go/src/cmd/compile/internal/ssa/prove.go
Keith Randall 4fa050024f cmd/compile: enable constant-time CFG editing
Provide indexes along with block pointers for Preds
and Succs arrays.  This allows us to splice edges in
and out of those arrays in constant time.

Fixes worst-case O(n^2) behavior in deadcode and fuse.

benchmark                     old ns/op      new ns/op     delta
BenchmarkFuse1-8              2065           2057          -0.39%
BenchmarkFuse10-8             9408           9073          -3.56%
BenchmarkFuse100-8            105238         76277         -27.52%
BenchmarkFuse1000-8           3982562        1026750       -74.22%
BenchmarkFuse10000-8          301220329      12824005      -95.74%
BenchmarkDeadCode1-8          1588           1566          -1.39%
BenchmarkDeadCode10-8         4333           4250          -1.92%
BenchmarkDeadCode100-8        32031          32574         +1.70%
BenchmarkDeadCode1000-8       590407         468275        -20.69%
BenchmarkDeadCode10000-8      17822890       5000818       -71.94%
BenchmarkDeadCode100000-8     1388706640     78021127      -94.38%
BenchmarkDeadCode200000-8     5372518479     168598762     -96.86%

Change-Id: Iccabdbb9343fd1c921ba07bbf673330a1c36ee17
Reviewed-on: https://go-review.googlesource.com/22589
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-05-05 15:58:59 +00:00

644 lines
15 KiB
Go

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import "math"
type branch int
const (
unknown = iota
positive
negative
)
// relation represents the set of possible relations between
// pairs of variables (v, w). Without a priori knowledge the
// mask is lt | eq | gt meaning v can be less than, equal to or
// greater than w. When the execution path branches on the condition
// `v op w` the set of relations is updated to exclude any
// relation not possible due to `v op w` being true (or false).
//
// E.g.
//
// r := relation(...)
//
// if v < w {
// newR := r & lt
// }
// if v >= w {
// newR := r & (eq|gt)
// }
// if v != w {
// newR := r & (lt|gt)
// }
type relation uint
const (
lt relation = 1 << iota
eq
gt
)
// domain represents the domain of a variable pair in which a set
// of relations is known. For example, relations learned for unsigned
// pairs cannot be transferred to signed pairs because the same bit
// representation can mean something else.
type domain uint
const (
signed domain = 1 << iota
unsigned
pointer
boolean
)
type pair struct {
v, w *Value // a pair of values, ordered by ID.
// v can be nil, to mean the zero value.
// for booleans the zero value (v == nil) is false.
d domain
}
// fact is a pair plus a relation for that pair.
type fact struct {
p pair
r relation
}
// a limit records known upper and lower bounds for a value.
type limit struct {
min, max int64 // min <= value <= max, signed
umin, umax uint64 // umin <= value <= umax, unsigned
}
var noLimit = limit{math.MinInt64, math.MaxInt64, 0, math.MaxUint64}
// a limitFact is a limit known for a particular value.
type limitFact struct {
vid ID
limit limit
}
// factsTable keeps track of relations between pairs of values.
type factsTable struct {
facts map[pair]relation // current known set of relation
stack []fact // previous sets of relations
// known lower and upper bounds on individual values.
limits map[ID]limit
limitStack []limitFact // previous entries
}
// checkpointFact is an invalid value used for checkpointing
// and restoring factsTable.
var checkpointFact = fact{}
var checkpointBound = limitFact{}
func newFactsTable() *factsTable {
ft := &factsTable{}
ft.facts = make(map[pair]relation)
ft.stack = make([]fact, 4)
ft.limits = make(map[ID]limit)
ft.limitStack = make([]limitFact, 4)
return ft
}
// get returns the known possible relations between v and w.
// If v and w are not in the map it returns lt|eq|gt, i.e. any order.
func (ft *factsTable) get(v, w *Value, d domain) relation {
if v.isGenericIntConst() || w.isGenericIntConst() {
reversed := false
if v.isGenericIntConst() {
v, w = w, v
reversed = true
}
r := lt | eq | gt
lim, ok := ft.limits[v.ID]
if !ok {
return r
}
c := w.AuxInt
switch d {
case signed:
switch {
case c < lim.min:
r = gt
case c > lim.max:
r = lt
case c == lim.min && c == lim.max:
r = eq
case c == lim.min:
r = gt | eq
case c == lim.max:
r = lt | eq
}
case unsigned:
// TODO: also use signed data if lim.min >= 0?
var uc uint64
switch w.Op {
case OpConst64:
uc = uint64(c)
case OpConst32:
uc = uint64(uint32(c))
case OpConst16:
uc = uint64(uint16(c))
case OpConst8:
uc = uint64(uint8(c))
}
switch {
case uc < lim.umin:
r = gt
case uc > lim.umax:
r = lt
case uc == lim.umin && uc == lim.umax:
r = eq
case uc == lim.umin:
r = gt | eq
case uc == lim.umax:
r = lt | eq
}
}
if reversed {
return reverseBits[r]
}
return r
}
reversed := false
if lessByID(w, v) {
v, w = w, v
reversed = !reversed
}
p := pair{v, w, d}
r, ok := ft.facts[p]
if !ok {
if p.v == p.w {
r = eq
} else {
r = lt | eq | gt
}
}
if reversed {
return reverseBits[r]
}
return r
}
// update updates the set of relations between v and w in domain d
// restricting it to r.
func (ft *factsTable) update(v, w *Value, d domain, r relation) {
if lessByID(w, v) {
v, w = w, v
r = reverseBits[r]
}
p := pair{v, w, d}
oldR := ft.get(v, w, d)
ft.stack = append(ft.stack, fact{p, oldR})
ft.facts[p] = oldR & r
// Extract bounds when comparing against constants
if v.isGenericIntConst() {
v, w = w, v
r = reverseBits[r]
}
if v != nil && w.isGenericIntConst() {
c := w.AuxInt
// Note: all the +1/-1 below could overflow/underflow. Either will
// still generate correct results, it will just lead to imprecision.
// In fact if there is overflow/underflow, the corresponding
// code is unreachable because the known range is outside the range
// of the value's type.
old, ok := ft.limits[v.ID]
if !ok {
old = noLimit
}
lim := old
// Update lim with the new information we know.
switch d {
case signed:
switch r {
case lt:
if c-1 < lim.max {
lim.max = c - 1
}
case lt | eq:
if c < lim.max {
lim.max = c
}
case gt | eq:
if c > lim.min {
lim.min = c
}
case gt:
if c+1 > lim.min {
lim.min = c + 1
}
case lt | gt:
if c == lim.min {
lim.min++
}
if c == lim.max {
lim.max--
}
case eq:
lim.min = c
lim.max = c
}
case unsigned:
var uc uint64
switch w.Op {
case OpConst64:
uc = uint64(c)
case OpConst32:
uc = uint64(uint32(c))
case OpConst16:
uc = uint64(uint16(c))
case OpConst8:
uc = uint64(uint8(c))
}
switch r {
case lt:
if uc-1 < lim.umax {
lim.umax = uc - 1
}
case lt | eq:
if uc < lim.umax {
lim.umax = uc
}
case gt | eq:
if uc > lim.umin {
lim.umin = uc
}
case gt:
if uc+1 > lim.umin {
lim.umin = uc + 1
}
case lt | gt:
if uc == lim.umin {
lim.umin++
}
if uc == lim.umax {
lim.umax--
}
case eq:
lim.umin = uc
lim.umax = uc
}
}
ft.limitStack = append(ft.limitStack, limitFact{v.ID, old})
ft.limits[v.ID] = lim
}
}
// isNonNegative returns true if v is known to be non-negative.
func (ft *factsTable) isNonNegative(v *Value) bool {
if isNonNegative(v) {
return true
}
l, has := ft.limits[v.ID]
return has && (l.min >= 0 || l.umax <= math.MaxInt64)
}
// checkpoint saves the current state of known relations.
// Called when descending on a branch.
func (ft *factsTable) checkpoint() {
ft.stack = append(ft.stack, checkpointFact)
ft.limitStack = append(ft.limitStack, checkpointBound)
}
// restore restores known relation to the state just
// before the previous checkpoint.
// Called when backing up on a branch.
func (ft *factsTable) restore() {
for {
old := ft.stack[len(ft.stack)-1]
ft.stack = ft.stack[:len(ft.stack)-1]
if old == checkpointFact {
break
}
if old.r == lt|eq|gt {
delete(ft.facts, old.p)
} else {
ft.facts[old.p] = old.r
}
}
for {
old := ft.limitStack[len(ft.limitStack)-1]
ft.limitStack = ft.limitStack[:len(ft.limitStack)-1]
if old.vid == 0 { // checkpointBound
break
}
if old.limit == noLimit {
delete(ft.limits, old.vid)
} else {
ft.limits[old.vid] = old.limit
}
}
}
func lessByID(v, w *Value) bool {
if v == nil && w == nil {
// Should not happen, but just in case.
return false
}
if v == nil {
return true
}
return w != nil && v.ID < w.ID
}
var (
reverseBits = [...]relation{0, 4, 2, 6, 1, 5, 3, 7}
// maps what we learn when the positive branch is taken.
// For example:
// OpLess8: {signed, lt},
// v1 = (OpLess8 v2 v3).
// If v1 branch is taken than we learn that the rangeMaks
// can be at most lt.
domainRelationTable = map[Op]struct {
d domain
r relation
}{
OpEq8: {signed | unsigned, eq},
OpEq16: {signed | unsigned, eq},
OpEq32: {signed | unsigned, eq},
OpEq64: {signed | unsigned, eq},
OpEqPtr: {pointer, eq},
OpNeq8: {signed | unsigned, lt | gt},
OpNeq16: {signed | unsigned, lt | gt},
OpNeq32: {signed | unsigned, lt | gt},
OpNeq64: {signed | unsigned, lt | gt},
OpNeqPtr: {pointer, lt | gt},
OpLess8: {signed, lt},
OpLess8U: {unsigned, lt},
OpLess16: {signed, lt},
OpLess16U: {unsigned, lt},
OpLess32: {signed, lt},
OpLess32U: {unsigned, lt},
OpLess64: {signed, lt},
OpLess64U: {unsigned, lt},
OpLeq8: {signed, lt | eq},
OpLeq8U: {unsigned, lt | eq},
OpLeq16: {signed, lt | eq},
OpLeq16U: {unsigned, lt | eq},
OpLeq32: {signed, lt | eq},
OpLeq32U: {unsigned, lt | eq},
OpLeq64: {signed, lt | eq},
OpLeq64U: {unsigned, lt | eq},
OpGeq8: {signed, eq | gt},
OpGeq8U: {unsigned, eq | gt},
OpGeq16: {signed, eq | gt},
OpGeq16U: {unsigned, eq | gt},
OpGeq32: {signed, eq | gt},
OpGeq32U: {unsigned, eq | gt},
OpGeq64: {signed, eq | gt},
OpGeq64U: {unsigned, eq | gt},
OpGreater8: {signed, gt},
OpGreater8U: {unsigned, gt},
OpGreater16: {signed, gt},
OpGreater16U: {unsigned, gt},
OpGreater32: {signed, gt},
OpGreater32U: {unsigned, gt},
OpGreater64: {signed, gt},
OpGreater64U: {unsigned, gt},
// TODO: OpIsInBounds actually test 0 <= a < b. This means
// that the positive branch learns signed/LT and unsigned/LT
// but the negative branch only learns unsigned/GE.
OpIsInBounds: {unsigned, lt},
OpIsSliceInBounds: {unsigned, lt | eq},
}
)
// prove removes redundant BlockIf controls that can be inferred in a straight line.
//
// By far, the most common redundant pair are generated by bounds checking.
// For example for the code:
//
// a[i] = 4
// foo(a[i])
//
// The compiler will generate the following code:
//
// if i >= len(a) {
// panic("not in bounds")
// }
// a[i] = 4
// if i >= len(a) {
// panic("not in bounds")
// }
// foo(a[i])
//
// The second comparison i >= len(a) is clearly redundant because if the
// else branch of the first comparison is executed, we already know that i < len(a).
// The code for the second panic can be removed.
func prove(f *Func) {
// current node state
type walkState int
const (
descend walkState = iota
simplify
)
// work maintains the DFS stack.
type bp struct {
block *Block // current handled block
state walkState // what's to do
}
work := make([]bp, 0, 256)
work = append(work, bp{
block: f.Entry,
state: descend,
})
ft := newFactsTable()
// DFS on the dominator tree.
for len(work) > 0 {
node := work[len(work)-1]
work = work[:len(work)-1]
parent := f.idom[node.block.ID]
branch := getBranch(f.sdom, parent, node.block)
switch node.state {
case descend:
if branch != unknown {
ft.checkpoint()
c := parent.Control
updateRestrictions(ft, boolean, nil, c, lt|gt, branch)
if tr, has := domainRelationTable[parent.Control.Op]; has {
// When we branched from parent we learned a new set of
// restrictions. Update the factsTable accordingly.
updateRestrictions(ft, tr.d, c.Args[0], c.Args[1], tr.r, branch)
}
}
work = append(work, bp{
block: node.block,
state: simplify,
})
for s := f.sdom.Child(node.block); s != nil; s = f.sdom.Sibling(s) {
work = append(work, bp{
block: s,
state: descend,
})
}
case simplify:
succ := simplifyBlock(ft, node.block)
if succ != unknown {
b := node.block
b.Kind = BlockFirst
b.SetControl(nil)
if succ == negative {
b.swapSuccessors()
}
}
if branch != unknown {
ft.restore()
}
}
}
}
// getBranch returns the range restrictions added by p
// when reaching b. p is the immediate dominator of b.
func getBranch(sdom sparseTree, p *Block, b *Block) branch {
if p == nil || p.Kind != BlockIf {
return unknown
}
// If p and p.Succs[0] are dominators it means that every path
// from entry to b passes through p and p.Succs[0]. We care that
// no path from entry to b passes through p.Succs[1]. If p.Succs[0]
// has one predecessor then (apart from the degenerate case),
// there is no path from entry that can reach b through p.Succs[1].
// TODO: how about p->yes->b->yes, i.e. a loop in yes.
if sdom.isAncestorEq(p.Succs[0].b, b) && len(p.Succs[0].b.Preds) == 1 {
return positive
}
if sdom.isAncestorEq(p.Succs[1].b, b) && len(p.Succs[1].b.Preds) == 1 {
return negative
}
return unknown
}
// updateRestrictions updates restrictions from the immediate
// dominating block (p) using r. r is adjusted according to the branch taken.
func updateRestrictions(ft *factsTable, t domain, v, w *Value, r relation, branch branch) {
if t == 0 || branch == unknown {
// Trivial case: nothing to do, or branch unknown.
// Shoult not happen, but just in case.
return
}
if branch == negative {
// Negative branch taken, complement the relations.
r = (lt | eq | gt) ^ r
}
for i := domain(1); i <= t; i <<= 1 {
if t&i != 0 {
ft.update(v, w, i, r)
}
}
}
// simplifyBlock simplifies block known the restrictions in ft.
// Returns which branch must always be taken.
func simplifyBlock(ft *factsTable, b *Block) branch {
if b.Kind != BlockIf {
return unknown
}
// First, checks if the condition itself is redundant.
m := ft.get(nil, b.Control, boolean)
if m == lt|gt {
if b.Func.pass.debug > 0 {
b.Func.Config.Warnl(b.Line, "Proved boolean %s", b.Control.Op)
}
return positive
}
if m == eq {
if b.Func.pass.debug > 0 {
b.Func.Config.Warnl(b.Line, "Disproved boolean %s", b.Control.Op)
}
return negative
}
// Next look check equalities.
c := b.Control
tr, has := domainRelationTable[c.Op]
if !has {
return unknown
}
a0, a1 := c.Args[0], c.Args[1]
for d := domain(1); d <= tr.d; d <<= 1 {
if d&tr.d == 0 {
continue
}
// tr.r represents in which case the positive branch is taken.
// m represents which cases are possible because of previous relations.
// If the set of possible relations m is included in the set of relations
// need to take the positive branch (or negative) then that branch will
// always be taken.
// For shortcut, if m == 0 then this block is dead code.
m := ft.get(a0, a1, d)
if m != 0 && tr.r&m == m {
if b.Func.pass.debug > 0 {
b.Func.Config.Warnl(b.Line, "Proved %s", c.Op)
}
return positive
}
if m != 0 && ((lt|eq|gt)^tr.r)&m == m {
if b.Func.pass.debug > 0 {
b.Func.Config.Warnl(b.Line, "Disproved %s", c.Op)
}
return negative
}
}
// HACK: If the first argument of IsInBounds or IsSliceInBounds
// is a constant and we already know that constant is smaller (or equal)
// to the upper bound than this is proven. Most useful in cases such as:
// if len(a) <= 1 { return }
// do something with a[1]
if (c.Op == OpIsInBounds || c.Op == OpIsSliceInBounds) && ft.isNonNegative(c.Args[0]) {
m := ft.get(a0, a1, signed)
if m != 0 && tr.r&m == m {
if b.Func.pass.debug > 0 {
b.Func.Config.Warnl(b.Line, "Proved non-negative bounds %s", c.Op)
}
return positive
}
}
return unknown
}
// isNonNegative returns true is v is known to be greater or equal to zero.
func isNonNegative(v *Value) bool {
switch v.Op {
case OpConst64:
return v.AuxInt >= 0
case OpStringLen, OpSliceLen, OpSliceCap,
OpZeroExt8to64, OpZeroExt16to64, OpZeroExt32to64:
return true
case OpRsh64x64:
return isNonNegative(v.Args[0])
}
return false
}