mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
The prealloc map seems to exist to avoid adding a field to all nodes. Now we can add a field to just the nodes that need the field, so let's do that and avoid having a magic global with extra node state that isn't preserved by operations like Copy nor printed by Dump. This also makes clear which nodes can be prealloc'ed. In particular, the code in walkstmt looked up an entry in prealloc using an ONAME node, but there's no code that ever stores such an entry, so the lookup never succeeded. Having fields makes that kind of thing easier to see and fix. Passes buildall w/ toolstash -cmp. Change-Id: I418ad0e2847615c08868120c13ee719dc0b2eacb Reviewed-on: https://go-review.googlesource.com/c/go/+/278915 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
617 lines
15 KiB
Go
617 lines
15 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/sys"
|
|
"unicode/utf8"
|
|
)
|
|
|
|
// range
|
|
func typecheckrange(n *ir.RangeStmt) {
|
|
// Typechecking order is important here:
|
|
// 0. first typecheck range expression (slice/map/chan),
|
|
// it is evaluated only once and so logically it is not part of the loop.
|
|
// 1. typecheck produced values,
|
|
// this part can declare new vars and so it must be typechecked before body,
|
|
// because body can contain a closure that captures the vars.
|
|
// 2. decldepth++ to denote loop body.
|
|
// 3. typecheck body.
|
|
// 4. decldepth--.
|
|
typecheckrangeExpr(n)
|
|
|
|
// second half of dance, the first half being typecheckrangeExpr
|
|
n.SetTypecheck(1)
|
|
ls := n.List().Slice()
|
|
for i1, n1 := range ls {
|
|
if n1.Typecheck() == 0 {
|
|
ls[i1] = typecheck(ls[i1], ctxExpr|ctxAssign)
|
|
}
|
|
}
|
|
|
|
decldepth++
|
|
typecheckslice(n.Body().Slice(), ctxStmt)
|
|
decldepth--
|
|
}
|
|
|
|
func typecheckrangeExpr(n *ir.RangeStmt) {
|
|
n.SetRight(typecheck(n.Right(), ctxExpr))
|
|
|
|
t := n.Right().Type()
|
|
if t == nil {
|
|
return
|
|
}
|
|
// delicate little dance. see typecheckas2
|
|
ls := n.List().Slice()
|
|
for i1, n1 := range ls {
|
|
if !ir.DeclaredBy(n1, n) {
|
|
ls[i1] = typecheck(ls[i1], ctxExpr|ctxAssign)
|
|
}
|
|
}
|
|
|
|
if t.IsPtr() && t.Elem().IsArray() {
|
|
t = t.Elem()
|
|
}
|
|
n.SetType(t)
|
|
|
|
var t1, t2 *types.Type
|
|
toomany := false
|
|
switch t.Kind() {
|
|
default:
|
|
base.ErrorfAt(n.Pos(), "cannot range over %L", n.Right())
|
|
return
|
|
|
|
case types.TARRAY, types.TSLICE:
|
|
t1 = types.Types[types.TINT]
|
|
t2 = t.Elem()
|
|
|
|
case types.TMAP:
|
|
t1 = t.Key()
|
|
t2 = t.Elem()
|
|
|
|
case types.TCHAN:
|
|
if !t.ChanDir().CanRecv() {
|
|
base.ErrorfAt(n.Pos(), "invalid operation: range %v (receive from send-only type %v)", n.Right(), n.Right().Type())
|
|
return
|
|
}
|
|
|
|
t1 = t.Elem()
|
|
t2 = nil
|
|
if n.List().Len() == 2 {
|
|
toomany = true
|
|
}
|
|
|
|
case types.TSTRING:
|
|
t1 = types.Types[types.TINT]
|
|
t2 = types.RuneType
|
|
}
|
|
|
|
if n.List().Len() > 2 || toomany {
|
|
base.ErrorfAt(n.Pos(), "too many variables in range")
|
|
}
|
|
|
|
var v1, v2 ir.Node
|
|
if n.List().Len() != 0 {
|
|
v1 = n.List().First()
|
|
}
|
|
if n.List().Len() > 1 {
|
|
v2 = n.List().Second()
|
|
}
|
|
|
|
// this is not only an optimization but also a requirement in the spec.
|
|
// "if the second iteration variable is the blank identifier, the range
|
|
// clause is equivalent to the same clause with only the first variable
|
|
// present."
|
|
if ir.IsBlank(v2) {
|
|
if v1 != nil {
|
|
n.PtrList().Set1(v1)
|
|
}
|
|
v2 = nil
|
|
}
|
|
|
|
if v1 != nil {
|
|
if ir.DeclaredBy(v1, n) {
|
|
v1.SetType(t1)
|
|
} else if v1.Type() != nil {
|
|
if op, why := assignop(t1, v1.Type()); op == ir.OXXX {
|
|
base.ErrorfAt(n.Pos(), "cannot assign type %v to %L in range%s", t1, v1, why)
|
|
}
|
|
}
|
|
checkassign(n, v1)
|
|
}
|
|
|
|
if v2 != nil {
|
|
if ir.DeclaredBy(v2, n) {
|
|
v2.SetType(t2)
|
|
} else if v2.Type() != nil {
|
|
if op, why := assignop(t2, v2.Type()); op == ir.OXXX {
|
|
base.ErrorfAt(n.Pos(), "cannot assign type %v to %L in range%s", t2, v2, why)
|
|
}
|
|
}
|
|
checkassign(n, v2)
|
|
}
|
|
}
|
|
|
|
func cheapComputableIndex(width int64) bool {
|
|
switch thearch.LinkArch.Family {
|
|
// MIPS does not have R+R addressing
|
|
// Arm64 may lack ability to generate this code in our assembler,
|
|
// but the architecture supports it.
|
|
case sys.PPC64, sys.S390X:
|
|
return width == 1
|
|
case sys.AMD64, sys.I386, sys.ARM64, sys.ARM:
|
|
switch width {
|
|
case 1, 2, 4, 8:
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// walkrange transforms various forms of ORANGE into
|
|
// simpler forms. The result must be assigned back to n.
|
|
// Node n may also be modified in place, and may also be
|
|
// the returned node.
|
|
func walkrange(nrange *ir.RangeStmt) ir.Node {
|
|
if isMapClear(nrange) {
|
|
m := nrange.Right()
|
|
lno := setlineno(m)
|
|
n := mapClear(m)
|
|
base.Pos = lno
|
|
return n
|
|
}
|
|
|
|
nfor := ir.NodAt(nrange.Pos(), ir.OFOR, nil, nil)
|
|
nfor.SetInit(nrange.Init())
|
|
nfor.SetSym(nrange.Sym())
|
|
|
|
// variable name conventions:
|
|
// ohv1, hv1, hv2: hidden (old) val 1, 2
|
|
// ha, hit: hidden aggregate, iterator
|
|
// hn, hp: hidden len, pointer
|
|
// hb: hidden bool
|
|
// a, v1, v2: not hidden aggregate, val 1, 2
|
|
|
|
t := nrange.Type()
|
|
|
|
a := nrange.Right()
|
|
lno := setlineno(a)
|
|
|
|
var v1, v2 ir.Node
|
|
l := nrange.List().Len()
|
|
if l > 0 {
|
|
v1 = nrange.List().First()
|
|
}
|
|
|
|
if l > 1 {
|
|
v2 = nrange.List().Second()
|
|
}
|
|
|
|
if ir.IsBlank(v2) {
|
|
v2 = nil
|
|
}
|
|
|
|
if ir.IsBlank(v1) && v2 == nil {
|
|
v1 = nil
|
|
}
|
|
|
|
if v1 == nil && v2 != nil {
|
|
base.Fatalf("walkrange: v2 != nil while v1 == nil")
|
|
}
|
|
|
|
var ifGuard *ir.IfStmt
|
|
|
|
var body []ir.Node
|
|
var init []ir.Node
|
|
switch t.Kind() {
|
|
default:
|
|
base.Fatalf("walkrange")
|
|
|
|
case types.TARRAY, types.TSLICE:
|
|
if nn := arrayClear(nrange, v1, v2, a); nn != nil {
|
|
base.Pos = lno
|
|
return nn
|
|
}
|
|
|
|
// order.stmt arranged for a copy of the array/slice variable if needed.
|
|
ha := a
|
|
|
|
hv1 := temp(types.Types[types.TINT])
|
|
hn := temp(types.Types[types.TINT])
|
|
|
|
init = append(init, ir.Nod(ir.OAS, hv1, nil))
|
|
init = append(init, ir.Nod(ir.OAS, hn, ir.Nod(ir.OLEN, ha, nil)))
|
|
|
|
nfor.SetLeft(ir.Nod(ir.OLT, hv1, hn))
|
|
nfor.SetRight(ir.Nod(ir.OAS, hv1, ir.Nod(ir.OADD, hv1, nodintconst(1))))
|
|
|
|
// for range ha { body }
|
|
if v1 == nil {
|
|
break
|
|
}
|
|
|
|
// for v1 := range ha { body }
|
|
if v2 == nil {
|
|
body = []ir.Node{ir.Nod(ir.OAS, v1, hv1)}
|
|
break
|
|
}
|
|
|
|
// for v1, v2 := range ha { body }
|
|
if cheapComputableIndex(nrange.Type().Elem().Width) {
|
|
// v1, v2 = hv1, ha[hv1]
|
|
tmp := ir.Nod(ir.OINDEX, ha, hv1)
|
|
tmp.SetBounded(true)
|
|
// Use OAS2 to correctly handle assignments
|
|
// of the form "v1, a[v1] := range".
|
|
a := ir.Nod(ir.OAS2, nil, nil)
|
|
a.PtrList().Set2(v1, v2)
|
|
a.PtrRlist().Set2(hv1, tmp)
|
|
body = []ir.Node{a}
|
|
break
|
|
}
|
|
|
|
// TODO(austin): OFORUNTIL is a strange beast, but is
|
|
// necessary for expressing the control flow we need
|
|
// while also making "break" and "continue" work. It
|
|
// would be nice to just lower ORANGE during SSA, but
|
|
// racewalk needs to see many of the operations
|
|
// involved in ORANGE's implementation. If racewalk
|
|
// moves into SSA, consider moving ORANGE into SSA and
|
|
// eliminating OFORUNTIL.
|
|
|
|
// TODO(austin): OFORUNTIL inhibits bounds-check
|
|
// elimination on the index variable (see #20711).
|
|
// Enhance the prove pass to understand this.
|
|
ifGuard = ir.NewIfStmt(base.Pos, nil, nil, nil)
|
|
ifGuard.SetLeft(ir.Nod(ir.OLT, hv1, hn))
|
|
nfor.SetOp(ir.OFORUNTIL)
|
|
|
|
hp := temp(types.NewPtr(nrange.Type().Elem()))
|
|
tmp := ir.Nod(ir.OINDEX, ha, nodintconst(0))
|
|
tmp.SetBounded(true)
|
|
init = append(init, ir.Nod(ir.OAS, hp, nodAddr(tmp)))
|
|
|
|
// Use OAS2 to correctly handle assignments
|
|
// of the form "v1, a[v1] := range".
|
|
a := ir.Nod(ir.OAS2, nil, nil)
|
|
a.PtrList().Set2(v1, v2)
|
|
a.PtrRlist().Set2(hv1, ir.Nod(ir.ODEREF, hp, nil))
|
|
body = append(body, a)
|
|
|
|
// Advance pointer as part of the late increment.
|
|
//
|
|
// This runs *after* the condition check, so we know
|
|
// advancing the pointer is safe and won't go past the
|
|
// end of the allocation.
|
|
as := ir.Nod(ir.OAS, hp, addptr(hp, t.Elem().Width))
|
|
nfor.PtrList().Set1(typecheck(as, ctxStmt))
|
|
|
|
case types.TMAP:
|
|
// order.stmt allocated the iterator for us.
|
|
// we only use a once, so no copy needed.
|
|
ha := a
|
|
|
|
hit := nrange.Prealloc
|
|
th := hit.Type()
|
|
keysym := th.Field(0).Sym // depends on layout of iterator struct. See reflect.go:hiter
|
|
elemsym := th.Field(1).Sym // ditto
|
|
|
|
fn := syslook("mapiterinit")
|
|
|
|
fn = substArgTypes(fn, t.Key(), t.Elem(), th)
|
|
init = append(init, mkcall1(fn, nil, nil, typename(t), ha, nodAddr(hit)))
|
|
nfor.SetLeft(ir.Nod(ir.ONE, nodSym(ir.ODOT, hit, keysym), nodnil()))
|
|
|
|
fn = syslook("mapiternext")
|
|
fn = substArgTypes(fn, th)
|
|
nfor.SetRight(mkcall1(fn, nil, nil, nodAddr(hit)))
|
|
|
|
key := ir.Nod(ir.ODEREF, nodSym(ir.ODOT, hit, keysym), nil)
|
|
if v1 == nil {
|
|
body = nil
|
|
} else if v2 == nil {
|
|
body = []ir.Node{ir.Nod(ir.OAS, v1, key)}
|
|
} else {
|
|
elem := ir.Nod(ir.ODEREF, nodSym(ir.ODOT, hit, elemsym), nil)
|
|
a := ir.Nod(ir.OAS2, nil, nil)
|
|
a.PtrList().Set2(v1, v2)
|
|
a.PtrRlist().Set2(key, elem)
|
|
body = []ir.Node{a}
|
|
}
|
|
|
|
case types.TCHAN:
|
|
// order.stmt arranged for a copy of the channel variable.
|
|
ha := a
|
|
|
|
hv1 := temp(t.Elem())
|
|
hv1.SetTypecheck(1)
|
|
if t.Elem().HasPointers() {
|
|
init = append(init, ir.Nod(ir.OAS, hv1, nil))
|
|
}
|
|
hb := temp(types.Types[types.TBOOL])
|
|
|
|
nfor.SetLeft(ir.Nod(ir.ONE, hb, nodbool(false)))
|
|
a := ir.Nod(ir.OAS2RECV, nil, nil)
|
|
a.SetTypecheck(1)
|
|
a.PtrList().Set2(hv1, hb)
|
|
a.PtrRlist().Set1(ir.Nod(ir.ORECV, ha, nil))
|
|
nfor.Left().PtrInit().Set1(a)
|
|
if v1 == nil {
|
|
body = nil
|
|
} else {
|
|
body = []ir.Node{ir.Nod(ir.OAS, v1, hv1)}
|
|
}
|
|
// Zero hv1. This prevents hv1 from being the sole, inaccessible
|
|
// reference to an otherwise GC-able value during the next channel receive.
|
|
// See issue 15281.
|
|
body = append(body, ir.Nod(ir.OAS, hv1, nil))
|
|
|
|
case types.TSTRING:
|
|
// Transform string range statements like "for v1, v2 = range a" into
|
|
//
|
|
// ha := a
|
|
// for hv1 := 0; hv1 < len(ha); {
|
|
// hv1t := hv1
|
|
// hv2 := rune(ha[hv1])
|
|
// if hv2 < utf8.RuneSelf {
|
|
// hv1++
|
|
// } else {
|
|
// hv2, hv1 = decoderune(ha, hv1)
|
|
// }
|
|
// v1, v2 = hv1t, hv2
|
|
// // original body
|
|
// }
|
|
|
|
// order.stmt arranged for a copy of the string variable.
|
|
ha := a
|
|
|
|
hv1 := temp(types.Types[types.TINT])
|
|
hv1t := temp(types.Types[types.TINT])
|
|
hv2 := temp(types.RuneType)
|
|
|
|
// hv1 := 0
|
|
init = append(init, ir.Nod(ir.OAS, hv1, nil))
|
|
|
|
// hv1 < len(ha)
|
|
nfor.SetLeft(ir.Nod(ir.OLT, hv1, ir.Nod(ir.OLEN, ha, nil)))
|
|
|
|
if v1 != nil {
|
|
// hv1t = hv1
|
|
body = append(body, ir.Nod(ir.OAS, hv1t, hv1))
|
|
}
|
|
|
|
// hv2 := rune(ha[hv1])
|
|
nind := ir.Nod(ir.OINDEX, ha, hv1)
|
|
nind.SetBounded(true)
|
|
body = append(body, ir.Nod(ir.OAS, hv2, conv(nind, types.RuneType)))
|
|
|
|
// if hv2 < utf8.RuneSelf
|
|
nif := ir.Nod(ir.OIF, nil, nil)
|
|
nif.SetLeft(ir.Nod(ir.OLT, hv2, nodintconst(utf8.RuneSelf)))
|
|
|
|
// hv1++
|
|
nif.PtrBody().Set1(ir.Nod(ir.OAS, hv1, ir.Nod(ir.OADD, hv1, nodintconst(1))))
|
|
|
|
// } else {
|
|
eif := ir.Nod(ir.OAS2, nil, nil)
|
|
nif.PtrRlist().Set1(eif)
|
|
|
|
// hv2, hv1 = decoderune(ha, hv1)
|
|
eif.PtrList().Set2(hv2, hv1)
|
|
fn := syslook("decoderune")
|
|
eif.PtrRlist().Set1(mkcall1(fn, fn.Type().Results(), nil, ha, hv1))
|
|
|
|
body = append(body, nif)
|
|
|
|
if v1 != nil {
|
|
if v2 != nil {
|
|
// v1, v2 = hv1t, hv2
|
|
a := ir.Nod(ir.OAS2, nil, nil)
|
|
a.PtrList().Set2(v1, v2)
|
|
a.PtrRlist().Set2(hv1t, hv2)
|
|
body = append(body, a)
|
|
} else {
|
|
// v1 = hv1t
|
|
body = append(body, ir.Nod(ir.OAS, v1, hv1t))
|
|
}
|
|
}
|
|
}
|
|
|
|
typecheckslice(init, ctxStmt)
|
|
|
|
if ifGuard != nil {
|
|
ifGuard.PtrInit().Append(init...)
|
|
ifGuard = typecheck(ifGuard, ctxStmt).(*ir.IfStmt)
|
|
} else {
|
|
nfor.PtrInit().Append(init...)
|
|
}
|
|
|
|
typecheckslice(nfor.Left().Init().Slice(), ctxStmt)
|
|
|
|
nfor.SetLeft(typecheck(nfor.Left(), ctxExpr))
|
|
nfor.SetLeft(defaultlit(nfor.Left(), nil))
|
|
nfor.SetRight(typecheck(nfor.Right(), ctxStmt))
|
|
typecheckslice(body, ctxStmt)
|
|
nfor.PtrBody().Append(body...)
|
|
nfor.PtrBody().Append(nrange.Body().Slice()...)
|
|
|
|
var n ir.Node = nfor
|
|
if ifGuard != nil {
|
|
ifGuard.PtrBody().Set1(n)
|
|
n = ifGuard
|
|
}
|
|
|
|
n = walkstmt(n)
|
|
|
|
base.Pos = lno
|
|
return n
|
|
}
|
|
|
|
// isMapClear checks if n is of the form:
|
|
//
|
|
// for k := range m {
|
|
// delete(m, k)
|
|
// }
|
|
//
|
|
// where == for keys of map m is reflexive.
|
|
func isMapClear(n *ir.RangeStmt) bool {
|
|
if base.Flag.N != 0 || instrumenting {
|
|
return false
|
|
}
|
|
|
|
if n.Op() != ir.ORANGE || n.Type().Kind() != types.TMAP || n.List().Len() != 1 {
|
|
return false
|
|
}
|
|
|
|
k := n.List().First()
|
|
if k == nil || ir.IsBlank(k) {
|
|
return false
|
|
}
|
|
|
|
// Require k to be a new variable name.
|
|
if !ir.DeclaredBy(k, n) {
|
|
return false
|
|
}
|
|
|
|
if n.Body().Len() != 1 {
|
|
return false
|
|
}
|
|
|
|
stmt := n.Body().First() // only stmt in body
|
|
if stmt == nil || stmt.Op() != ir.ODELETE {
|
|
return false
|
|
}
|
|
|
|
m := n.Right()
|
|
if delete := stmt.(*ir.CallExpr); !samesafeexpr(delete.List().First(), m) || !samesafeexpr(delete.List().Second(), k) {
|
|
return false
|
|
}
|
|
|
|
// Keys where equality is not reflexive can not be deleted from maps.
|
|
if !isreflexive(m.Type().Key()) {
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// mapClear constructs a call to runtime.mapclear for the map m.
|
|
func mapClear(m ir.Node) ir.Node {
|
|
t := m.Type()
|
|
|
|
// instantiate mapclear(typ *type, hmap map[any]any)
|
|
fn := syslook("mapclear")
|
|
fn = substArgTypes(fn, t.Key(), t.Elem())
|
|
n := mkcall1(fn, nil, nil, typename(t), m)
|
|
return walkstmt(typecheck(n, ctxStmt))
|
|
}
|
|
|
|
// Lower n into runtime·memclr if possible, for
|
|
// fast zeroing of slices and arrays (issue 5373).
|
|
// Look for instances of
|
|
//
|
|
// for i := range a {
|
|
// a[i] = zero
|
|
// }
|
|
//
|
|
// in which the evaluation of a is side-effect-free.
|
|
//
|
|
// Parameters are as in walkrange: "for v1, v2 = range a".
|
|
func arrayClear(loop *ir.RangeStmt, v1, v2, a ir.Node) ir.Node {
|
|
if base.Flag.N != 0 || instrumenting {
|
|
return nil
|
|
}
|
|
|
|
if v1 == nil || v2 != nil {
|
|
return nil
|
|
}
|
|
|
|
if loop.Body().Len() != 1 || loop.Body().First() == nil {
|
|
return nil
|
|
}
|
|
|
|
stmt1 := loop.Body().First() // only stmt in body
|
|
if stmt1.Op() != ir.OAS {
|
|
return nil
|
|
}
|
|
stmt := stmt1.(*ir.AssignStmt)
|
|
if stmt.Left().Op() != ir.OINDEX {
|
|
return nil
|
|
}
|
|
lhs := stmt.Left().(*ir.IndexExpr)
|
|
|
|
if !samesafeexpr(lhs.Left(), a) || !samesafeexpr(lhs.Right(), v1) {
|
|
return nil
|
|
}
|
|
|
|
elemsize := loop.Type().Elem().Width
|
|
if elemsize <= 0 || !isZero(stmt.Right()) {
|
|
return nil
|
|
}
|
|
|
|
// Convert to
|
|
// if len(a) != 0 {
|
|
// hp = &a[0]
|
|
// hn = len(a)*sizeof(elem(a))
|
|
// memclr{NoHeap,Has}Pointers(hp, hn)
|
|
// i = len(a) - 1
|
|
// }
|
|
n := ir.Nod(ir.OIF, nil, nil)
|
|
n.PtrBody().Set(nil)
|
|
n.SetLeft(ir.Nod(ir.ONE, ir.Nod(ir.OLEN, a, nil), nodintconst(0)))
|
|
|
|
// hp = &a[0]
|
|
hp := temp(types.Types[types.TUNSAFEPTR])
|
|
|
|
ix := ir.Nod(ir.OINDEX, a, nodintconst(0))
|
|
ix.SetBounded(true)
|
|
addr := convnop(nodAddr(ix), types.Types[types.TUNSAFEPTR])
|
|
n.PtrBody().Append(ir.Nod(ir.OAS, hp, addr))
|
|
|
|
// hn = len(a) * sizeof(elem(a))
|
|
hn := temp(types.Types[types.TUINTPTR])
|
|
mul := conv(ir.Nod(ir.OMUL, ir.Nod(ir.OLEN, a, nil), nodintconst(elemsize)), types.Types[types.TUINTPTR])
|
|
n.PtrBody().Append(ir.Nod(ir.OAS, hn, mul))
|
|
|
|
var fn ir.Node
|
|
if a.Type().Elem().HasPointers() {
|
|
// memclrHasPointers(hp, hn)
|
|
Curfn.SetWBPos(stmt.Pos())
|
|
fn = mkcall("memclrHasPointers", nil, nil, hp, hn)
|
|
} else {
|
|
// memclrNoHeapPointers(hp, hn)
|
|
fn = mkcall("memclrNoHeapPointers", nil, nil, hp, hn)
|
|
}
|
|
|
|
n.PtrBody().Append(fn)
|
|
|
|
// i = len(a) - 1
|
|
v1 = ir.Nod(ir.OAS, v1, ir.Nod(ir.OSUB, ir.Nod(ir.OLEN, a, nil), nodintconst(1)))
|
|
|
|
n.PtrBody().Append(v1)
|
|
|
|
n.SetLeft(typecheck(n.Left(), ctxExpr))
|
|
n.SetLeft(defaultlit(n.Left(), nil))
|
|
typecheckslice(n.Body().Slice(), ctxStmt)
|
|
return walkstmt(n)
|
|
}
|
|
|
|
// addptr returns (*T)(uintptr(p) + n).
|
|
func addptr(p ir.Node, n int64) ir.Node {
|
|
t := p.Type()
|
|
|
|
p = ir.Nod(ir.OCONVNOP, p, nil)
|
|
p.SetType(types.Types[types.TUINTPTR])
|
|
|
|
p = ir.Nod(ir.OADD, p, nodintconst(n))
|
|
|
|
p = ir.Nod(ir.OCONVNOP, p, nil)
|
|
p.SetType(t)
|
|
|
|
return p
|
|
}
|