
}
if fmtpkgpfx != 0 {
flag |= FmtUnsigned
}
str := t.typefmt(flag)
if fmtmode == FTypeId && (sf&FmtUnsigned != 0) {
fmtpkgpfx--
}
flag = sf
fmtmode = sm
t.Trecur--
return str
}
func (n *Node) String() string {
return fmt.Sprint(n)
}
// "%L" suffix with "(type %T)" where possible
// "%+S" in debug mode, don't recurse, no multiline output
func (n *Node) Nconv(s fmt.State, flag FmtFlag) {
if n == nil {
fmt.Fprint(s, "<N>")
return
}
sf := flag
sm := setfmode(&flag)
switch fmtmode {
case FErr:
n.nodefmt(s, flag)
case FDbg:
dumpdepth++
n.nodedump(s, flag)
dumpdepth--
default:
Fatalf("unhandled %%N mode: %d", fmtmode)
}
flag = sf
fmtmode = sm
}
func (l Nodes) Format(s fmt.State, verb rune) {
switch verb {
case 'v':
l.hconv(s, fmtFlag(s, verb))
default:
fmt.Fprintf(s, "%%!%c(Nodes)", verb)
}
}
func (n Nodes) String() string {
return fmt.Sprint(n)
}
// Flags: all those of %N plus '.': separate with comma's instead of semicolons.
func (l Nodes) hconv(s fmt.State, flag FmtFlag) {
if l.Len() == 0 && fmtmode == FDbg {
fmt.Fprint(s, "<nil>")
return
}
sf := flag
sm := setfmode(&flag)
sep := "; "
if fmtmode == FDbg {
sep = "\n"
} else if flag&FmtComma != 0 {
sep = ", "
}
for i, n := range l.Slice() {
fmt.Fprint(s, n)
if i+1 < l.Len() {
fmt.Fprint(s, sep)
}
}
flag = sf
fmtmode = sm
}
func dumplist(s string, l Nodes) {
fmt.Printf("%s%+v\n", s, l)
}
func Dump(s string, n *Node) {
fmt.Printf("%s [%p]%+v\n", s, n, n)
}
// TODO(gri) make variable local somehow
var dumpdepth int
// indent prints indentation to s.
func indent(s fmt.State) {
fmt.Fprint(s, "\n")
for i := 0; i < dumpdepth; i++ {
fmt.Fprint(s, ". ")
}
}