mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
gc debug flags are currently stored in a 256-long array, that is then addressed using the ASCII numeric value of the flag itself (a quirk inherited from the old C compiler). It is also a little wasteful, since we only define 16 flags, and the other 240 array elements are always empty. This change makes Debug a struct, which also provides static checking that we're not referencing flags that does not exist. Change-Id: I2f0dfef2529325514b3398cf78635543cdf48fe0 Reviewed-on: https://go-review.googlesource.com/c/go/+/263539 Trust: Alberto Donizetti <alb.donizetti@gmail.com> Run-TryBot: Alberto Donizetti <alb.donizetti@gmail.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
1538 lines
38 KiB
Go
1538 lines
38 KiB
Go
// Copyright 2018 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"cmd/compile/internal/logopt"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/src"
|
|
"fmt"
|
|
"math"
|
|
"strings"
|
|
)
|
|
|
|
// Escape analysis.
|
|
//
|
|
// Here we analyze functions to determine which Go variables
|
|
// (including implicit allocations such as calls to "new" or "make",
|
|
// composite literals, etc.) can be allocated on the stack. The two
|
|
// key invariants we have to ensure are: (1) pointers to stack objects
|
|
// cannot be stored in the heap, and (2) pointers to a stack object
|
|
// cannot outlive that object (e.g., because the declaring function
|
|
// returned and destroyed the object's stack frame, or its space is
|
|
// reused across loop iterations for logically distinct variables).
|
|
//
|
|
// We implement this with a static data-flow analysis of the AST.
|
|
// First, we construct a directed weighted graph where vertices
|
|
// (termed "locations") represent variables allocated by statements
|
|
// and expressions, and edges represent assignments between variables
|
|
// (with weights representing addressing/dereference counts).
|
|
//
|
|
// Next we walk the graph looking for assignment paths that might
|
|
// violate the invariants stated above. If a variable v's address is
|
|
// stored in the heap or elsewhere that may outlive it, then v is
|
|
// marked as requiring heap allocation.
|
|
//
|
|
// To support interprocedural analysis, we also record data-flow from
|
|
// each function's parameters to the heap and to its result
|
|
// parameters. This information is summarized as "parameter tags",
|
|
// which are used at static call sites to improve escape analysis of
|
|
// function arguments.
|
|
|
|
// Constructing the location graph.
|
|
//
|
|
// Every allocating statement (e.g., variable declaration) or
|
|
// expression (e.g., "new" or "make") is first mapped to a unique
|
|
// "location."
|
|
//
|
|
// We also model every Go assignment as a directed edges between
|
|
// locations. The number of dereference operations minus the number of
|
|
// addressing operations is recorded as the edge's weight (termed
|
|
// "derefs"). For example:
|
|
//
|
|
// p = &q // -1
|
|
// p = q // 0
|
|
// p = *q // 1
|
|
// p = **q // 2
|
|
//
|
|
// p = **&**&q // 2
|
|
//
|
|
// Note that the & operator can only be applied to addressable
|
|
// expressions, and the expression &x itself is not addressable, so
|
|
// derefs cannot go below -1.
|
|
//
|
|
// Every Go language construct is lowered into this representation,
|
|
// generally without sensitivity to flow, path, or context; and
|
|
// without distinguishing elements within a compound variable. For
|
|
// example:
|
|
//
|
|
// var x struct { f, g *int }
|
|
// var u []*int
|
|
//
|
|
// x.f = u[0]
|
|
//
|
|
// is modeled simply as
|
|
//
|
|
// x = *u
|
|
//
|
|
// That is, we don't distinguish x.f from x.g, or u[0] from u[1],
|
|
// u[2], etc. However, we do record the implicit dereference involved
|
|
// in indexing a slice.
|
|
|
|
type Escape struct {
|
|
allLocs []*EscLocation
|
|
|
|
curfn *Node
|
|
|
|
// loopDepth counts the current loop nesting depth within
|
|
// curfn. It increments within each "for" loop and at each
|
|
// label with a corresponding backwards "goto" (i.e.,
|
|
// unstructured loop).
|
|
loopDepth int
|
|
|
|
heapLoc EscLocation
|
|
blankLoc EscLocation
|
|
}
|
|
|
|
// An EscLocation represents an abstract location that stores a Go
|
|
// variable.
|
|
type EscLocation struct {
|
|
n *Node // represented variable or expression, if any
|
|
curfn *Node // enclosing function
|
|
edges []EscEdge // incoming edges
|
|
loopDepth int // loopDepth at declaration
|
|
|
|
// derefs and walkgen are used during walkOne to track the
|
|
// minimal dereferences from the walk root.
|
|
derefs int // >= -1
|
|
walkgen uint32
|
|
|
|
// dst and dstEdgeindex track the next immediate assignment
|
|
// destination location during walkone, along with the index
|
|
// of the edge pointing back to this location.
|
|
dst *EscLocation
|
|
dstEdgeIdx int
|
|
|
|
// queued is used by walkAll to track whether this location is
|
|
// in the walk queue.
|
|
queued bool
|
|
|
|
// escapes reports whether the represented variable's address
|
|
// escapes; that is, whether the variable must be heap
|
|
// allocated.
|
|
escapes bool
|
|
|
|
// transient reports whether the represented expression's
|
|
// address does not outlive the statement; that is, whether
|
|
// its storage can be immediately reused.
|
|
transient bool
|
|
|
|
// paramEsc records the represented parameter's leak set.
|
|
paramEsc EscLeaks
|
|
}
|
|
|
|
// An EscEdge represents an assignment edge between two Go variables.
|
|
type EscEdge struct {
|
|
src *EscLocation
|
|
derefs int // >= -1
|
|
notes *EscNote
|
|
}
|
|
|
|
// escapeFuncs performs escape analysis on a minimal batch of
|
|
// functions.
|
|
func escapeFuncs(fns []*Node, recursive bool) {
|
|
for _, fn := range fns {
|
|
if fn.Op != ODCLFUNC {
|
|
Fatalf("unexpected node: %v", fn)
|
|
}
|
|
}
|
|
|
|
var e Escape
|
|
e.heapLoc.escapes = true
|
|
|
|
// Construct data-flow graph from syntax trees.
|
|
for _, fn := range fns {
|
|
e.initFunc(fn)
|
|
}
|
|
for _, fn := range fns {
|
|
e.walkFunc(fn)
|
|
}
|
|
e.curfn = nil
|
|
|
|
e.walkAll()
|
|
e.finish(fns)
|
|
}
|
|
|
|
func (e *Escape) initFunc(fn *Node) {
|
|
if fn.Op != ODCLFUNC || fn.Esc != EscFuncUnknown {
|
|
Fatalf("unexpected node: %v", fn)
|
|
}
|
|
fn.Esc = EscFuncPlanned
|
|
if Debug.m > 3 {
|
|
Dump("escAnalyze", fn)
|
|
}
|
|
|
|
e.curfn = fn
|
|
e.loopDepth = 1
|
|
|
|
// Allocate locations for local variables.
|
|
for _, dcl := range fn.Func.Dcl {
|
|
if dcl.Op == ONAME {
|
|
e.newLoc(dcl, false)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (e *Escape) walkFunc(fn *Node) {
|
|
fn.Esc = EscFuncStarted
|
|
|
|
// Identify labels that mark the head of an unstructured loop.
|
|
inspectList(fn.Nbody, func(n *Node) bool {
|
|
switch n.Op {
|
|
case OLABEL:
|
|
n.Sym.Label = asTypesNode(&nonlooping)
|
|
|
|
case OGOTO:
|
|
// If we visited the label before the goto,
|
|
// then this is a looping label.
|
|
if n.Sym.Label == asTypesNode(&nonlooping) {
|
|
n.Sym.Label = asTypesNode(&looping)
|
|
}
|
|
}
|
|
|
|
return true
|
|
})
|
|
|
|
e.curfn = fn
|
|
e.loopDepth = 1
|
|
e.block(fn.Nbody)
|
|
}
|
|
|
|
// Below we implement the methods for walking the AST and recording
|
|
// data flow edges. Note that because a sub-expression might have
|
|
// side-effects, it's important to always visit the entire AST.
|
|
//
|
|
// For example, write either:
|
|
//
|
|
// if x {
|
|
// e.discard(n.Left)
|
|
// } else {
|
|
// e.value(k, n.Left)
|
|
// }
|
|
//
|
|
// or
|
|
//
|
|
// if x {
|
|
// k = e.discardHole()
|
|
// }
|
|
// e.value(k, n.Left)
|
|
//
|
|
// Do NOT write:
|
|
//
|
|
// // BAD: possibly loses side-effects within n.Left
|
|
// if !x {
|
|
// e.value(k, n.Left)
|
|
// }
|
|
|
|
// stmt evaluates a single Go statement.
|
|
func (e *Escape) stmt(n *Node) {
|
|
if n == nil {
|
|
return
|
|
}
|
|
|
|
lno := setlineno(n)
|
|
defer func() {
|
|
lineno = lno
|
|
}()
|
|
|
|
if Debug.m > 2 {
|
|
fmt.Printf("%v:[%d] %v stmt: %v\n", linestr(lineno), e.loopDepth, funcSym(e.curfn), n)
|
|
}
|
|
|
|
e.stmts(n.Ninit)
|
|
|
|
switch n.Op {
|
|
default:
|
|
Fatalf("unexpected stmt: %v", n)
|
|
|
|
case ODCLCONST, ODCLTYPE, OEMPTY, OFALL, OINLMARK:
|
|
// nop
|
|
|
|
case OBREAK, OCONTINUE, OGOTO:
|
|
// TODO(mdempsky): Handle dead code?
|
|
|
|
case OBLOCK:
|
|
e.stmts(n.List)
|
|
|
|
case ODCL:
|
|
// Record loop depth at declaration.
|
|
if !n.Left.isBlank() {
|
|
e.dcl(n.Left)
|
|
}
|
|
|
|
case OLABEL:
|
|
switch asNode(n.Sym.Label) {
|
|
case &nonlooping:
|
|
if Debug.m > 2 {
|
|
fmt.Printf("%v:%v non-looping label\n", linestr(lineno), n)
|
|
}
|
|
case &looping:
|
|
if Debug.m > 2 {
|
|
fmt.Printf("%v: %v looping label\n", linestr(lineno), n)
|
|
}
|
|
e.loopDepth++
|
|
default:
|
|
Fatalf("label missing tag")
|
|
}
|
|
n.Sym.Label = nil
|
|
|
|
case OIF:
|
|
e.discard(n.Left)
|
|
e.block(n.Nbody)
|
|
e.block(n.Rlist)
|
|
|
|
case OFOR, OFORUNTIL:
|
|
e.loopDepth++
|
|
e.discard(n.Left)
|
|
e.stmt(n.Right)
|
|
e.block(n.Nbody)
|
|
e.loopDepth--
|
|
|
|
case ORANGE:
|
|
// for List = range Right { Nbody }
|
|
e.loopDepth++
|
|
ks := e.addrs(n.List)
|
|
e.block(n.Nbody)
|
|
e.loopDepth--
|
|
|
|
// Right is evaluated outside the loop.
|
|
k := e.discardHole()
|
|
if len(ks) >= 2 {
|
|
if n.Right.Type.IsArray() {
|
|
k = ks[1].note(n, "range")
|
|
} else {
|
|
k = ks[1].deref(n, "range-deref")
|
|
}
|
|
}
|
|
e.expr(e.later(k), n.Right)
|
|
|
|
case OSWITCH:
|
|
typesw := n.Left != nil && n.Left.Op == OTYPESW
|
|
|
|
var ks []EscHole
|
|
for _, cas := range n.List.Slice() { // cases
|
|
if typesw && n.Left.Left != nil {
|
|
cv := cas.Rlist.First()
|
|
k := e.dcl(cv) // type switch variables have no ODCL.
|
|
if cv.Type.HasPointers() {
|
|
ks = append(ks, k.dotType(cv.Type, cas, "switch case"))
|
|
}
|
|
}
|
|
|
|
e.discards(cas.List)
|
|
e.block(cas.Nbody)
|
|
}
|
|
|
|
if typesw {
|
|
e.expr(e.teeHole(ks...), n.Left.Right)
|
|
} else {
|
|
e.discard(n.Left)
|
|
}
|
|
|
|
case OSELECT:
|
|
for _, cas := range n.List.Slice() {
|
|
e.stmt(cas.Left)
|
|
e.block(cas.Nbody)
|
|
}
|
|
case OSELRECV:
|
|
e.assign(n.Left, n.Right, "selrecv", n)
|
|
case OSELRECV2:
|
|
e.assign(n.Left, n.Right, "selrecv", n)
|
|
e.assign(n.List.First(), nil, "selrecv", n)
|
|
case ORECV:
|
|
// TODO(mdempsky): Consider e.discard(n.Left).
|
|
e.exprSkipInit(e.discardHole(), n) // already visited n.Ninit
|
|
case OSEND:
|
|
e.discard(n.Left)
|
|
e.assignHeap(n.Right, "send", n)
|
|
|
|
case OAS, OASOP:
|
|
e.assign(n.Left, n.Right, "assign", n)
|
|
|
|
case OAS2:
|
|
for i, nl := range n.List.Slice() {
|
|
e.assign(nl, n.Rlist.Index(i), "assign-pair", n)
|
|
}
|
|
|
|
case OAS2DOTTYPE: // v, ok = x.(type)
|
|
e.assign(n.List.First(), n.Right, "assign-pair-dot-type", n)
|
|
e.assign(n.List.Second(), nil, "assign-pair-dot-type", n)
|
|
case OAS2MAPR: // v, ok = m[k]
|
|
e.assign(n.List.First(), n.Right, "assign-pair-mapr", n)
|
|
e.assign(n.List.Second(), nil, "assign-pair-mapr", n)
|
|
case OAS2RECV: // v, ok = <-ch
|
|
e.assign(n.List.First(), n.Right, "assign-pair-receive", n)
|
|
e.assign(n.List.Second(), nil, "assign-pair-receive", n)
|
|
|
|
case OAS2FUNC:
|
|
e.stmts(n.Right.Ninit)
|
|
e.call(e.addrs(n.List), n.Right, nil)
|
|
case ORETURN:
|
|
results := e.curfn.Type.Results().FieldSlice()
|
|
for i, v := range n.List.Slice() {
|
|
e.assign(asNode(results[i].Nname), v, "return", n)
|
|
}
|
|
case OCALLFUNC, OCALLMETH, OCALLINTER, OCLOSE, OCOPY, ODELETE, OPANIC, OPRINT, OPRINTN, ORECOVER:
|
|
e.call(nil, n, nil)
|
|
case OGO, ODEFER:
|
|
e.stmts(n.Left.Ninit)
|
|
e.call(nil, n.Left, n)
|
|
|
|
case ORETJMP:
|
|
// TODO(mdempsky): What do? esc.go just ignores it.
|
|
}
|
|
}
|
|
|
|
func (e *Escape) stmts(l Nodes) {
|
|
for _, n := range l.Slice() {
|
|
e.stmt(n)
|
|
}
|
|
}
|
|
|
|
// block is like stmts, but preserves loopDepth.
|
|
func (e *Escape) block(l Nodes) {
|
|
old := e.loopDepth
|
|
e.stmts(l)
|
|
e.loopDepth = old
|
|
}
|
|
|
|
// expr models evaluating an expression n and flowing the result into
|
|
// hole k.
|
|
func (e *Escape) expr(k EscHole, n *Node) {
|
|
if n == nil {
|
|
return
|
|
}
|
|
e.stmts(n.Ninit)
|
|
e.exprSkipInit(k, n)
|
|
}
|
|
|
|
func (e *Escape) exprSkipInit(k EscHole, n *Node) {
|
|
if n == nil {
|
|
return
|
|
}
|
|
|
|
lno := setlineno(n)
|
|
defer func() {
|
|
lineno = lno
|
|
}()
|
|
|
|
uintptrEscapesHack := k.uintptrEscapesHack
|
|
k.uintptrEscapesHack = false
|
|
|
|
if uintptrEscapesHack && n.Op == OCONVNOP && n.Left.Type.IsUnsafePtr() {
|
|
// nop
|
|
} else if k.derefs >= 0 && !n.Type.HasPointers() {
|
|
k = e.discardHole()
|
|
}
|
|
|
|
switch n.Op {
|
|
default:
|
|
Fatalf("unexpected expr: %v", n)
|
|
|
|
case OLITERAL, OGETG, OCLOSUREVAR, OTYPE:
|
|
// nop
|
|
|
|
case ONAME:
|
|
if n.Class() == PFUNC || n.Class() == PEXTERN {
|
|
return
|
|
}
|
|
e.flow(k, e.oldLoc(n))
|
|
|
|
case OPLUS, ONEG, OBITNOT, ONOT:
|
|
e.discard(n.Left)
|
|
case OADD, OSUB, OOR, OXOR, OMUL, ODIV, OMOD, OLSH, ORSH, OAND, OANDNOT, OEQ, ONE, OLT, OLE, OGT, OGE, OANDAND, OOROR:
|
|
e.discard(n.Left)
|
|
e.discard(n.Right)
|
|
|
|
case OADDR:
|
|
e.expr(k.addr(n, "address-of"), n.Left) // "address-of"
|
|
case ODEREF:
|
|
e.expr(k.deref(n, "indirection"), n.Left) // "indirection"
|
|
case ODOT, ODOTMETH, ODOTINTER:
|
|
e.expr(k.note(n, "dot"), n.Left)
|
|
case ODOTPTR:
|
|
e.expr(k.deref(n, "dot of pointer"), n.Left) // "dot of pointer"
|
|
case ODOTTYPE, ODOTTYPE2:
|
|
e.expr(k.dotType(n.Type, n, "dot"), n.Left)
|
|
case OINDEX:
|
|
if n.Left.Type.IsArray() {
|
|
e.expr(k.note(n, "fixed-array-index-of"), n.Left)
|
|
} else {
|
|
// TODO(mdempsky): Fix why reason text.
|
|
e.expr(k.deref(n, "dot of pointer"), n.Left)
|
|
}
|
|
e.discard(n.Right)
|
|
case OINDEXMAP:
|
|
e.discard(n.Left)
|
|
e.discard(n.Right)
|
|
case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR, OSLICESTR:
|
|
e.expr(k.note(n, "slice"), n.Left)
|
|
low, high, max := n.SliceBounds()
|
|
e.discard(low)
|
|
e.discard(high)
|
|
e.discard(max)
|
|
|
|
case OCONV, OCONVNOP:
|
|
if checkPtr(e.curfn, 2) && n.Type.IsUnsafePtr() && n.Left.Type.IsPtr() {
|
|
// When -d=checkptr=2 is enabled, treat
|
|
// conversions to unsafe.Pointer as an
|
|
// escaping operation. This allows better
|
|
// runtime instrumentation, since we can more
|
|
// easily detect object boundaries on the heap
|
|
// than the stack.
|
|
e.assignHeap(n.Left, "conversion to unsafe.Pointer", n)
|
|
} else if n.Type.IsUnsafePtr() && n.Left.Type.IsUintptr() {
|
|
e.unsafeValue(k, n.Left)
|
|
} else {
|
|
e.expr(k, n.Left)
|
|
}
|
|
case OCONVIFACE:
|
|
if !n.Left.Type.IsInterface() && !isdirectiface(n.Left.Type) {
|
|
k = e.spill(k, n)
|
|
}
|
|
e.expr(k.note(n, "interface-converted"), n.Left)
|
|
|
|
case ORECV:
|
|
e.discard(n.Left)
|
|
|
|
case OCALLMETH, OCALLFUNC, OCALLINTER, OLEN, OCAP, OCOMPLEX, OREAL, OIMAG, OAPPEND, OCOPY:
|
|
e.call([]EscHole{k}, n, nil)
|
|
|
|
case ONEW:
|
|
e.spill(k, n)
|
|
|
|
case OMAKESLICE:
|
|
e.spill(k, n)
|
|
e.discard(n.Left)
|
|
e.discard(n.Right)
|
|
case OMAKECHAN:
|
|
e.discard(n.Left)
|
|
case OMAKEMAP:
|
|
e.spill(k, n)
|
|
e.discard(n.Left)
|
|
|
|
case ORECOVER:
|
|
// nop
|
|
|
|
case OCALLPART:
|
|
// Flow the receiver argument to both the closure and
|
|
// to the receiver parameter.
|
|
|
|
closureK := e.spill(k, n)
|
|
|
|
m := callpartMethod(n)
|
|
|
|
// We don't know how the method value will be called
|
|
// later, so conservatively assume the result
|
|
// parameters all flow to the heap.
|
|
//
|
|
// TODO(mdempsky): Change ks into a callback, so that
|
|
// we don't have to create this dummy slice?
|
|
var ks []EscHole
|
|
for i := m.Type.NumResults(); i > 0; i-- {
|
|
ks = append(ks, e.heapHole())
|
|
}
|
|
paramK := e.tagHole(ks, asNode(m.Type.Nname()), m.Type.Recv())
|
|
|
|
e.expr(e.teeHole(paramK, closureK), n.Left)
|
|
|
|
case OPTRLIT:
|
|
e.expr(e.spill(k, n), n.Left)
|
|
|
|
case OARRAYLIT:
|
|
for _, elt := range n.List.Slice() {
|
|
if elt.Op == OKEY {
|
|
elt = elt.Right
|
|
}
|
|
e.expr(k.note(n, "array literal element"), elt)
|
|
}
|
|
|
|
case OSLICELIT:
|
|
k = e.spill(k, n)
|
|
k.uintptrEscapesHack = uintptrEscapesHack // for ...uintptr parameters
|
|
|
|
for _, elt := range n.List.Slice() {
|
|
if elt.Op == OKEY {
|
|
elt = elt.Right
|
|
}
|
|
e.expr(k.note(n, "slice-literal-element"), elt)
|
|
}
|
|
|
|
case OSTRUCTLIT:
|
|
for _, elt := range n.List.Slice() {
|
|
e.expr(k.note(n, "struct literal element"), elt.Left)
|
|
}
|
|
|
|
case OMAPLIT:
|
|
e.spill(k, n)
|
|
|
|
// Map keys and values are always stored in the heap.
|
|
for _, elt := range n.List.Slice() {
|
|
e.assignHeap(elt.Left, "map literal key", n)
|
|
e.assignHeap(elt.Right, "map literal value", n)
|
|
}
|
|
|
|
case OCLOSURE:
|
|
k = e.spill(k, n)
|
|
|
|
// Link addresses of captured variables to closure.
|
|
for _, v := range n.Func.Closure.Func.Cvars.Slice() {
|
|
if v.Op == OXXX { // unnamed out argument; see dcl.go:/^funcargs
|
|
continue
|
|
}
|
|
|
|
k := k
|
|
if !v.Name.Byval() {
|
|
k = k.addr(v, "reference")
|
|
}
|
|
|
|
e.expr(k.note(n, "captured by a closure"), v.Name.Defn)
|
|
}
|
|
|
|
case ORUNES2STR, OBYTES2STR, OSTR2RUNES, OSTR2BYTES, ORUNESTR:
|
|
e.spill(k, n)
|
|
e.discard(n.Left)
|
|
|
|
case OADDSTR:
|
|
e.spill(k, n)
|
|
|
|
// Arguments of OADDSTR never escape;
|
|
// runtime.concatstrings makes sure of that.
|
|
e.discards(n.List)
|
|
}
|
|
}
|
|
|
|
// unsafeValue evaluates a uintptr-typed arithmetic expression looking
|
|
// for conversions from an unsafe.Pointer.
|
|
func (e *Escape) unsafeValue(k EscHole, n *Node) {
|
|
if n.Type.Etype != TUINTPTR {
|
|
Fatalf("unexpected type %v for %v", n.Type, n)
|
|
}
|
|
|
|
e.stmts(n.Ninit)
|
|
|
|
switch n.Op {
|
|
case OCONV, OCONVNOP:
|
|
if n.Left.Type.IsUnsafePtr() {
|
|
e.expr(k, n.Left)
|
|
} else {
|
|
e.discard(n.Left)
|
|
}
|
|
case ODOTPTR:
|
|
if isReflectHeaderDataField(n) {
|
|
e.expr(k.deref(n, "reflect.Header.Data"), n.Left)
|
|
} else {
|
|
e.discard(n.Left)
|
|
}
|
|
case OPLUS, ONEG, OBITNOT:
|
|
e.unsafeValue(k, n.Left)
|
|
case OADD, OSUB, OOR, OXOR, OMUL, ODIV, OMOD, OAND, OANDNOT:
|
|
e.unsafeValue(k, n.Left)
|
|
e.unsafeValue(k, n.Right)
|
|
case OLSH, ORSH:
|
|
e.unsafeValue(k, n.Left)
|
|
// RHS need not be uintptr-typed (#32959) and can't meaningfully
|
|
// flow pointers anyway.
|
|
e.discard(n.Right)
|
|
default:
|
|
e.exprSkipInit(e.discardHole(), n)
|
|
}
|
|
}
|
|
|
|
// discard evaluates an expression n for side-effects, but discards
|
|
// its value.
|
|
func (e *Escape) discard(n *Node) {
|
|
e.expr(e.discardHole(), n)
|
|
}
|
|
|
|
func (e *Escape) discards(l Nodes) {
|
|
for _, n := range l.Slice() {
|
|
e.discard(n)
|
|
}
|
|
}
|
|
|
|
// addr evaluates an addressable expression n and returns an EscHole
|
|
// that represents storing into the represented location.
|
|
func (e *Escape) addr(n *Node) EscHole {
|
|
if n == nil || n.isBlank() {
|
|
// Can happen at least in OSELRECV.
|
|
// TODO(mdempsky): Anywhere else?
|
|
return e.discardHole()
|
|
}
|
|
|
|
k := e.heapHole()
|
|
|
|
switch n.Op {
|
|
default:
|
|
Fatalf("unexpected addr: %v", n)
|
|
case ONAME:
|
|
if n.Class() == PEXTERN {
|
|
break
|
|
}
|
|
k = e.oldLoc(n).asHole()
|
|
case ODOT:
|
|
k = e.addr(n.Left)
|
|
case OINDEX:
|
|
e.discard(n.Right)
|
|
if n.Left.Type.IsArray() {
|
|
k = e.addr(n.Left)
|
|
} else {
|
|
e.discard(n.Left)
|
|
}
|
|
case ODEREF, ODOTPTR:
|
|
e.discard(n)
|
|
case OINDEXMAP:
|
|
e.discard(n.Left)
|
|
e.assignHeap(n.Right, "key of map put", n)
|
|
}
|
|
|
|
if !n.Type.HasPointers() {
|
|
k = e.discardHole()
|
|
}
|
|
|
|
return k
|
|
}
|
|
|
|
func (e *Escape) addrs(l Nodes) []EscHole {
|
|
var ks []EscHole
|
|
for _, n := range l.Slice() {
|
|
ks = append(ks, e.addr(n))
|
|
}
|
|
return ks
|
|
}
|
|
|
|
// assign evaluates the assignment dst = src.
|
|
func (e *Escape) assign(dst, src *Node, why string, where *Node) {
|
|
// Filter out some no-op assignments for escape analysis.
|
|
ignore := dst != nil && src != nil && isSelfAssign(dst, src)
|
|
if ignore && Debug.m != 0 {
|
|
Warnl(where.Pos, "%v ignoring self-assignment in %S", funcSym(e.curfn), where)
|
|
}
|
|
|
|
k := e.addr(dst)
|
|
if dst != nil && dst.Op == ODOTPTR && isReflectHeaderDataField(dst) {
|
|
e.unsafeValue(e.heapHole().note(where, why), src)
|
|
} else {
|
|
if ignore {
|
|
k = e.discardHole()
|
|
}
|
|
e.expr(k.note(where, why), src)
|
|
}
|
|
}
|
|
|
|
func (e *Escape) assignHeap(src *Node, why string, where *Node) {
|
|
e.expr(e.heapHole().note(where, why), src)
|
|
}
|
|
|
|
// call evaluates a call expressions, including builtin calls. ks
|
|
// should contain the holes representing where the function callee's
|
|
// results flows; where is the OGO/ODEFER context of the call, if any.
|
|
func (e *Escape) call(ks []EscHole, call, where *Node) {
|
|
topLevelDefer := where != nil && where.Op == ODEFER && e.loopDepth == 1
|
|
if topLevelDefer {
|
|
// force stack allocation of defer record, unless
|
|
// open-coded defers are used (see ssa.go)
|
|
where.Esc = EscNever
|
|
}
|
|
|
|
argument := func(k EscHole, arg *Node) {
|
|
if topLevelDefer {
|
|
// Top level defers arguments don't escape to
|
|
// heap, but they do need to last until end of
|
|
// function.
|
|
k = e.later(k)
|
|
} else if where != nil {
|
|
k = e.heapHole()
|
|
}
|
|
|
|
e.expr(k.note(call, "call parameter"), arg)
|
|
}
|
|
|
|
switch call.Op {
|
|
default:
|
|
Fatalf("unexpected call op: %v", call.Op)
|
|
|
|
case OCALLFUNC, OCALLMETH, OCALLINTER:
|
|
fixVariadicCall(call)
|
|
|
|
// Pick out the function callee, if statically known.
|
|
var fn *Node
|
|
switch call.Op {
|
|
case OCALLFUNC:
|
|
switch v := staticValue(call.Left); {
|
|
case v.Op == ONAME && v.Class() == PFUNC:
|
|
fn = v
|
|
case v.Op == OCLOSURE:
|
|
fn = v.Func.Closure.Func.Nname
|
|
}
|
|
case OCALLMETH:
|
|
fn = asNode(call.Left.Type.FuncType().Nname)
|
|
}
|
|
|
|
fntype := call.Left.Type
|
|
if fn != nil {
|
|
fntype = fn.Type
|
|
}
|
|
|
|
if ks != nil && fn != nil && e.inMutualBatch(fn) {
|
|
for i, result := range fn.Type.Results().FieldSlice() {
|
|
e.expr(ks[i], asNode(result.Nname))
|
|
}
|
|
}
|
|
|
|
if r := fntype.Recv(); r != nil {
|
|
argument(e.tagHole(ks, fn, r), call.Left.Left)
|
|
} else {
|
|
// Evaluate callee function expression.
|
|
argument(e.discardHole(), call.Left)
|
|
}
|
|
|
|
args := call.List.Slice()
|
|
for i, param := range fntype.Params().FieldSlice() {
|
|
argument(e.tagHole(ks, fn, param), args[i])
|
|
}
|
|
|
|
case OAPPEND:
|
|
args := call.List.Slice()
|
|
|
|
// Appendee slice may flow directly to the result, if
|
|
// it has enough capacity. Alternatively, a new heap
|
|
// slice might be allocated, and all slice elements
|
|
// might flow to heap.
|
|
appendeeK := ks[0]
|
|
if args[0].Type.Elem().HasPointers() {
|
|
appendeeK = e.teeHole(appendeeK, e.heapHole().deref(call, "appendee slice"))
|
|
}
|
|
argument(appendeeK, args[0])
|
|
|
|
if call.IsDDD() {
|
|
appendedK := e.discardHole()
|
|
if args[1].Type.IsSlice() && args[1].Type.Elem().HasPointers() {
|
|
appendedK = e.heapHole().deref(call, "appended slice...")
|
|
}
|
|
argument(appendedK, args[1])
|
|
} else {
|
|
for _, arg := range args[1:] {
|
|
argument(e.heapHole(), arg)
|
|
}
|
|
}
|
|
|
|
case OCOPY:
|
|
argument(e.discardHole(), call.Left)
|
|
|
|
copiedK := e.discardHole()
|
|
if call.Right.Type.IsSlice() && call.Right.Type.Elem().HasPointers() {
|
|
copiedK = e.heapHole().deref(call, "copied slice")
|
|
}
|
|
argument(copiedK, call.Right)
|
|
|
|
case OPANIC:
|
|
argument(e.heapHole(), call.Left)
|
|
|
|
case OCOMPLEX:
|
|
argument(e.discardHole(), call.Left)
|
|
argument(e.discardHole(), call.Right)
|
|
case ODELETE, OPRINT, OPRINTN, ORECOVER:
|
|
for _, arg := range call.List.Slice() {
|
|
argument(e.discardHole(), arg)
|
|
}
|
|
case OLEN, OCAP, OREAL, OIMAG, OCLOSE:
|
|
argument(e.discardHole(), call.Left)
|
|
}
|
|
}
|
|
|
|
// tagHole returns a hole for evaluating an argument passed to param.
|
|
// ks should contain the holes representing where the function
|
|
// callee's results flows. fn is the statically-known callee function,
|
|
// if any.
|
|
func (e *Escape) tagHole(ks []EscHole, fn *Node, param *types.Field) EscHole {
|
|
// If this is a dynamic call, we can't rely on param.Note.
|
|
if fn == nil {
|
|
return e.heapHole()
|
|
}
|
|
|
|
if e.inMutualBatch(fn) {
|
|
return e.addr(asNode(param.Nname))
|
|
}
|
|
|
|
// Call to previously tagged function.
|
|
|
|
if param.Note == uintptrEscapesTag {
|
|
k := e.heapHole()
|
|
k.uintptrEscapesHack = true
|
|
return k
|
|
}
|
|
|
|
var tagKs []EscHole
|
|
|
|
esc := ParseLeaks(param.Note)
|
|
if x := esc.Heap(); x >= 0 {
|
|
tagKs = append(tagKs, e.heapHole().shift(x))
|
|
}
|
|
|
|
if ks != nil {
|
|
for i := 0; i < numEscResults; i++ {
|
|
if x := esc.Result(i); x >= 0 {
|
|
tagKs = append(tagKs, ks[i].shift(x))
|
|
}
|
|
}
|
|
}
|
|
|
|
return e.teeHole(tagKs...)
|
|
}
|
|
|
|
// inMutualBatch reports whether function fn is in the batch of
|
|
// mutually recursive functions being analyzed. When this is true,
|
|
// fn has not yet been analyzed, so its parameters and results
|
|
// should be incorporated directly into the flow graph instead of
|
|
// relying on its escape analysis tagging.
|
|
func (e *Escape) inMutualBatch(fn *Node) bool {
|
|
if fn.Name.Defn != nil && fn.Name.Defn.Esc < EscFuncTagged {
|
|
if fn.Name.Defn.Esc == EscFuncUnknown {
|
|
Fatalf("graph inconsistency")
|
|
}
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// An EscHole represents a context for evaluation a Go
|
|
// expression. E.g., when evaluating p in "x = **p", we'd have a hole
|
|
// with dst==x and derefs==2.
|
|
type EscHole struct {
|
|
dst *EscLocation
|
|
derefs int // >= -1
|
|
notes *EscNote
|
|
|
|
// uintptrEscapesHack indicates this context is evaluating an
|
|
// argument for a //go:uintptrescapes function.
|
|
uintptrEscapesHack bool
|
|
}
|
|
|
|
type EscNote struct {
|
|
next *EscNote
|
|
where *Node
|
|
why string
|
|
}
|
|
|
|
func (k EscHole) note(where *Node, why string) EscHole {
|
|
if where == nil || why == "" {
|
|
Fatalf("note: missing where/why")
|
|
}
|
|
if Debug.m >= 2 || logopt.Enabled() {
|
|
k.notes = &EscNote{
|
|
next: k.notes,
|
|
where: where,
|
|
why: why,
|
|
}
|
|
}
|
|
return k
|
|
}
|
|
|
|
func (k EscHole) shift(delta int) EscHole {
|
|
k.derefs += delta
|
|
if k.derefs < -1 {
|
|
Fatalf("derefs underflow: %v", k.derefs)
|
|
}
|
|
return k
|
|
}
|
|
|
|
func (k EscHole) deref(where *Node, why string) EscHole { return k.shift(1).note(where, why) }
|
|
func (k EscHole) addr(where *Node, why string) EscHole { return k.shift(-1).note(where, why) }
|
|
|
|
func (k EscHole) dotType(t *types.Type, where *Node, why string) EscHole {
|
|
if !t.IsInterface() && !isdirectiface(t) {
|
|
k = k.shift(1)
|
|
}
|
|
return k.note(where, why)
|
|
}
|
|
|
|
// teeHole returns a new hole that flows into each hole of ks,
|
|
// similar to the Unix tee(1) command.
|
|
func (e *Escape) teeHole(ks ...EscHole) EscHole {
|
|
if len(ks) == 0 {
|
|
return e.discardHole()
|
|
}
|
|
if len(ks) == 1 {
|
|
return ks[0]
|
|
}
|
|
// TODO(mdempsky): Optimize if there's only one non-discard hole?
|
|
|
|
// Given holes "l1 = _", "l2 = **_", "l3 = *_", ..., create a
|
|
// new temporary location ltmp, wire it into place, and return
|
|
// a hole for "ltmp = _".
|
|
loc := e.newLoc(nil, true)
|
|
for _, k := range ks {
|
|
// N.B., "p = &q" and "p = &tmp; tmp = q" are not
|
|
// semantically equivalent. To combine holes like "l1
|
|
// = _" and "l2 = &_", we'd need to wire them as "l1 =
|
|
// *ltmp" and "l2 = ltmp" and return "ltmp = &_"
|
|
// instead.
|
|
if k.derefs < 0 {
|
|
Fatalf("teeHole: negative derefs")
|
|
}
|
|
|
|
e.flow(k, loc)
|
|
}
|
|
return loc.asHole()
|
|
}
|
|
|
|
func (e *Escape) dcl(n *Node) EscHole {
|
|
loc := e.oldLoc(n)
|
|
loc.loopDepth = e.loopDepth
|
|
return loc.asHole()
|
|
}
|
|
|
|
// spill allocates a new location associated with expression n, flows
|
|
// its address to k, and returns a hole that flows values to it. It's
|
|
// intended for use with most expressions that allocate storage.
|
|
func (e *Escape) spill(k EscHole, n *Node) EscHole {
|
|
loc := e.newLoc(n, true)
|
|
e.flow(k.addr(n, "spill"), loc)
|
|
return loc.asHole()
|
|
}
|
|
|
|
// later returns a new hole that flows into k, but some time later.
|
|
// Its main effect is to prevent immediate reuse of temporary
|
|
// variables introduced during Order.
|
|
func (e *Escape) later(k EscHole) EscHole {
|
|
loc := e.newLoc(nil, false)
|
|
e.flow(k, loc)
|
|
return loc.asHole()
|
|
}
|
|
|
|
// canonicalNode returns the canonical *Node that n logically
|
|
// represents.
|
|
func canonicalNode(n *Node) *Node {
|
|
if n != nil && n.Op == ONAME && n.Name.IsClosureVar() {
|
|
n = n.Name.Defn
|
|
if n.Name.IsClosureVar() {
|
|
Fatalf("still closure var")
|
|
}
|
|
}
|
|
|
|
return n
|
|
}
|
|
|
|
func (e *Escape) newLoc(n *Node, transient bool) *EscLocation {
|
|
if e.curfn == nil {
|
|
Fatalf("e.curfn isn't set")
|
|
}
|
|
if n != nil && n.Type != nil && n.Type.NotInHeap() {
|
|
yyerrorl(n.Pos, "%v is incomplete (or unallocatable); stack allocation disallowed", n.Type)
|
|
}
|
|
|
|
n = canonicalNode(n)
|
|
loc := &EscLocation{
|
|
n: n,
|
|
curfn: e.curfn,
|
|
loopDepth: e.loopDepth,
|
|
transient: transient,
|
|
}
|
|
e.allLocs = append(e.allLocs, loc)
|
|
if n != nil {
|
|
if n.Op == ONAME && n.Name.Curfn != e.curfn {
|
|
Fatalf("curfn mismatch: %v != %v", n.Name.Curfn, e.curfn)
|
|
}
|
|
|
|
if n.HasOpt() {
|
|
Fatalf("%v already has a location", n)
|
|
}
|
|
n.SetOpt(loc)
|
|
|
|
if why := heapAllocReason(n); why != "" {
|
|
e.flow(e.heapHole().addr(n, why), loc)
|
|
}
|
|
}
|
|
return loc
|
|
}
|
|
|
|
func (e *Escape) oldLoc(n *Node) *EscLocation {
|
|
n = canonicalNode(n)
|
|
return n.Opt().(*EscLocation)
|
|
}
|
|
|
|
func (l *EscLocation) asHole() EscHole {
|
|
return EscHole{dst: l}
|
|
}
|
|
|
|
func (e *Escape) flow(k EscHole, src *EscLocation) {
|
|
dst := k.dst
|
|
if dst == &e.blankLoc {
|
|
return
|
|
}
|
|
if dst == src && k.derefs >= 0 { // dst = dst, dst = *dst, ...
|
|
return
|
|
}
|
|
if dst.escapes && k.derefs < 0 { // dst = &src
|
|
if Debug.m >= 2 || logopt.Enabled() {
|
|
pos := linestr(src.n.Pos)
|
|
if Debug.m >= 2 {
|
|
fmt.Printf("%s: %v escapes to heap:\n", pos, src.n)
|
|
}
|
|
explanation := e.explainFlow(pos, dst, src, k.derefs, k.notes, []*logopt.LoggedOpt{})
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(src.n.Pos, "escapes", "escape", e.curfn.funcname(), fmt.Sprintf("%v escapes to heap", src.n), explanation)
|
|
}
|
|
|
|
}
|
|
src.escapes = true
|
|
return
|
|
}
|
|
|
|
// TODO(mdempsky): Deduplicate edges?
|
|
dst.edges = append(dst.edges, EscEdge{src: src, derefs: k.derefs, notes: k.notes})
|
|
}
|
|
|
|
func (e *Escape) heapHole() EscHole { return e.heapLoc.asHole() }
|
|
func (e *Escape) discardHole() EscHole { return e.blankLoc.asHole() }
|
|
|
|
// walkAll computes the minimal dereferences between all pairs of
|
|
// locations.
|
|
func (e *Escape) walkAll() {
|
|
// We use a work queue to keep track of locations that we need
|
|
// to visit, and repeatedly walk until we reach a fixed point.
|
|
//
|
|
// We walk once from each location (including the heap), and
|
|
// then re-enqueue each location on its transition from
|
|
// transient->!transient and !escapes->escapes, which can each
|
|
// happen at most once. So we take Θ(len(e.allLocs)) walks.
|
|
|
|
// LIFO queue, has enough room for e.allLocs and e.heapLoc.
|
|
todo := make([]*EscLocation, 0, len(e.allLocs)+1)
|
|
enqueue := func(loc *EscLocation) {
|
|
if !loc.queued {
|
|
todo = append(todo, loc)
|
|
loc.queued = true
|
|
}
|
|
}
|
|
|
|
for _, loc := range e.allLocs {
|
|
enqueue(loc)
|
|
}
|
|
enqueue(&e.heapLoc)
|
|
|
|
var walkgen uint32
|
|
for len(todo) > 0 {
|
|
root := todo[len(todo)-1]
|
|
todo = todo[:len(todo)-1]
|
|
root.queued = false
|
|
|
|
walkgen++
|
|
e.walkOne(root, walkgen, enqueue)
|
|
}
|
|
}
|
|
|
|
// walkOne computes the minimal number of dereferences from root to
|
|
// all other locations.
|
|
func (e *Escape) walkOne(root *EscLocation, walkgen uint32, enqueue func(*EscLocation)) {
|
|
// The data flow graph has negative edges (from addressing
|
|
// operations), so we use the Bellman-Ford algorithm. However,
|
|
// we don't have to worry about infinite negative cycles since
|
|
// we bound intermediate dereference counts to 0.
|
|
|
|
root.walkgen = walkgen
|
|
root.derefs = 0
|
|
root.dst = nil
|
|
|
|
todo := []*EscLocation{root} // LIFO queue
|
|
for len(todo) > 0 {
|
|
l := todo[len(todo)-1]
|
|
todo = todo[:len(todo)-1]
|
|
|
|
base := l.derefs
|
|
|
|
// If l.derefs < 0, then l's address flows to root.
|
|
addressOf := base < 0
|
|
if addressOf {
|
|
// For a flow path like "root = &l; l = x",
|
|
// l's address flows to root, but x's does
|
|
// not. We recognize this by lower bounding
|
|
// base at 0.
|
|
base = 0
|
|
|
|
// If l's address flows to a non-transient
|
|
// location, then l can't be transiently
|
|
// allocated.
|
|
if !root.transient && l.transient {
|
|
l.transient = false
|
|
enqueue(l)
|
|
}
|
|
}
|
|
|
|
if e.outlives(root, l) {
|
|
// l's value flows to root. If l is a function
|
|
// parameter and root is the heap or a
|
|
// corresponding result parameter, then record
|
|
// that value flow for tagging the function
|
|
// later.
|
|
if l.isName(PPARAM) {
|
|
if (logopt.Enabled() || Debug.m >= 2) && !l.escapes {
|
|
if Debug.m >= 2 {
|
|
fmt.Printf("%s: parameter %v leaks to %s with derefs=%d:\n", linestr(l.n.Pos), l.n, e.explainLoc(root), base)
|
|
}
|
|
explanation := e.explainPath(root, l)
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(l.n.Pos, "leak", "escape", e.curfn.funcname(),
|
|
fmt.Sprintf("parameter %v leaks to %s with derefs=%d", l.n, e.explainLoc(root), base), explanation)
|
|
}
|
|
}
|
|
l.leakTo(root, base)
|
|
}
|
|
|
|
// If l's address flows somewhere that
|
|
// outlives it, then l needs to be heap
|
|
// allocated.
|
|
if addressOf && !l.escapes {
|
|
if logopt.Enabled() || Debug.m >= 2 {
|
|
if Debug.m >= 2 {
|
|
fmt.Printf("%s: %v escapes to heap:\n", linestr(l.n.Pos), l.n)
|
|
}
|
|
explanation := e.explainPath(root, l)
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(l.n.Pos, "escape", "escape", e.curfn.funcname(), fmt.Sprintf("%v escapes to heap", l.n), explanation)
|
|
}
|
|
}
|
|
l.escapes = true
|
|
enqueue(l)
|
|
continue
|
|
}
|
|
}
|
|
|
|
for i, edge := range l.edges {
|
|
if edge.src.escapes {
|
|
continue
|
|
}
|
|
derefs := base + edge.derefs
|
|
if edge.src.walkgen != walkgen || edge.src.derefs > derefs {
|
|
edge.src.walkgen = walkgen
|
|
edge.src.derefs = derefs
|
|
edge.src.dst = l
|
|
edge.src.dstEdgeIdx = i
|
|
todo = append(todo, edge.src)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// explainPath prints an explanation of how src flows to the walk root.
|
|
func (e *Escape) explainPath(root, src *EscLocation) []*logopt.LoggedOpt {
|
|
visited := make(map[*EscLocation]bool)
|
|
pos := linestr(src.n.Pos)
|
|
var explanation []*logopt.LoggedOpt
|
|
for {
|
|
// Prevent infinite loop.
|
|
if visited[src] {
|
|
if Debug.m >= 2 {
|
|
fmt.Printf("%s: warning: truncated explanation due to assignment cycle; see golang.org/issue/35518\n", pos)
|
|
}
|
|
break
|
|
}
|
|
visited[src] = true
|
|
dst := src.dst
|
|
edge := &dst.edges[src.dstEdgeIdx]
|
|
if edge.src != src {
|
|
Fatalf("path inconsistency: %v != %v", edge.src, src)
|
|
}
|
|
|
|
explanation = e.explainFlow(pos, dst, src, edge.derefs, edge.notes, explanation)
|
|
|
|
if dst == root {
|
|
break
|
|
}
|
|
src = dst
|
|
}
|
|
|
|
return explanation
|
|
}
|
|
|
|
func (e *Escape) explainFlow(pos string, dst, srcloc *EscLocation, derefs int, notes *EscNote, explanation []*logopt.LoggedOpt) []*logopt.LoggedOpt {
|
|
ops := "&"
|
|
if derefs >= 0 {
|
|
ops = strings.Repeat("*", derefs)
|
|
}
|
|
print := Debug.m >= 2
|
|
|
|
flow := fmt.Sprintf(" flow: %s = %s%v:", e.explainLoc(dst), ops, e.explainLoc(srcloc))
|
|
if print {
|
|
fmt.Printf("%s:%s\n", pos, flow)
|
|
}
|
|
if logopt.Enabled() {
|
|
var epos src.XPos
|
|
if notes != nil {
|
|
epos = notes.where.Pos
|
|
} else if srcloc != nil && srcloc.n != nil {
|
|
epos = srcloc.n.Pos
|
|
}
|
|
explanation = append(explanation, logopt.NewLoggedOpt(epos, "escflow", "escape", e.curfn.funcname(), flow))
|
|
}
|
|
|
|
for note := notes; note != nil; note = note.next {
|
|
if print {
|
|
fmt.Printf("%s: from %v (%v) at %s\n", pos, note.where, note.why, linestr(note.where.Pos))
|
|
}
|
|
if logopt.Enabled() {
|
|
explanation = append(explanation, logopt.NewLoggedOpt(note.where.Pos, "escflow", "escape", e.curfn.funcname(),
|
|
fmt.Sprintf(" from %v (%v)", note.where, note.why)))
|
|
}
|
|
}
|
|
return explanation
|
|
}
|
|
|
|
func (e *Escape) explainLoc(l *EscLocation) string {
|
|
if l == &e.heapLoc {
|
|
return "{heap}"
|
|
}
|
|
if l.n == nil {
|
|
// TODO(mdempsky): Omit entirely.
|
|
return "{temp}"
|
|
}
|
|
if l.n.Op == ONAME {
|
|
return fmt.Sprintf("%v", l.n)
|
|
}
|
|
return fmt.Sprintf("{storage for %v}", l.n)
|
|
}
|
|
|
|
// outlives reports whether values stored in l may survive beyond
|
|
// other's lifetime if stack allocated.
|
|
func (e *Escape) outlives(l, other *EscLocation) bool {
|
|
// The heap outlives everything.
|
|
if l.escapes {
|
|
return true
|
|
}
|
|
|
|
// We don't know what callers do with returned values, so
|
|
// pessimistically we need to assume they flow to the heap and
|
|
// outlive everything too.
|
|
if l.isName(PPARAMOUT) {
|
|
// Exception: Directly called closures can return
|
|
// locations allocated outside of them without forcing
|
|
// them to the heap. For example:
|
|
//
|
|
// var u int // okay to stack allocate
|
|
// *(func() *int { return &u }()) = 42
|
|
if containsClosure(other.curfn, l.curfn) && l.curfn.Func.Closure.Func.Top&ctxCallee != 0 {
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// If l and other are within the same function, then l
|
|
// outlives other if it was declared outside other's loop
|
|
// scope. For example:
|
|
//
|
|
// var l *int
|
|
// for {
|
|
// l = new(int)
|
|
// }
|
|
if l.curfn == other.curfn && l.loopDepth < other.loopDepth {
|
|
return true
|
|
}
|
|
|
|
// If other is declared within a child closure of where l is
|
|
// declared, then l outlives it. For example:
|
|
//
|
|
// var l *int
|
|
// func() {
|
|
// l = new(int)
|
|
// }
|
|
if containsClosure(l.curfn, other.curfn) {
|
|
return true
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// containsClosure reports whether c is a closure contained within f.
|
|
func containsClosure(f, c *Node) bool {
|
|
if f.Op != ODCLFUNC || c.Op != ODCLFUNC {
|
|
Fatalf("bad containsClosure: %v, %v", f, c)
|
|
}
|
|
|
|
// Common case.
|
|
if f == c {
|
|
return false
|
|
}
|
|
|
|
// Closures within function Foo are named like "Foo.funcN..."
|
|
// TODO(mdempsky): Better way to recognize this.
|
|
fn := f.Func.Nname.Sym.Name
|
|
cn := c.Func.Nname.Sym.Name
|
|
return len(cn) > len(fn) && cn[:len(fn)] == fn && cn[len(fn)] == '.'
|
|
}
|
|
|
|
// leak records that parameter l leaks to sink.
|
|
func (l *EscLocation) leakTo(sink *EscLocation, derefs int) {
|
|
// If sink is a result parameter and we can fit return bits
|
|
// into the escape analysis tag, then record a return leak.
|
|
if sink.isName(PPARAMOUT) && sink.curfn == l.curfn {
|
|
// TODO(mdempsky): Eliminate dependency on Vargen here.
|
|
ri := int(sink.n.Name.Vargen) - 1
|
|
if ri < numEscResults {
|
|
// Leak to result parameter.
|
|
l.paramEsc.AddResult(ri, derefs)
|
|
return
|
|
}
|
|
}
|
|
|
|
// Otherwise, record as heap leak.
|
|
l.paramEsc.AddHeap(derefs)
|
|
}
|
|
|
|
func (e *Escape) finish(fns []*Node) {
|
|
// Record parameter tags for package export data.
|
|
for _, fn := range fns {
|
|
fn.Esc = EscFuncTagged
|
|
|
|
narg := 0
|
|
for _, fs := range &types.RecvsParams {
|
|
for _, f := range fs(fn.Type).Fields().Slice() {
|
|
narg++
|
|
f.Note = e.paramTag(fn, narg, f)
|
|
}
|
|
}
|
|
}
|
|
|
|
for _, loc := range e.allLocs {
|
|
n := loc.n
|
|
if n == nil {
|
|
continue
|
|
}
|
|
n.SetOpt(nil)
|
|
|
|
// Update n.Esc based on escape analysis results.
|
|
|
|
if loc.escapes {
|
|
if n.Op != ONAME {
|
|
if Debug.m != 0 {
|
|
Warnl(n.Pos, "%S escapes to heap", n)
|
|
}
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos, "escape", "escape", e.curfn.funcname())
|
|
}
|
|
}
|
|
n.Esc = EscHeap
|
|
addrescapes(n)
|
|
} else {
|
|
if Debug.m != 0 && n.Op != ONAME {
|
|
Warnl(n.Pos, "%S does not escape", n)
|
|
}
|
|
n.Esc = EscNone
|
|
if loc.transient {
|
|
n.SetTransient(true)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (l *EscLocation) isName(c Class) bool {
|
|
return l.n != nil && l.n.Op == ONAME && l.n.Class() == c
|
|
}
|
|
|
|
const numEscResults = 7
|
|
|
|
// An EscLeaks represents a set of assignment flows from a parameter
|
|
// to the heap or to any of its function's (first numEscResults)
|
|
// result parameters.
|
|
type EscLeaks [1 + numEscResults]uint8
|
|
|
|
// Empty reports whether l is an empty set (i.e., no assignment flows).
|
|
func (l EscLeaks) Empty() bool { return l == EscLeaks{} }
|
|
|
|
// Heap returns the minimum deref count of any assignment flow from l
|
|
// to the heap. If no such flows exist, Heap returns -1.
|
|
func (l EscLeaks) Heap() int { return l.get(0) }
|
|
|
|
// Result returns the minimum deref count of any assignment flow from
|
|
// l to its function's i'th result parameter. If no such flows exist,
|
|
// Result returns -1.
|
|
func (l EscLeaks) Result(i int) int { return l.get(1 + i) }
|
|
|
|
// AddHeap adds an assignment flow from l to the heap.
|
|
func (l *EscLeaks) AddHeap(derefs int) { l.add(0, derefs) }
|
|
|
|
// AddResult adds an assignment flow from l to its function's i'th
|
|
// result parameter.
|
|
func (l *EscLeaks) AddResult(i, derefs int) { l.add(1+i, derefs) }
|
|
|
|
func (l *EscLeaks) setResult(i, derefs int) { l.set(1+i, derefs) }
|
|
|
|
func (l EscLeaks) get(i int) int { return int(l[i]) - 1 }
|
|
|
|
func (l *EscLeaks) add(i, derefs int) {
|
|
if old := l.get(i); old < 0 || derefs < old {
|
|
l.set(i, derefs)
|
|
}
|
|
}
|
|
|
|
func (l *EscLeaks) set(i, derefs int) {
|
|
v := derefs + 1
|
|
if v < 0 {
|
|
Fatalf("invalid derefs count: %v", derefs)
|
|
}
|
|
if v > math.MaxUint8 {
|
|
v = math.MaxUint8
|
|
}
|
|
|
|
l[i] = uint8(v)
|
|
}
|
|
|
|
// Optimize removes result flow paths that are equal in length or
|
|
// longer than the shortest heap flow path.
|
|
func (l *EscLeaks) Optimize() {
|
|
// If we have a path to the heap, then there's no use in
|
|
// keeping equal or longer paths elsewhere.
|
|
if x := l.Heap(); x >= 0 {
|
|
for i := 0; i < numEscResults; i++ {
|
|
if l.Result(i) >= x {
|
|
l.setResult(i, -1)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
var leakTagCache = map[EscLeaks]string{}
|
|
|
|
// Encode converts l into a binary string for export data.
|
|
func (l EscLeaks) Encode() string {
|
|
if l.Heap() == 0 {
|
|
// Space optimization: empty string encodes more
|
|
// efficiently in export data.
|
|
return ""
|
|
}
|
|
if s, ok := leakTagCache[l]; ok {
|
|
return s
|
|
}
|
|
|
|
n := len(l)
|
|
for n > 0 && l[n-1] == 0 {
|
|
n--
|
|
}
|
|
s := "esc:" + string(l[:n])
|
|
leakTagCache[l] = s
|
|
return s
|
|
}
|
|
|
|
// ParseLeaks parses a binary string representing an EscLeaks.
|
|
func ParseLeaks(s string) EscLeaks {
|
|
var l EscLeaks
|
|
if !strings.HasPrefix(s, "esc:") {
|
|
l.AddHeap(0)
|
|
return l
|
|
}
|
|
copy(l[:], s[4:])
|
|
return l
|
|
}
|