go/src/cmd/compile/internal/dwarfgen/dwarf.go
Matthew Dempsky f97983249a [dev.regabi] cmd/compile: move more PAUTOHEAP to SSA construction
This CL moves almost all PAUTOHEAP handling code to SSA construction.
Instead of changing Names to PAUTOHEAP, escape analysis now only sets
n.Esc() to ir.EscHeap, and SSA handles creating the "&x"
pseudo-variables and associating them via Heapaddr.

This CL also gets rid of n.Stackcopy, which was used to distinguish
the heap copy of a parameter used within a function from the stack
copy used in the function calling convention. In practice, this is
always obvious from context: liveness and function prologue/epilogue
want to know about the stack copies, and everywhere else wants the
heap copy.

Hopefully moving all parameter/result handling into SSA helps with
making the register ABI stuff easier.

Also, the only remaining uses of PAUTOHEAP are now for closure
variables, so I intend to rename it to PCLOSUREVAR or get rid of those
altogether too. But this CL is already big and scary enough.

Change-Id: Ief5ef6205041b9d0ee445314310c0c5a98187e77
Reviewed-on: https://go-review.googlesource.com/c/go/+/283233
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Trust: Matthew Dempsky <mdempsky@google.com>
Reviewed-by: David Chase <drchase@google.com>
2021-01-14 06:10:09 +00:00

458 lines
14 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package dwarfgen
import (
"bytes"
"flag"
"fmt"
"sort"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types"
"cmd/internal/dwarf"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
)
func Info(fnsym *obj.LSym, infosym *obj.LSym, curfn interface{}) ([]dwarf.Scope, dwarf.InlCalls) {
fn := curfn.(*ir.Func)
if fn.Nname != nil {
expect := fn.Linksym()
if fnsym.ABI() == obj.ABI0 {
expect = fn.Sym().LinksymABI0()
}
if fnsym != expect {
base.Fatalf("unexpected fnsym: %v != %v", fnsym, expect)
}
}
// Back when there were two different *Funcs for a function, this code
// was not consistent about whether a particular *Node being processed
// was an ODCLFUNC or ONAME node. Partly this is because inlined function
// bodies have no ODCLFUNC node, which was it's own inconsistency.
// In any event, the handling of the two different nodes for DWARF purposes
// was subtly different, likely in unintended ways. CL 272253 merged the
// two nodes' Func fields, so that code sees the same *Func whether it is
// holding the ODCLFUNC or the ONAME. This resulted in changes in the
// DWARF output. To preserve the existing DWARF output and leave an
// intentional change for a future CL, this code does the following when
// fn.Op == ONAME:
//
// 1. Disallow use of createComplexVars in createDwarfVars.
// It was not possible to reach that code for an ONAME before,
// because the DebugInfo was set only on the ODCLFUNC Func.
// Calling into it in the ONAME case causes an index out of bounds panic.
//
// 2. Do not populate apdecls. fn.Func.Dcl was in the ODCLFUNC Func,
// not the ONAME Func. Populating apdecls for the ONAME case results
// in selected being populated after createSimpleVars is called in
// createDwarfVars, and then that causes the loop to skip all the entries
// in dcl, meaning that the RecordAutoType calls don't happen.
//
// These two adjustments keep toolstash -cmp working for now.
// Deciding the right answer is, as they say, future work.
//
// We can tell the difference between the old ODCLFUNC and ONAME
// cases by looking at the infosym.Name. If it's empty, DebugInfo is
// being called from (*obj.Link).populateDWARF, which used to use
// the ODCLFUNC. If it's non-empty (the name will end in $abstract),
// DebugInfo is being called from (*obj.Link).DwarfAbstractFunc,
// which used to use the ONAME form.
isODCLFUNC := infosym.Name == ""
var apdecls []*ir.Name
// Populate decls for fn.
if isODCLFUNC {
for _, n := range fn.Dcl {
if n.Op() != ir.ONAME { // might be OTYPE or OLITERAL
continue
}
switch n.Class {
case ir.PAUTO:
if !n.Used() {
// Text == nil -> generating abstract function
if fnsym.Func().Text != nil {
base.Fatalf("debuginfo unused node (AllocFrame should truncate fn.Func.Dcl)")
}
continue
}
case ir.PPARAM, ir.PPARAMOUT:
default:
continue
}
apdecls = append(apdecls, n)
fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type()))
}
}
decls, dwarfVars := createDwarfVars(fnsym, isODCLFUNC, fn, apdecls)
// For each type referenced by the functions auto vars but not
// already referenced by a dwarf var, attach an R_USETYPE relocation to
// the function symbol to insure that the type included in DWARF
// processing during linking.
typesyms := []*obj.LSym{}
for t, _ := range fnsym.Func().Autot {
typesyms = append(typesyms, t)
}
sort.Sort(obj.BySymName(typesyms))
for _, sym := range typesyms {
r := obj.Addrel(infosym)
r.Sym = sym
r.Type = objabi.R_USETYPE
}
fnsym.Func().Autot = nil
var varScopes []ir.ScopeID
for _, decl := range decls {
pos := declPos(decl)
varScopes = append(varScopes, findScope(fn.Marks, pos))
}
scopes := assembleScopes(fnsym, fn, dwarfVars, varScopes)
var inlcalls dwarf.InlCalls
if base.Flag.GenDwarfInl > 0 {
inlcalls = assembleInlines(fnsym, dwarfVars)
}
return scopes, inlcalls
}
func declPos(decl *ir.Name) src.XPos {
return decl.Canonical().Pos()
}
// createDwarfVars process fn, returning a list of DWARF variables and the
// Nodes they represent.
func createDwarfVars(fnsym *obj.LSym, complexOK bool, fn *ir.Func, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var) {
// Collect a raw list of DWARF vars.
var vars []*dwarf.Var
var decls []*ir.Name
var selected map[*ir.Name]bool
if base.Ctxt.Flag_locationlists && base.Ctxt.Flag_optimize && fn.DebugInfo != nil && complexOK {
decls, vars, selected = createComplexVars(fnsym, fn)
} else {
decls, vars, selected = createSimpleVars(fnsym, apDecls)
}
dcl := apDecls
if fnsym.WasInlined() {
dcl = preInliningDcls(fnsym)
}
// If optimization is enabled, the list above will typically be
// missing some of the original pre-optimization variables in the
// function (they may have been promoted to registers, folded into
// constants, dead-coded away, etc). Input arguments not eligible
// for SSA optimization are also missing. Here we add back in entries
// for selected missing vars. Note that the recipe below creates a
// conservative location. The idea here is that we want to
// communicate to the user that "yes, there is a variable named X
// in this function, but no, I don't have enough information to
// reliably report its contents."
// For non-SSA-able arguments, however, the correct information
// is known -- they have a single home on the stack.
for _, n := range dcl {
if _, found := selected[n]; found {
continue
}
c := n.Sym().Name[0]
if c == '.' || n.Type().IsUntyped() {
continue
}
if n.Class == ir.PPARAM && !ssagen.TypeOK(n.Type()) {
// SSA-able args get location lists, and may move in and
// out of registers, so those are handled elsewhere.
// Autos and named output params seem to get handled
// with VARDEF, which creates location lists.
// Args not of SSA-able type are treated here; they
// are homed on the stack in a single place for the
// entire call.
vars = append(vars, createSimpleVar(fnsym, n))
decls = append(decls, n)
continue
}
typename := dwarf.InfoPrefix + types.TypeSymName(n.Type())
decls = append(decls, n)
abbrev := dwarf.DW_ABRV_AUTO_LOCLIST
isReturnValue := (n.Class == ir.PPARAMOUT)
if n.Class == ir.PPARAM || n.Class == ir.PPARAMOUT {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
}
if n.Esc() == ir.EscHeap {
// The variable in question has been promoted to the heap.
// Its address is in n.Heapaddr.
// TODO(thanm): generate a better location expression
}
inlIndex := 0
if base.Flag.GenDwarfInl > 1 {
if n.InlFormal() || n.InlLocal() {
inlIndex = posInlIndex(n.Pos()) + 1
if n.InlFormal() {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
}
}
}
declpos := base.Ctxt.InnermostPos(n.Pos())
vars = append(vars, &dwarf.Var{
Name: n.Sym().Name,
IsReturnValue: isReturnValue,
Abbrev: abbrev,
StackOffset: int32(n.FrameOffset()),
Type: base.Ctxt.Lookup(typename),
DeclFile: declpos.RelFilename(),
DeclLine: declpos.RelLine(),
DeclCol: declpos.Col(),
InlIndex: int32(inlIndex),
ChildIndex: -1,
})
// Record go type of to insure that it gets emitted by the linker.
fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type()))
}
return decls, vars
}
// Given a function that was inlined at some point during the
// compilation, return a sorted list of nodes corresponding to the
// autos/locals in that function prior to inlining. If this is a
// function that is not local to the package being compiled, then the
// names of the variables may have been "versioned" to avoid conflicts
// with local vars; disregard this versioning when sorting.
func preInliningDcls(fnsym *obj.LSym) []*ir.Name {
fn := base.Ctxt.DwFixups.GetPrecursorFunc(fnsym).(*ir.Func)
var rdcl []*ir.Name
for _, n := range fn.Inl.Dcl {
c := n.Sym().Name[0]
// Avoid reporting "_" parameters, since if there are more than
// one, it can result in a collision later on, as in #23179.
if unversion(n.Sym().Name) == "_" || c == '.' || n.Type().IsUntyped() {
continue
}
rdcl = append(rdcl, n)
}
return rdcl
}
// createSimpleVars creates a DWARF entry for every variable declared in the
// function, claiming that they are permanently on the stack.
func createSimpleVars(fnsym *obj.LSym, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var, map[*ir.Name]bool) {
var vars []*dwarf.Var
var decls []*ir.Name
selected := make(map[*ir.Name]bool)
for _, n := range apDecls {
if ir.IsAutoTmp(n) {
continue
}
decls = append(decls, n)
vars = append(vars, createSimpleVar(fnsym, n))
selected[n] = true
}
return decls, vars, selected
}
func createSimpleVar(fnsym *obj.LSym, n *ir.Name) *dwarf.Var {
var abbrev int
var offs int64
switch n.Class {
case ir.PAUTO:
offs = n.FrameOffset()
abbrev = dwarf.DW_ABRV_AUTO
if base.Ctxt.FixedFrameSize() == 0 {
offs -= int64(types.PtrSize)
}
if objabi.Framepointer_enabled || objabi.GOARCH == "arm64" {
// There is a word space for FP on ARM64 even if the frame pointer is disabled
offs -= int64(types.PtrSize)
}
case ir.PPARAM, ir.PPARAMOUT:
abbrev = dwarf.DW_ABRV_PARAM
offs = n.FrameOffset() + base.Ctxt.FixedFrameSize()
default:
base.Fatalf("createSimpleVar unexpected class %v for node %v", n.Class, n)
}
typename := dwarf.InfoPrefix + types.TypeSymName(n.Type())
delete(fnsym.Func().Autot, reflectdata.TypeLinksym(n.Type()))
inlIndex := 0
if base.Flag.GenDwarfInl > 1 {
if n.InlFormal() || n.InlLocal() {
inlIndex = posInlIndex(n.Pos()) + 1
if n.InlFormal() {
abbrev = dwarf.DW_ABRV_PARAM
}
}
}
declpos := base.Ctxt.InnermostPos(declPos(n))
return &dwarf.Var{
Name: n.Sym().Name,
IsReturnValue: n.Class == ir.PPARAMOUT,
IsInlFormal: n.InlFormal(),
Abbrev: abbrev,
StackOffset: int32(offs),
Type: base.Ctxt.Lookup(typename),
DeclFile: declpos.RelFilename(),
DeclLine: declpos.RelLine(),
DeclCol: declpos.Col(),
InlIndex: int32(inlIndex),
ChildIndex: -1,
}
}
// createComplexVars creates recomposed DWARF vars with location lists,
// suitable for describing optimized code.
func createComplexVars(fnsym *obj.LSym, fn *ir.Func) ([]*ir.Name, []*dwarf.Var, map[*ir.Name]bool) {
debugInfo := fn.DebugInfo.(*ssa.FuncDebug)
// Produce a DWARF variable entry for each user variable.
var decls []*ir.Name
var vars []*dwarf.Var
ssaVars := make(map[*ir.Name]bool)
for varID, dvar := range debugInfo.Vars {
n := dvar
ssaVars[n] = true
for _, slot := range debugInfo.VarSlots[varID] {
ssaVars[debugInfo.Slots[slot].N] = true
}
if dvar := createComplexVar(fnsym, fn, ssa.VarID(varID)); dvar != nil {
decls = append(decls, n)
vars = append(vars, dvar)
}
}
return decls, vars, ssaVars
}
// createComplexVar builds a single DWARF variable entry and location list.
func createComplexVar(fnsym *obj.LSym, fn *ir.Func, varID ssa.VarID) *dwarf.Var {
debug := fn.DebugInfo.(*ssa.FuncDebug)
n := debug.Vars[varID]
var abbrev int
switch n.Class {
case ir.PAUTO:
abbrev = dwarf.DW_ABRV_AUTO_LOCLIST
case ir.PPARAM, ir.PPARAMOUT:
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
default:
return nil
}
gotype := reflectdata.TypeLinksym(n.Type())
delete(fnsym.Func().Autot, gotype)
typename := dwarf.InfoPrefix + gotype.Name[len("type."):]
inlIndex := 0
if base.Flag.GenDwarfInl > 1 {
if n.InlFormal() || n.InlLocal() {
inlIndex = posInlIndex(n.Pos()) + 1
if n.InlFormal() {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
}
}
}
declpos := base.Ctxt.InnermostPos(n.Pos())
dvar := &dwarf.Var{
Name: n.Sym().Name,
IsReturnValue: n.Class == ir.PPARAMOUT,
IsInlFormal: n.InlFormal(),
Abbrev: abbrev,
Type: base.Ctxt.Lookup(typename),
// The stack offset is used as a sorting key, so for decomposed
// variables just give it the first one. It's not used otherwise.
// This won't work well if the first slot hasn't been assigned a stack
// location, but it's not obvious how to do better.
StackOffset: ssagen.StackOffset(debug.Slots[debug.VarSlots[varID][0]]),
DeclFile: declpos.RelFilename(),
DeclLine: declpos.RelLine(),
DeclCol: declpos.Col(),
InlIndex: int32(inlIndex),
ChildIndex: -1,
}
list := debug.LocationLists[varID]
if len(list) != 0 {
dvar.PutLocationList = func(listSym, startPC dwarf.Sym) {
debug.PutLocationList(list, base.Ctxt, listSym.(*obj.LSym), startPC.(*obj.LSym))
}
}
return dvar
}
// RecordFlags records the specified command-line flags to be placed
// in the DWARF info.
func RecordFlags(flags ...string) {
if base.Ctxt.Pkgpath == "" {
// We can't record the flags if we don't know what the
// package name is.
return
}
type BoolFlag interface {
IsBoolFlag() bool
}
type CountFlag interface {
IsCountFlag() bool
}
var cmd bytes.Buffer
for _, name := range flags {
f := flag.Lookup(name)
if f == nil {
continue
}
getter := f.Value.(flag.Getter)
if getter.String() == f.DefValue {
// Flag has default value, so omit it.
continue
}
if bf, ok := f.Value.(BoolFlag); ok && bf.IsBoolFlag() {
val, ok := getter.Get().(bool)
if ok && val {
fmt.Fprintf(&cmd, " -%s", f.Name)
continue
}
}
if cf, ok := f.Value.(CountFlag); ok && cf.IsCountFlag() {
val, ok := getter.Get().(int)
if ok && val == 1 {
fmt.Fprintf(&cmd, " -%s", f.Name)
continue
}
}
fmt.Fprintf(&cmd, " -%s=%v", f.Name, getter.Get())
}
if cmd.Len() == 0 {
return
}
s := base.Ctxt.Lookup(dwarf.CUInfoPrefix + "producer." + base.Ctxt.Pkgpath)
s.Type = objabi.SDWARFCUINFO
// Sometimes (for example when building tests) we can link
// together two package main archives. So allow dups.
s.Set(obj.AttrDuplicateOK, true)
base.Ctxt.Data = append(base.Ctxt.Data, s)
s.P = cmd.Bytes()[1:]
}
// RecordPackageName records the name of the package being
// compiled, so that the linker can save it in the compile unit's DIE.
func RecordPackageName() {
s := base.Ctxt.Lookup(dwarf.CUInfoPrefix + "packagename." + base.Ctxt.Pkgpath)
s.Type = objabi.SDWARFCUINFO
// Sometimes (for example when building tests) we can link
// together two package main archives. So allow dups.
s.Set(obj.AttrDuplicateOK, true)
base.Ctxt.Data = append(base.Ctxt.Data, s)
s.P = []byte(types.LocalPkg.Name)
}