go/src/cmd/compile/internal/ssa/deadcode.go
Keith Randall 56e0ecc5ea cmd/compile: keep value use counts in SSA
Keep track of how many uses each Value has.  Each appearance in
Value.Args and in Block.Control counts once.

The number of uses of a value is generically useful to
constrain rewrite rules.  For instance, we might want to
prevent merging index operations into loads if the same
index expression is used lots of times.

But I have one use in particular for which the use count is required.
We must make sure we don't combine ops with loads if the load has
more than one use.  Otherwise, we may split a single load
into multiple loads and that breaks perceived behavior in
the presence of races.  In particular, the load of m.state
in sync/mutex.go:Lock can't be done twice.  (I have a separate
CL which triggers the mutex failure.  This CL has a test which
demonstrates a similar failure.)

Change-Id: Icaafa479239f48632a069d0c3f624e6ebc6b1f0e
Reviewed-on: https://go-review.googlesource.com/20790
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Todd Neal <todd@tneal.org>
2016-03-17 04:20:02 +00:00

283 lines
6.4 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
// findlive returns the reachable blocks and live values in f.
func findlive(f *Func) (reachable []bool, live []bool) {
reachable = reachableBlocks(f)
live = liveValues(f, reachable)
return
}
// reachableBlocks returns the reachable blocks in f.
func reachableBlocks(f *Func) []bool {
reachable := make([]bool, f.NumBlocks())
reachable[f.Entry.ID] = true
p := []*Block{f.Entry} // stack-like worklist
for len(p) > 0 {
// Pop a reachable block
b := p[len(p)-1]
p = p[:len(p)-1]
// Mark successors as reachable
s := b.Succs
if b.Kind == BlockFirst {
s = s[:1]
}
for _, c := range s {
if !reachable[c.ID] {
reachable[c.ID] = true
p = append(p, c) // push
}
}
}
return reachable
}
// liveValues returns the live values in f.
// reachable is a map from block ID to whether the block is reachable.
func liveValues(f *Func, reachable []bool) []bool {
live := make([]bool, f.NumValues())
// After regalloc, consider all values to be live.
// See the comment at the top of regalloc.go and in deadcode for details.
if f.RegAlloc != nil {
for i := range live {
live[i] = true
}
return live
}
// Find all live values
var q []*Value // stack-like worklist of unscanned values
// Starting set: all control values of reachable blocks are live.
for _, b := range f.Blocks {
if !reachable[b.ID] {
continue
}
if v := b.Control; v != nil && !live[v.ID] {
live[v.ID] = true
q = append(q, v)
}
}
// Compute transitive closure of live values.
for len(q) > 0 {
// pop a reachable value
v := q[len(q)-1]
q = q[:len(q)-1]
for i, x := range v.Args {
if v.Op == OpPhi && !reachable[v.Block.Preds[i].ID] {
continue
}
if !live[x.ID] {
live[x.ID] = true
q = append(q, x) // push
}
}
}
return live
}
// deadcode removes dead code from f.
func deadcode(f *Func) {
// deadcode after regalloc is forbidden for now. Regalloc
// doesn't quite generate legal SSA which will lead to some
// required moves being eliminated. See the comment at the
// top of regalloc.go for details.
if f.RegAlloc != nil {
f.Fatalf("deadcode after regalloc")
}
// Find reachable blocks.
reachable := reachableBlocks(f)
// Get rid of edges from dead to live code.
for _, b := range f.Blocks {
if reachable[b.ID] {
continue
}
for _, c := range b.Succs {
if reachable[c.ID] {
c.removePred(b)
}
}
}
// Get rid of dead edges from live code.
for _, b := range f.Blocks {
if !reachable[b.ID] {
continue
}
if b.Kind != BlockFirst {
continue
}
c := b.Succs[1]
b.Succs[1] = nil
b.Succs = b.Succs[:1]
b.Kind = BlockPlain
b.Likely = BranchUnknown
if reachable[c.ID] {
// Note: c must be reachable through some other edge.
c.removePred(b)
}
}
// Splice out any copies introduced during dead block removal.
copyelim(f)
// Find live values.
live := liveValues(f, reachable)
// Remove dead & duplicate entries from namedValues map.
s := f.newSparseSet(f.NumValues())
defer f.retSparseSet(s)
i := 0
for _, name := range f.Names {
j := 0
s.clear()
values := f.NamedValues[name]
for _, v := range values {
if live[v.ID] && !s.contains(v.ID) {
values[j] = v
j++
s.add(v.ID)
}
}
if j == 0 {
delete(f.NamedValues, name)
} else {
f.Names[i] = name
i++
for k := len(values) - 1; k >= j; k-- {
values[k] = nil
}
f.NamedValues[name] = values[:j]
}
}
for k := len(f.Names) - 1; k >= i; k-- {
f.Names[k] = LocalSlot{}
}
f.Names = f.Names[:i]
// Unlink values.
for _, b := range f.Blocks {
if !reachable[b.ID] {
b.SetControl(nil)
}
for _, v := range b.Values {
if !live[v.ID] {
v.resetArgs()
}
}
}
// Remove dead values from blocks' value list. Return dead
// values to the allocator.
for _, b := range f.Blocks {
i := 0
for _, v := range b.Values {
if live[v.ID] {
b.Values[i] = v
i++
} else {
f.freeValue(v)
}
}
// aid GC
tail := b.Values[i:]
for j := range tail {
tail[j] = nil
}
b.Values = b.Values[:i]
}
// Remove unreachable blocks. Return dead blocks to allocator.
i = 0
for _, b := range f.Blocks {
if reachable[b.ID] {
f.Blocks[i] = b
i++
} else {
if len(b.Values) > 0 {
b.Fatalf("live values in unreachable block %v: %v", b, b.Values)
}
f.freeBlock(b)
}
}
// zero remainder to help GC
tail := f.Blocks[i:]
for j := range tail {
tail[j] = nil
}
f.Blocks = f.Blocks[:i]
}
// removePred removes the predecessor p from b's predecessor list.
func (b *Block) removePred(p *Block) {
var i int
found := false
for j, q := range b.Preds {
if q == p {
i = j
found = true
break
}
}
// TODO: the above loop could make the deadcode pass take quadratic time
if !found {
b.Fatalf("can't find predecessor %v of %v\n", p, b)
}
n := len(b.Preds) - 1
b.Preds[i] = b.Preds[n]
b.Preds[n] = nil // aid GC
b.Preds = b.Preds[:n]
// rewrite phi ops to match the new predecessor list
for _, v := range b.Values {
if v.Op != OpPhi {
continue
}
v.Args[i].Uses--
v.Args[i] = v.Args[n]
v.Args[n] = nil // aid GC
v.Args = v.Args[:n]
phielimValue(v)
// Note: this is trickier than it looks. Replacing
// a Phi with a Copy can in general cause problems because
// Phi and Copy don't have exactly the same semantics.
// Phi arguments always come from a predecessor block,
// whereas copies don't. This matters in loops like:
// 1: x = (Phi y)
// y = (Add x 1)
// goto 1
// If we replace Phi->Copy, we get
// 1: x = (Copy y)
// y = (Add x 1)
// goto 1
// (Phi y) refers to the *previous* value of y, whereas
// (Copy y) refers to the *current* value of y.
// The modified code has a cycle and the scheduler
// will barf on it.
//
// Fortunately, this situation can only happen for dead
// code loops. We know the code we're working with is
// not dead, so we're ok.
// Proof: If we have a potential bad cycle, we have a
// situation like this:
// x = (Phi z)
// y = (op1 x ...)
// z = (op2 y ...)
// Where opX are not Phi ops. But such a situation
// implies a cycle in the dominator graph. In the
// example, x.Block dominates y.Block, y.Block dominates
// z.Block, and z.Block dominates x.Block (treating
// "dominates" as reflexive). Cycles in the dominator
// graph can only happen in an unreachable cycle.
}
}