mirror of
https://github.com/golang/go.git
synced 2025-10-26 14:24:14 +00:00
When creating the temporary for map functions, if the key contains pointer, we need to create pointer-typed temporary. So if the temporary is live across a function call, the pointer is live. Change-Id: Id6e14ec9def8bc7987f0f8ce8423caf1e3754fcb Reviewed-on: https://go-review.googlesource.com/c/go/+/311379 Trust: Cherry Zhang <cherryyz@google.com> Reviewed-by: Than McIntosh <thanm@google.com>
983 lines
24 KiB
Go
983 lines
24 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package walk
|
|
|
|
import (
|
|
"fmt"
|
|
"go/constant"
|
|
"internal/buildcfg"
|
|
"strings"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/reflectdata"
|
|
"cmd/compile/internal/staticdata"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
)
|
|
|
|
// The result of walkExpr MUST be assigned back to n, e.g.
|
|
// n.Left = walkExpr(n.Left, init)
|
|
func walkExpr(n ir.Node, init *ir.Nodes) ir.Node {
|
|
if n == nil {
|
|
return n
|
|
}
|
|
|
|
if n, ok := n.(ir.InitNode); ok && init == n.PtrInit() {
|
|
// not okay to use n->ninit when walking n,
|
|
// because we might replace n with some other node
|
|
// and would lose the init list.
|
|
base.Fatalf("walkExpr init == &n->ninit")
|
|
}
|
|
|
|
if len(n.Init()) != 0 {
|
|
walkStmtList(n.Init())
|
|
init.Append(ir.TakeInit(n)...)
|
|
}
|
|
|
|
lno := ir.SetPos(n)
|
|
|
|
if base.Flag.LowerW > 1 {
|
|
ir.Dump("before walk expr", n)
|
|
}
|
|
|
|
if n.Typecheck() != 1 {
|
|
base.Fatalf("missed typecheck: %+v", n)
|
|
}
|
|
|
|
if n.Type().IsUntyped() {
|
|
base.Fatalf("expression has untyped type: %+v", n)
|
|
}
|
|
|
|
n = walkExpr1(n, init)
|
|
|
|
// Eagerly compute sizes of all expressions for the back end.
|
|
if typ := n.Type(); typ != nil && typ.Kind() != types.TBLANK && !typ.IsFuncArgStruct() {
|
|
types.CheckSize(typ)
|
|
}
|
|
if n, ok := n.(*ir.Name); ok && n.Heapaddr != nil {
|
|
types.CheckSize(n.Heapaddr.Type())
|
|
}
|
|
if ir.IsConst(n, constant.String) {
|
|
// Emit string symbol now to avoid emitting
|
|
// any concurrently during the backend.
|
|
_ = staticdata.StringSym(n.Pos(), constant.StringVal(n.Val()))
|
|
}
|
|
|
|
if base.Flag.LowerW != 0 && n != nil {
|
|
ir.Dump("after walk expr", n)
|
|
}
|
|
|
|
base.Pos = lno
|
|
return n
|
|
}
|
|
|
|
func walkExpr1(n ir.Node, init *ir.Nodes) ir.Node {
|
|
switch n.Op() {
|
|
default:
|
|
ir.Dump("walk", n)
|
|
base.Fatalf("walkExpr: switch 1 unknown op %+v", n.Op())
|
|
panic("unreachable")
|
|
|
|
case ir.ONONAME, ir.OGETG:
|
|
return n
|
|
|
|
case ir.OTYPE, ir.ONAME, ir.OLITERAL, ir.ONIL, ir.OLINKSYMOFFSET:
|
|
// TODO(mdempsky): Just return n; see discussion on CL 38655.
|
|
// Perhaps refactor to use Node.mayBeShared for these instead.
|
|
// If these return early, make sure to still call
|
|
// StringSym for constant strings.
|
|
return n
|
|
|
|
case ir.OMETHEXPR:
|
|
// TODO(mdempsky): Do this right after type checking.
|
|
n := n.(*ir.SelectorExpr)
|
|
return n.FuncName()
|
|
|
|
case ir.ONOT, ir.ONEG, ir.OPLUS, ir.OBITNOT, ir.OREAL, ir.OIMAG, ir.OSPTR, ir.OITAB, ir.OIDATA:
|
|
n := n.(*ir.UnaryExpr)
|
|
n.X = walkExpr(n.X, init)
|
|
return n
|
|
|
|
case ir.ODOTMETH, ir.ODOTINTER:
|
|
n := n.(*ir.SelectorExpr)
|
|
n.X = walkExpr(n.X, init)
|
|
return n
|
|
|
|
case ir.OADDR:
|
|
n := n.(*ir.AddrExpr)
|
|
n.X = walkExpr(n.X, init)
|
|
return n
|
|
|
|
case ir.ODEREF:
|
|
n := n.(*ir.StarExpr)
|
|
n.X = walkExpr(n.X, init)
|
|
return n
|
|
|
|
case ir.OEFACE, ir.OAND, ir.OANDNOT, ir.OSUB, ir.OMUL, ir.OADD, ir.OOR, ir.OXOR, ir.OLSH, ir.ORSH:
|
|
n := n.(*ir.BinaryExpr)
|
|
n.X = walkExpr(n.X, init)
|
|
n.Y = walkExpr(n.Y, init)
|
|
return n
|
|
|
|
case ir.ODOT, ir.ODOTPTR:
|
|
n := n.(*ir.SelectorExpr)
|
|
return walkDot(n, init)
|
|
|
|
case ir.ODOTTYPE, ir.ODOTTYPE2:
|
|
n := n.(*ir.TypeAssertExpr)
|
|
return walkDotType(n, init)
|
|
|
|
case ir.OLEN, ir.OCAP:
|
|
n := n.(*ir.UnaryExpr)
|
|
return walkLenCap(n, init)
|
|
|
|
case ir.OCOMPLEX:
|
|
n := n.(*ir.BinaryExpr)
|
|
n.X = walkExpr(n.X, init)
|
|
n.Y = walkExpr(n.Y, init)
|
|
return n
|
|
|
|
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
|
|
n := n.(*ir.BinaryExpr)
|
|
return walkCompare(n, init)
|
|
|
|
case ir.OANDAND, ir.OOROR:
|
|
n := n.(*ir.LogicalExpr)
|
|
return walkLogical(n, init)
|
|
|
|
case ir.OPRINT, ir.OPRINTN:
|
|
return walkPrint(n.(*ir.CallExpr), init)
|
|
|
|
case ir.OPANIC:
|
|
n := n.(*ir.UnaryExpr)
|
|
return mkcall("gopanic", nil, init, n.X)
|
|
|
|
case ir.ORECOVER:
|
|
return walkRecover(n.(*ir.CallExpr), init)
|
|
|
|
case ir.OCFUNC:
|
|
return n
|
|
|
|
case ir.OCALLINTER, ir.OCALLFUNC, ir.OCALLMETH:
|
|
n := n.(*ir.CallExpr)
|
|
return walkCall(n, init)
|
|
|
|
case ir.OAS, ir.OASOP:
|
|
return walkAssign(init, n)
|
|
|
|
case ir.OAS2:
|
|
n := n.(*ir.AssignListStmt)
|
|
return walkAssignList(init, n)
|
|
|
|
// a,b,... = fn()
|
|
case ir.OAS2FUNC:
|
|
n := n.(*ir.AssignListStmt)
|
|
return walkAssignFunc(init, n)
|
|
|
|
// x, y = <-c
|
|
// order.stmt made sure x is addressable or blank.
|
|
case ir.OAS2RECV:
|
|
n := n.(*ir.AssignListStmt)
|
|
return walkAssignRecv(init, n)
|
|
|
|
// a,b = m[i]
|
|
case ir.OAS2MAPR:
|
|
n := n.(*ir.AssignListStmt)
|
|
return walkAssignMapRead(init, n)
|
|
|
|
case ir.ODELETE:
|
|
n := n.(*ir.CallExpr)
|
|
return walkDelete(init, n)
|
|
|
|
case ir.OAS2DOTTYPE:
|
|
n := n.(*ir.AssignListStmt)
|
|
return walkAssignDotType(n, init)
|
|
|
|
case ir.OCONVIFACE:
|
|
n := n.(*ir.ConvExpr)
|
|
return walkConvInterface(n, init)
|
|
|
|
case ir.OCONV, ir.OCONVNOP:
|
|
n := n.(*ir.ConvExpr)
|
|
return walkConv(n, init)
|
|
|
|
case ir.ODIV, ir.OMOD:
|
|
n := n.(*ir.BinaryExpr)
|
|
return walkDivMod(n, init)
|
|
|
|
case ir.OINDEX:
|
|
n := n.(*ir.IndexExpr)
|
|
return walkIndex(n, init)
|
|
|
|
case ir.OINDEXMAP:
|
|
n := n.(*ir.IndexExpr)
|
|
return walkIndexMap(n, init)
|
|
|
|
case ir.ORECV:
|
|
base.Fatalf("walkExpr ORECV") // should see inside OAS only
|
|
panic("unreachable")
|
|
|
|
case ir.OSLICEHEADER:
|
|
n := n.(*ir.SliceHeaderExpr)
|
|
return walkSliceHeader(n, init)
|
|
|
|
case ir.OSLICE, ir.OSLICEARR, ir.OSLICESTR, ir.OSLICE3, ir.OSLICE3ARR:
|
|
n := n.(*ir.SliceExpr)
|
|
return walkSlice(n, init)
|
|
|
|
case ir.ONEW:
|
|
n := n.(*ir.UnaryExpr)
|
|
return walkNew(n, init)
|
|
|
|
case ir.OADDSTR:
|
|
return walkAddString(n.(*ir.AddStringExpr), init)
|
|
|
|
case ir.OAPPEND:
|
|
// order should make sure we only see OAS(node, OAPPEND), which we handle above.
|
|
base.Fatalf("append outside assignment")
|
|
panic("unreachable")
|
|
|
|
case ir.OCOPY:
|
|
return walkCopy(n.(*ir.BinaryExpr), init, base.Flag.Cfg.Instrumenting && !base.Flag.CompilingRuntime)
|
|
|
|
case ir.OCLOSE:
|
|
n := n.(*ir.UnaryExpr)
|
|
return walkClose(n, init)
|
|
|
|
case ir.OMAKECHAN:
|
|
n := n.(*ir.MakeExpr)
|
|
return walkMakeChan(n, init)
|
|
|
|
case ir.OMAKEMAP:
|
|
n := n.(*ir.MakeExpr)
|
|
return walkMakeMap(n, init)
|
|
|
|
case ir.OMAKESLICE:
|
|
n := n.(*ir.MakeExpr)
|
|
return walkMakeSlice(n, init)
|
|
|
|
case ir.OMAKESLICECOPY:
|
|
n := n.(*ir.MakeExpr)
|
|
return walkMakeSliceCopy(n, init)
|
|
|
|
case ir.ORUNESTR:
|
|
n := n.(*ir.ConvExpr)
|
|
return walkRuneToString(n, init)
|
|
|
|
case ir.OBYTES2STR, ir.ORUNES2STR:
|
|
n := n.(*ir.ConvExpr)
|
|
return walkBytesRunesToString(n, init)
|
|
|
|
case ir.OBYTES2STRTMP:
|
|
n := n.(*ir.ConvExpr)
|
|
return walkBytesToStringTemp(n, init)
|
|
|
|
case ir.OSTR2BYTES:
|
|
n := n.(*ir.ConvExpr)
|
|
return walkStringToBytes(n, init)
|
|
|
|
case ir.OSTR2BYTESTMP:
|
|
n := n.(*ir.ConvExpr)
|
|
return walkStringToBytesTemp(n, init)
|
|
|
|
case ir.OSTR2RUNES:
|
|
n := n.(*ir.ConvExpr)
|
|
return walkStringToRunes(n, init)
|
|
|
|
case ir.OARRAYLIT, ir.OSLICELIT, ir.OMAPLIT, ir.OSTRUCTLIT, ir.OPTRLIT:
|
|
return walkCompLit(n, init)
|
|
|
|
case ir.OSEND:
|
|
n := n.(*ir.SendStmt)
|
|
return walkSend(n, init)
|
|
|
|
case ir.OCLOSURE:
|
|
return walkClosure(n.(*ir.ClosureExpr), init)
|
|
|
|
case ir.OCALLPART:
|
|
return walkCallPart(n.(*ir.SelectorExpr), init)
|
|
}
|
|
|
|
// No return! Each case must return (or panic),
|
|
// to avoid confusion about what gets returned
|
|
// in the presence of type assertions.
|
|
}
|
|
|
|
// walk the whole tree of the body of an
|
|
// expression or simple statement.
|
|
// the types expressions are calculated.
|
|
// compile-time constants are evaluated.
|
|
// complex side effects like statements are appended to init
|
|
func walkExprList(s []ir.Node, init *ir.Nodes) {
|
|
for i := range s {
|
|
s[i] = walkExpr(s[i], init)
|
|
}
|
|
}
|
|
|
|
func walkExprListCheap(s []ir.Node, init *ir.Nodes) {
|
|
for i, n := range s {
|
|
s[i] = cheapExpr(n, init)
|
|
s[i] = walkExpr(s[i], init)
|
|
}
|
|
}
|
|
|
|
func walkExprListSafe(s []ir.Node, init *ir.Nodes) {
|
|
for i, n := range s {
|
|
s[i] = safeExpr(n, init)
|
|
s[i] = walkExpr(s[i], init)
|
|
}
|
|
}
|
|
|
|
// return side-effect free and cheap n, appending side effects to init.
|
|
// result may not be assignable.
|
|
func cheapExpr(n ir.Node, init *ir.Nodes) ir.Node {
|
|
switch n.Op() {
|
|
case ir.ONAME, ir.OLITERAL, ir.ONIL:
|
|
return n
|
|
}
|
|
|
|
return copyExpr(n, n.Type(), init)
|
|
}
|
|
|
|
// return side effect-free n, appending side effects to init.
|
|
// result is assignable if n is.
|
|
func safeExpr(n ir.Node, init *ir.Nodes) ir.Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
if len(n.Init()) != 0 {
|
|
walkStmtList(n.Init())
|
|
init.Append(ir.TakeInit(n)...)
|
|
}
|
|
|
|
switch n.Op() {
|
|
case ir.ONAME, ir.OLITERAL, ir.ONIL, ir.OLINKSYMOFFSET:
|
|
return n
|
|
|
|
case ir.OLEN, ir.OCAP:
|
|
n := n.(*ir.UnaryExpr)
|
|
l := safeExpr(n.X, init)
|
|
if l == n.X {
|
|
return n
|
|
}
|
|
a := ir.Copy(n).(*ir.UnaryExpr)
|
|
a.X = l
|
|
return walkExpr(typecheck.Expr(a), init)
|
|
|
|
case ir.ODOT, ir.ODOTPTR:
|
|
n := n.(*ir.SelectorExpr)
|
|
l := safeExpr(n.X, init)
|
|
if l == n.X {
|
|
return n
|
|
}
|
|
a := ir.Copy(n).(*ir.SelectorExpr)
|
|
a.X = l
|
|
return walkExpr(typecheck.Expr(a), init)
|
|
|
|
case ir.ODEREF:
|
|
n := n.(*ir.StarExpr)
|
|
l := safeExpr(n.X, init)
|
|
if l == n.X {
|
|
return n
|
|
}
|
|
a := ir.Copy(n).(*ir.StarExpr)
|
|
a.X = l
|
|
return walkExpr(typecheck.Expr(a), init)
|
|
|
|
case ir.OINDEX, ir.OINDEXMAP:
|
|
n := n.(*ir.IndexExpr)
|
|
l := safeExpr(n.X, init)
|
|
r := safeExpr(n.Index, init)
|
|
if l == n.X && r == n.Index {
|
|
return n
|
|
}
|
|
a := ir.Copy(n).(*ir.IndexExpr)
|
|
a.X = l
|
|
a.Index = r
|
|
return walkExpr(typecheck.Expr(a), init)
|
|
|
|
case ir.OSTRUCTLIT, ir.OARRAYLIT, ir.OSLICELIT:
|
|
n := n.(*ir.CompLitExpr)
|
|
if isStaticCompositeLiteral(n) {
|
|
return n
|
|
}
|
|
}
|
|
|
|
// make a copy; must not be used as an lvalue
|
|
if ir.IsAddressable(n) {
|
|
base.Fatalf("missing lvalue case in safeExpr: %v", n)
|
|
}
|
|
return cheapExpr(n, init)
|
|
}
|
|
|
|
func copyExpr(n ir.Node, t *types.Type, init *ir.Nodes) ir.Node {
|
|
l := typecheck.Temp(t)
|
|
appendWalkStmt(init, ir.NewAssignStmt(base.Pos, l, n))
|
|
return l
|
|
}
|
|
|
|
func walkAddString(n *ir.AddStringExpr, init *ir.Nodes) ir.Node {
|
|
c := len(n.List)
|
|
|
|
if c < 2 {
|
|
base.Fatalf("walkAddString count %d too small", c)
|
|
}
|
|
|
|
buf := typecheck.NodNil()
|
|
if n.Esc() == ir.EscNone {
|
|
sz := int64(0)
|
|
for _, n1 := range n.List {
|
|
if n1.Op() == ir.OLITERAL {
|
|
sz += int64(len(ir.StringVal(n1)))
|
|
}
|
|
}
|
|
|
|
// Don't allocate the buffer if the result won't fit.
|
|
if sz < tmpstringbufsize {
|
|
// Create temporary buffer for result string on stack.
|
|
buf = stackBufAddr(tmpstringbufsize, types.Types[types.TUINT8])
|
|
}
|
|
}
|
|
|
|
// build list of string arguments
|
|
args := []ir.Node{buf}
|
|
for _, n2 := range n.List {
|
|
args = append(args, typecheck.Conv(n2, types.Types[types.TSTRING]))
|
|
}
|
|
|
|
var fn string
|
|
if c <= 5 {
|
|
// small numbers of strings use direct runtime helpers.
|
|
// note: order.expr knows this cutoff too.
|
|
fn = fmt.Sprintf("concatstring%d", c)
|
|
} else {
|
|
// large numbers of strings are passed to the runtime as a slice.
|
|
fn = "concatstrings"
|
|
|
|
t := types.NewSlice(types.Types[types.TSTRING])
|
|
// args[1:] to skip buf arg
|
|
slice := ir.NewCompLitExpr(base.Pos, ir.OCOMPLIT, ir.TypeNode(t), args[1:])
|
|
slice.Prealloc = n.Prealloc
|
|
args = []ir.Node{buf, slice}
|
|
slice.SetEsc(ir.EscNone)
|
|
}
|
|
|
|
cat := typecheck.LookupRuntime(fn)
|
|
r := ir.NewCallExpr(base.Pos, ir.OCALL, cat, nil)
|
|
r.Args = args
|
|
r1 := typecheck.Expr(r)
|
|
r1 = walkExpr(r1, init)
|
|
r1.SetType(n.Type())
|
|
|
|
return r1
|
|
}
|
|
|
|
// walkCall walks an OCALLFUNC, OCALLINTER, or OCALLMETH node.
|
|
func walkCall(n *ir.CallExpr, init *ir.Nodes) ir.Node {
|
|
if n.Op() == ir.OCALLINTER || n.Op() == ir.OCALLMETH {
|
|
// We expect both interface call reflect.Type.Method and concrete
|
|
// call reflect.(*rtype).Method.
|
|
usemethod(n)
|
|
}
|
|
if n.Op() == ir.OCALLINTER {
|
|
reflectdata.MarkUsedIfaceMethod(n)
|
|
}
|
|
|
|
if n.Op() == ir.OCALLFUNC && n.X.Op() == ir.OCLOSURE {
|
|
directClosureCall(n)
|
|
}
|
|
|
|
walkCall1(n, init)
|
|
return n
|
|
}
|
|
|
|
func walkCall1(n *ir.CallExpr, init *ir.Nodes) {
|
|
if n.Walked() {
|
|
return // already walked
|
|
}
|
|
n.SetWalked(true)
|
|
|
|
// If this is a method call t.M(...),
|
|
// rewrite into a function call T.M(t, ...).
|
|
// TODO(mdempsky): Do this right after type checking.
|
|
if n.Op() == ir.OCALLMETH {
|
|
withRecv := make([]ir.Node, len(n.Args)+1)
|
|
dot := n.X.(*ir.SelectorExpr)
|
|
withRecv[0] = dot.X
|
|
copy(withRecv[1:], n.Args)
|
|
n.Args = withRecv
|
|
|
|
dot = ir.NewSelectorExpr(dot.Pos(), ir.OXDOT, ir.TypeNode(dot.X.Type()), dot.Selection.Sym)
|
|
|
|
n.SetOp(ir.OCALLFUNC)
|
|
n.X = typecheck.Expr(dot)
|
|
}
|
|
|
|
args := n.Args
|
|
params := n.X.Type().Params()
|
|
|
|
n.X = walkExpr(n.X, init)
|
|
walkExprList(args, init)
|
|
|
|
for i, arg := range args {
|
|
// Validate argument and parameter types match.
|
|
param := params.Field(i)
|
|
if !types.Identical(arg.Type(), param.Type) {
|
|
base.FatalfAt(n.Pos(), "assigning %L to parameter %v (type %v)", arg, param.Sym, param.Type)
|
|
}
|
|
|
|
// For any argument whose evaluation might require a function call,
|
|
// store that argument into a temporary variable,
|
|
// to prevent that calls from clobbering arguments already on the stack.
|
|
if mayCall(arg) {
|
|
// assignment of arg to Temp
|
|
tmp := typecheck.Temp(param.Type)
|
|
init.Append(convas(typecheck.Stmt(ir.NewAssignStmt(base.Pos, tmp, arg)).(*ir.AssignStmt), init))
|
|
// replace arg with temp
|
|
args[i] = tmp
|
|
}
|
|
}
|
|
|
|
n.Args = args
|
|
}
|
|
|
|
// walkDivMod walks an ODIV or OMOD node.
|
|
func walkDivMod(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
|
|
n.X = walkExpr(n.X, init)
|
|
n.Y = walkExpr(n.Y, init)
|
|
|
|
// rewrite complex div into function call.
|
|
et := n.X.Type().Kind()
|
|
|
|
if types.IsComplex[et] && n.Op() == ir.ODIV {
|
|
t := n.Type()
|
|
call := mkcall("complex128div", types.Types[types.TCOMPLEX128], init, typecheck.Conv(n.X, types.Types[types.TCOMPLEX128]), typecheck.Conv(n.Y, types.Types[types.TCOMPLEX128]))
|
|
return typecheck.Conv(call, t)
|
|
}
|
|
|
|
// Nothing to do for float divisions.
|
|
if types.IsFloat[et] {
|
|
return n
|
|
}
|
|
|
|
// rewrite 64-bit div and mod on 32-bit architectures.
|
|
// TODO: Remove this code once we can introduce
|
|
// runtime calls late in SSA processing.
|
|
if types.RegSize < 8 && (et == types.TINT64 || et == types.TUINT64) {
|
|
if n.Y.Op() == ir.OLITERAL {
|
|
// Leave div/mod by constant powers of 2 or small 16-bit constants.
|
|
// The SSA backend will handle those.
|
|
switch et {
|
|
case types.TINT64:
|
|
c := ir.Int64Val(n.Y)
|
|
if c < 0 {
|
|
c = -c
|
|
}
|
|
if c != 0 && c&(c-1) == 0 {
|
|
return n
|
|
}
|
|
case types.TUINT64:
|
|
c := ir.Uint64Val(n.Y)
|
|
if c < 1<<16 {
|
|
return n
|
|
}
|
|
if c != 0 && c&(c-1) == 0 {
|
|
return n
|
|
}
|
|
}
|
|
}
|
|
var fn string
|
|
if et == types.TINT64 {
|
|
fn = "int64"
|
|
} else {
|
|
fn = "uint64"
|
|
}
|
|
if n.Op() == ir.ODIV {
|
|
fn += "div"
|
|
} else {
|
|
fn += "mod"
|
|
}
|
|
return mkcall(fn, n.Type(), init, typecheck.Conv(n.X, types.Types[et]), typecheck.Conv(n.Y, types.Types[et]))
|
|
}
|
|
return n
|
|
}
|
|
|
|
// walkDot walks an ODOT or ODOTPTR node.
|
|
func walkDot(n *ir.SelectorExpr, init *ir.Nodes) ir.Node {
|
|
usefield(n)
|
|
n.X = walkExpr(n.X, init)
|
|
return n
|
|
}
|
|
|
|
// walkDotType walks an ODOTTYPE or ODOTTYPE2 node.
|
|
func walkDotType(n *ir.TypeAssertExpr, init *ir.Nodes) ir.Node {
|
|
n.X = walkExpr(n.X, init)
|
|
// Set up interface type addresses for back end.
|
|
if !n.Type().IsInterface() && !n.X.Type().IsEmptyInterface() {
|
|
n.Itab = reflectdata.ITabAddr(n.Type(), n.X.Type())
|
|
}
|
|
return n
|
|
}
|
|
|
|
// walkIndex walks an OINDEX node.
|
|
func walkIndex(n *ir.IndexExpr, init *ir.Nodes) ir.Node {
|
|
n.X = walkExpr(n.X, init)
|
|
|
|
// save the original node for bounds checking elision.
|
|
// If it was a ODIV/OMOD walk might rewrite it.
|
|
r := n.Index
|
|
|
|
n.Index = walkExpr(n.Index, init)
|
|
|
|
// if range of type cannot exceed static array bound,
|
|
// disable bounds check.
|
|
if n.Bounded() {
|
|
return n
|
|
}
|
|
t := n.X.Type()
|
|
if t != nil && t.IsPtr() {
|
|
t = t.Elem()
|
|
}
|
|
if t.IsArray() {
|
|
n.SetBounded(bounded(r, t.NumElem()))
|
|
if base.Flag.LowerM != 0 && n.Bounded() && !ir.IsConst(n.Index, constant.Int) {
|
|
base.Warn("index bounds check elided")
|
|
}
|
|
if ir.IsSmallIntConst(n.Index) && !n.Bounded() {
|
|
base.Errorf("index out of bounds")
|
|
}
|
|
} else if ir.IsConst(n.X, constant.String) {
|
|
n.SetBounded(bounded(r, int64(len(ir.StringVal(n.X)))))
|
|
if base.Flag.LowerM != 0 && n.Bounded() && !ir.IsConst(n.Index, constant.Int) {
|
|
base.Warn("index bounds check elided")
|
|
}
|
|
if ir.IsSmallIntConst(n.Index) && !n.Bounded() {
|
|
base.Errorf("index out of bounds")
|
|
}
|
|
}
|
|
|
|
if ir.IsConst(n.Index, constant.Int) {
|
|
if v := n.Index.Val(); constant.Sign(v) < 0 || ir.ConstOverflow(v, types.Types[types.TINT]) {
|
|
base.Errorf("index out of bounds")
|
|
}
|
|
}
|
|
return n
|
|
}
|
|
|
|
// mapKeyArg returns an expression for key that is suitable to be passed
|
|
// as the key argument for mapaccess and mapdelete functions.
|
|
// n is is the map indexing or delete Node (to provide Pos).
|
|
// Note: this is not used for mapassign, which does distinguish pointer vs.
|
|
// integer key.
|
|
func mapKeyArg(fast int, n, key ir.Node) ir.Node {
|
|
switch fast {
|
|
case mapslow:
|
|
// standard version takes key by reference.
|
|
// order.expr made sure key is addressable.
|
|
return typecheck.NodAddr(key)
|
|
case mapfast32ptr:
|
|
// mapaccess and mapdelete don't distinguish pointer vs. integer key.
|
|
return ir.NewConvExpr(n.Pos(), ir.OCONVNOP, types.Types[types.TUINT32], key)
|
|
case mapfast64ptr:
|
|
// mapaccess and mapdelete don't distinguish pointer vs. integer key.
|
|
return ir.NewConvExpr(n.Pos(), ir.OCONVNOP, types.Types[types.TUINT64], key)
|
|
default:
|
|
// fast version takes key by value.
|
|
return key
|
|
}
|
|
}
|
|
|
|
// walkIndexMap walks an OINDEXMAP node.
|
|
func walkIndexMap(n *ir.IndexExpr, init *ir.Nodes) ir.Node {
|
|
// Replace m[k] with *map{access1,assign}(maptype, m, &k)
|
|
n.X = walkExpr(n.X, init)
|
|
n.Index = walkExpr(n.Index, init)
|
|
map_ := n.X
|
|
key := n.Index
|
|
t := map_.Type()
|
|
var call *ir.CallExpr
|
|
if n.Assigned {
|
|
// This m[k] expression is on the left-hand side of an assignment.
|
|
fast := mapfast(t)
|
|
if fast == mapslow {
|
|
// standard version takes key by reference.
|
|
// order.expr made sure key is addressable.
|
|
key = typecheck.NodAddr(key)
|
|
}
|
|
call = mkcall1(mapfn(mapassign[fast], t, false), nil, init, reflectdata.TypePtr(t), map_, key)
|
|
} else {
|
|
// m[k] is not the target of an assignment.
|
|
fast := mapfast(t)
|
|
key = mapKeyArg(fast, n, key)
|
|
if w := t.Elem().Width; w <= zeroValSize {
|
|
call = mkcall1(mapfn(mapaccess1[fast], t, false), types.NewPtr(t.Elem()), init, reflectdata.TypePtr(t), map_, key)
|
|
} else {
|
|
z := reflectdata.ZeroAddr(w)
|
|
call = mkcall1(mapfn("mapaccess1_fat", t, true), types.NewPtr(t.Elem()), init, reflectdata.TypePtr(t), map_, key, z)
|
|
}
|
|
}
|
|
call.SetType(types.NewPtr(t.Elem()))
|
|
call.MarkNonNil() // mapaccess1* and mapassign always return non-nil pointers.
|
|
star := ir.NewStarExpr(base.Pos, call)
|
|
star.SetType(t.Elem())
|
|
star.SetTypecheck(1)
|
|
return star
|
|
}
|
|
|
|
// walkLogical walks an OANDAND or OOROR node.
|
|
func walkLogical(n *ir.LogicalExpr, init *ir.Nodes) ir.Node {
|
|
n.X = walkExpr(n.X, init)
|
|
|
|
// cannot put side effects from n.Right on init,
|
|
// because they cannot run before n.Left is checked.
|
|
// save elsewhere and store on the eventual n.Right.
|
|
var ll ir.Nodes
|
|
|
|
n.Y = walkExpr(n.Y, &ll)
|
|
n.Y = ir.InitExpr(ll, n.Y)
|
|
return n
|
|
}
|
|
|
|
// walkSend walks an OSEND node.
|
|
func walkSend(n *ir.SendStmt, init *ir.Nodes) ir.Node {
|
|
n1 := n.Value
|
|
n1 = typecheck.AssignConv(n1, n.Chan.Type().Elem(), "chan send")
|
|
n1 = walkExpr(n1, init)
|
|
n1 = typecheck.NodAddr(n1)
|
|
return mkcall1(chanfn("chansend1", 2, n.Chan.Type()), nil, init, n.Chan, n1)
|
|
}
|
|
|
|
// walkSlice walks an OSLICE, OSLICEARR, OSLICESTR, OSLICE3, or OSLICE3ARR node.
|
|
func walkSlice(n *ir.SliceExpr, init *ir.Nodes) ir.Node {
|
|
|
|
checkSlice := ir.ShouldCheckPtr(ir.CurFunc, 1) && n.Op() == ir.OSLICE3ARR && n.X.Op() == ir.OCONVNOP && n.X.(*ir.ConvExpr).X.Type().IsUnsafePtr()
|
|
if checkSlice {
|
|
conv := n.X.(*ir.ConvExpr)
|
|
conv.X = walkExpr(conv.X, init)
|
|
} else {
|
|
n.X = walkExpr(n.X, init)
|
|
}
|
|
|
|
n.Low = walkExpr(n.Low, init)
|
|
if n.Low != nil && ir.IsZero(n.Low) {
|
|
// Reduce x[0:j] to x[:j] and x[0:j:k] to x[:j:k].
|
|
n.Low = nil
|
|
}
|
|
n.High = walkExpr(n.High, init)
|
|
n.Max = walkExpr(n.Max, init)
|
|
if checkSlice {
|
|
n.X = walkCheckPtrAlignment(n.X.(*ir.ConvExpr), init, n.Max)
|
|
}
|
|
|
|
if n.Op().IsSlice3() {
|
|
if n.Max != nil && n.Max.Op() == ir.OCAP && ir.SameSafeExpr(n.X, n.Max.(*ir.UnaryExpr).X) {
|
|
// Reduce x[i:j:cap(x)] to x[i:j].
|
|
if n.Op() == ir.OSLICE3 {
|
|
n.SetOp(ir.OSLICE)
|
|
} else {
|
|
n.SetOp(ir.OSLICEARR)
|
|
}
|
|
return reduceSlice(n)
|
|
}
|
|
return n
|
|
}
|
|
return reduceSlice(n)
|
|
}
|
|
|
|
// walkSliceHeader walks an OSLICEHEADER node.
|
|
func walkSliceHeader(n *ir.SliceHeaderExpr, init *ir.Nodes) ir.Node {
|
|
n.Ptr = walkExpr(n.Ptr, init)
|
|
n.Len = walkExpr(n.Len, init)
|
|
n.Cap = walkExpr(n.Cap, init)
|
|
return n
|
|
}
|
|
|
|
// TODO(josharian): combine this with its caller and simplify
|
|
func reduceSlice(n *ir.SliceExpr) ir.Node {
|
|
if n.High != nil && n.High.Op() == ir.OLEN && ir.SameSafeExpr(n.X, n.High.(*ir.UnaryExpr).X) {
|
|
// Reduce x[i:len(x)] to x[i:].
|
|
n.High = nil
|
|
}
|
|
if (n.Op() == ir.OSLICE || n.Op() == ir.OSLICESTR) && n.Low == nil && n.High == nil {
|
|
// Reduce x[:] to x.
|
|
if base.Debug.Slice > 0 {
|
|
base.Warn("slice: omit slice operation")
|
|
}
|
|
return n.X
|
|
}
|
|
return n
|
|
}
|
|
|
|
// return 1 if integer n must be in range [0, max), 0 otherwise
|
|
func bounded(n ir.Node, max int64) bool {
|
|
if n.Type() == nil || !n.Type().IsInteger() {
|
|
return false
|
|
}
|
|
|
|
sign := n.Type().IsSigned()
|
|
bits := int32(8 * n.Type().Width)
|
|
|
|
if ir.IsSmallIntConst(n) {
|
|
v := ir.Int64Val(n)
|
|
return 0 <= v && v < max
|
|
}
|
|
|
|
switch n.Op() {
|
|
case ir.OAND, ir.OANDNOT:
|
|
n := n.(*ir.BinaryExpr)
|
|
v := int64(-1)
|
|
switch {
|
|
case ir.IsSmallIntConst(n.X):
|
|
v = ir.Int64Val(n.X)
|
|
case ir.IsSmallIntConst(n.Y):
|
|
v = ir.Int64Val(n.Y)
|
|
if n.Op() == ir.OANDNOT {
|
|
v = ^v
|
|
if !sign {
|
|
v &= 1<<uint(bits) - 1
|
|
}
|
|
}
|
|
}
|
|
if 0 <= v && v < max {
|
|
return true
|
|
}
|
|
|
|
case ir.OMOD:
|
|
n := n.(*ir.BinaryExpr)
|
|
if !sign && ir.IsSmallIntConst(n.Y) {
|
|
v := ir.Int64Val(n.Y)
|
|
if 0 <= v && v <= max {
|
|
return true
|
|
}
|
|
}
|
|
|
|
case ir.ODIV:
|
|
n := n.(*ir.BinaryExpr)
|
|
if !sign && ir.IsSmallIntConst(n.Y) {
|
|
v := ir.Int64Val(n.Y)
|
|
for bits > 0 && v >= 2 {
|
|
bits--
|
|
v >>= 1
|
|
}
|
|
}
|
|
|
|
case ir.ORSH:
|
|
n := n.(*ir.BinaryExpr)
|
|
if !sign && ir.IsSmallIntConst(n.Y) {
|
|
v := ir.Int64Val(n.Y)
|
|
if v > int64(bits) {
|
|
return true
|
|
}
|
|
bits -= int32(v)
|
|
}
|
|
}
|
|
|
|
if !sign && bits <= 62 && 1<<uint(bits) <= max {
|
|
return true
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// usemethod checks interface method calls for uses of reflect.Type.Method.
|
|
func usemethod(n *ir.CallExpr) {
|
|
t := n.X.Type()
|
|
|
|
// Looking for either of:
|
|
// Method(int) reflect.Method
|
|
// MethodByName(string) (reflect.Method, bool)
|
|
//
|
|
// TODO(crawshaw): improve precision of match by working out
|
|
// how to check the method name.
|
|
if n := t.NumParams(); n != 1 {
|
|
return
|
|
}
|
|
if n := t.NumResults(); n != 1 && n != 2 {
|
|
return
|
|
}
|
|
p0 := t.Params().Field(0)
|
|
res0 := t.Results().Field(0)
|
|
var res1 *types.Field
|
|
if t.NumResults() == 2 {
|
|
res1 = t.Results().Field(1)
|
|
}
|
|
|
|
if res1 == nil {
|
|
if p0.Type.Kind() != types.TINT {
|
|
return
|
|
}
|
|
} else {
|
|
if !p0.Type.IsString() {
|
|
return
|
|
}
|
|
if !res1.Type.IsBoolean() {
|
|
return
|
|
}
|
|
}
|
|
|
|
// Don't mark reflect.(*rtype).Method, etc. themselves in the reflect package.
|
|
// Those functions may be alive via the itab, which should not cause all methods
|
|
// alive. We only want to mark their callers.
|
|
if base.Ctxt.Pkgpath == "reflect" {
|
|
switch ir.CurFunc.Nname.Sym().Name { // TODO: is there a better way than hardcoding the names?
|
|
case "(*rtype).Method", "(*rtype).MethodByName", "(*interfaceType).Method", "(*interfaceType).MethodByName":
|
|
return
|
|
}
|
|
}
|
|
|
|
// Note: Don't rely on res0.Type.String() since its formatting depends on multiple factors
|
|
// (including global variables such as numImports - was issue #19028).
|
|
// Also need to check for reflect package itself (see Issue #38515).
|
|
if s := res0.Type.Sym(); s != nil && s.Name == "Method" && types.IsReflectPkg(s.Pkg) {
|
|
ir.CurFunc.SetReflectMethod(true)
|
|
// The LSym is initialized at this point. We need to set the attribute on the LSym.
|
|
ir.CurFunc.LSym.Set(obj.AttrReflectMethod, true)
|
|
}
|
|
}
|
|
|
|
func usefield(n *ir.SelectorExpr) {
|
|
if !buildcfg.Experiment.FieldTrack {
|
|
return
|
|
}
|
|
|
|
switch n.Op() {
|
|
default:
|
|
base.Fatalf("usefield %v", n.Op())
|
|
|
|
case ir.ODOT, ir.ODOTPTR:
|
|
break
|
|
}
|
|
|
|
field := n.Selection
|
|
if field == nil {
|
|
base.Fatalf("usefield %v %v without paramfld", n.X.Type(), n.Sel)
|
|
}
|
|
if field.Sym != n.Sel {
|
|
base.Fatalf("field inconsistency: %v != %v", field.Sym, n.Sel)
|
|
}
|
|
if !strings.Contains(field.Note, "go:\"track\"") {
|
|
return
|
|
}
|
|
|
|
outer := n.X.Type()
|
|
if outer.IsPtr() {
|
|
outer = outer.Elem()
|
|
}
|
|
if outer.Sym() == nil {
|
|
base.Errorf("tracked field must be in named struct type")
|
|
}
|
|
if !types.IsExported(field.Sym.Name) {
|
|
base.Errorf("tracked field must be exported (upper case)")
|
|
}
|
|
|
|
sym := reflectdata.TrackSym(outer, field)
|
|
if ir.CurFunc.FieldTrack == nil {
|
|
ir.CurFunc.FieldTrack = make(map[*obj.LSym]struct{})
|
|
}
|
|
ir.CurFunc.FieldTrack[sym] = struct{}{}
|
|
}
|