go/src/internal/coverage/cformat/format.go
Than McIntosh 5cdc3874b0 cmd/covdata: tweak output format for 'go tool covdata percent'
Include some additional whitepace when emitting percentage of
statements covered per package, to make "go tool covdata percent"
output more like "go test -cover" output.

Change-Id: I450cf2bfa05b1eed747cb2f99967314419fa446c
Reviewed-on: https://go-review.googlesource.com/c/go/+/495445
Reviewed-by: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
Run-TryBot: Than McIntosh <thanm@google.com>
2023-05-23 11:36:45 +00:00

340 lines
9.6 KiB
Go

// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cformat
// This package provides apis for producing human-readable summaries
// of coverage data (e.g. a coverage percentage for a given package or
// set of packages) and for writing data in the legacy test format
// emitted by "go test -coverprofile=<outfile>".
//
// The model for using these apis is to create a Formatter object,
// then make a series of calls to SetPackage and AddUnit passing in
// data read from coverage meta-data and counter-data files. E.g.
//
// myformatter := cformat.NewFormatter()
// ...
// for each package P in meta-data file: {
// myformatter.SetPackage(P)
// for each function F in P: {
// for each coverable unit U in F: {
// myformatter.AddUnit(U)
// }
// }
// }
// myformatter.EmitPercent(os.Stdout, "")
// myformatter.EmitTextual(somefile)
//
// These apis are linked into tests that are built with "-cover", and
// called at the end of test execution to produce text output or
// emit coverage percentages.
import (
"fmt"
"internal/coverage"
"internal/coverage/cmerge"
"io"
"sort"
"text/tabwriter"
)
type Formatter struct {
// Maps import path to package state.
pm map[string]*pstate
// Records current package being visited.
pkg string
// Pointer to current package state.
p *pstate
// Counter mode.
cm coverage.CounterMode
}
// pstate records package-level coverage data state:
// - a table of functions (file/fname/literal)
// - a map recording the index/ID of each func encountered so far
// - a table storing execution count for the coverable units in each func
type pstate struct {
// slice of unique functions
funcs []fnfile
// maps function to index in slice above (index acts as function ID)
funcTable map[fnfile]uint32
// A table storing coverage counts for each coverable unit.
unitTable map[extcu]uint32
}
// extcu encapsulates a coverable unit within some function.
type extcu struct {
fnfid uint32 // index into p.funcs slice
coverage.CoverableUnit
}
// fnfile is a function-name/file-name tuple.
type fnfile struct {
file string
fname string
lit bool
}
func NewFormatter(cm coverage.CounterMode) *Formatter {
return &Formatter{
pm: make(map[string]*pstate),
cm: cm,
}
}
// SetPackage tells the formatter that we're about to visit the
// coverage data for the package with the specified import path.
// Note that it's OK to call SetPackage more than once with the
// same import path; counter data values will be accumulated.
func (fm *Formatter) SetPackage(importpath string) {
if importpath == fm.pkg {
return
}
fm.pkg = importpath
ps, ok := fm.pm[importpath]
if !ok {
ps = new(pstate)
fm.pm[importpath] = ps
ps.unitTable = make(map[extcu]uint32)
ps.funcTable = make(map[fnfile]uint32)
}
fm.p = ps
}
// AddUnit passes info on a single coverable unit (file, funcname,
// literal flag, range of lines, and counter value) to the formatter.
// Counter values will be accumulated where appropriate.
func (fm *Formatter) AddUnit(file string, fname string, isfnlit bool, unit coverage.CoverableUnit, count uint32) {
if fm.p == nil {
panic("AddUnit invoked before SetPackage")
}
fkey := fnfile{file: file, fname: fname, lit: isfnlit}
idx, ok := fm.p.funcTable[fkey]
if !ok {
idx = uint32(len(fm.p.funcs))
fm.p.funcs = append(fm.p.funcs, fkey)
fm.p.funcTable[fkey] = idx
}
ukey := extcu{fnfid: idx, CoverableUnit: unit}
pcount := fm.p.unitTable[ukey]
var result uint32
if fm.cm == coverage.CtrModeSet {
if count != 0 || pcount != 0 {
result = 1
}
} else {
// Use saturating arithmetic.
result, _ = cmerge.SaturatingAdd(pcount, count)
}
fm.p.unitTable[ukey] = result
}
// sortUnits sorts a slice of extcu objects in a package according to
// source position information (e.g. file and line). Note that we don't
// include function name as part of the sorting criteria, the thinking
// being that is better to provide things in the original source order.
func (p *pstate) sortUnits(units []extcu) {
sort.Slice(units, func(i, j int) bool {
ui := units[i]
uj := units[j]
ifile := p.funcs[ui.fnfid].file
jfile := p.funcs[uj.fnfid].file
if ifile != jfile {
return ifile < jfile
}
// NB: not taking function literal flag into account here (no
// need, since other fields are guaranteed to be distinct).
if units[i].StLine != units[j].StLine {
return units[i].StLine < units[j].StLine
}
if units[i].EnLine != units[j].EnLine {
return units[i].EnLine < units[j].EnLine
}
if units[i].StCol != units[j].StCol {
return units[i].StCol < units[j].StCol
}
if units[i].EnCol != units[j].EnCol {
return units[i].EnCol < units[j].EnCol
}
return units[i].NxStmts < units[j].NxStmts
})
}
// EmitTextual writes the accumulated coverage data in the legacy
// cmd/cover text format to the writer 'w'. We sort the data items by
// importpath, source file, and line number before emitting (this sorting
// is not explicitly mandated by the format, but seems like a good idea
// for repeatable/deterministic dumps).
func (fm *Formatter) EmitTextual(w io.Writer) error {
if fm.cm == coverage.CtrModeInvalid {
panic("internal error, counter mode unset")
}
if _, err := fmt.Fprintf(w, "mode: %s\n", fm.cm.String()); err != nil {
return err
}
pkgs := make([]string, 0, len(fm.pm))
for importpath := range fm.pm {
pkgs = append(pkgs, importpath)
}
sort.Strings(pkgs)
for _, importpath := range pkgs {
p := fm.pm[importpath]
units := make([]extcu, 0, len(p.unitTable))
for u := range p.unitTable {
units = append(units, u)
}
p.sortUnits(units)
for _, u := range units {
count := p.unitTable[u]
file := p.funcs[u.fnfid].file
if _, err := fmt.Fprintf(w, "%s:%d.%d,%d.%d %d %d\n",
file, u.StLine, u.StCol,
u.EnLine, u.EnCol, u.NxStmts, count); err != nil {
return err
}
}
}
return nil
}
// EmitPercent writes out a "percentage covered" string to the writer 'w'.
func (fm *Formatter) EmitPercent(w io.Writer, covpkgs string, noteEmpty bool) error {
pkgs := make([]string, 0, len(fm.pm))
for importpath := range fm.pm {
pkgs = append(pkgs, importpath)
}
sort.Strings(pkgs)
seenPkg := false
for _, importpath := range pkgs {
seenPkg = true
p := fm.pm[importpath]
var totalStmts, coveredStmts uint64
for unit, count := range p.unitTable {
nx := uint64(unit.NxStmts)
totalStmts += nx
if count != 0 {
coveredStmts += nx
}
}
if _, err := fmt.Fprintf(w, "\t%s\t\t", importpath); err != nil {
return err
}
if totalStmts == 0 {
if _, err := fmt.Fprintf(w, "coverage: [no statements]\n"); err != nil {
return err
}
} else {
if _, err := fmt.Fprintf(w, "coverage: %.1f%% of statements%s\n", 100*float64(coveredStmts)/float64(totalStmts), covpkgs); err != nil {
return err
}
}
}
if noteEmpty && !seenPkg {
if _, err := fmt.Fprintf(w, "coverage: [no statements]\n"); err != nil {
return err
}
}
return nil
}
// EmitFuncs writes out a function-level summary to the writer 'w'. A
// note on handling function literals: although we collect coverage
// data for unnamed literals, it probably does not make sense to
// include them in the function summary since there isn't any good way
// to name them (this is also consistent with the legacy cmd/cover
// implementation). We do want to include their counts in the overall
// summary however.
func (fm *Formatter) EmitFuncs(w io.Writer) error {
if fm.cm == coverage.CtrModeInvalid {
panic("internal error, counter mode unset")
}
perc := func(covered, total uint64) float64 {
if total == 0 {
total = 1
}
return 100.0 * float64(covered) / float64(total)
}
tabber := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
defer tabber.Flush()
allStmts := uint64(0)
covStmts := uint64(0)
pkgs := make([]string, 0, len(fm.pm))
for importpath := range fm.pm {
pkgs = append(pkgs, importpath)
}
sort.Strings(pkgs)
// Emit functions for each package, sorted by import path.
for _, importpath := range pkgs {
p := fm.pm[importpath]
if len(p.unitTable) == 0 {
continue
}
units := make([]extcu, 0, len(p.unitTable))
for u := range p.unitTable {
units = append(units, u)
}
// Within a package, sort the units, then walk through the
// sorted array. Each time we hit a new function, emit the
// summary entry for the previous function, then make one last
// emit call at the end of the loop.
p.sortUnits(units)
fname := ""
ffile := ""
flit := false
var fline uint32
var cstmts, tstmts uint64
captureFuncStart := func(u extcu) {
fname = p.funcs[u.fnfid].fname
ffile = p.funcs[u.fnfid].file
flit = p.funcs[u.fnfid].lit
fline = u.StLine
}
emitFunc := func(u extcu) error {
// Don't emit entries for function literals (see discussion
// in function header comment above).
if !flit {
if _, err := fmt.Fprintf(tabber, "%s:%d:\t%s\t%.1f%%\n",
ffile, fline, fname, perc(cstmts, tstmts)); err != nil {
return err
}
}
captureFuncStart(u)
allStmts += tstmts
covStmts += cstmts
tstmts = 0
cstmts = 0
return nil
}
for k, u := range units {
if k == 0 {
captureFuncStart(u)
} else {
if fname != p.funcs[u.fnfid].fname {
// New function; emit entry for previous one.
if err := emitFunc(u); err != nil {
return err
}
}
}
tstmts += uint64(u.NxStmts)
count := p.unitTable[u]
if count != 0 {
cstmts += uint64(u.NxStmts)
}
}
if err := emitFunc(extcu{}); err != nil {
return err
}
}
if _, err := fmt.Fprintf(tabber, "%s\t%s\t%.1f%%\n",
"total", "(statements)", perc(covStmts, allStmts)); err != nil {
return err
}
return nil
}