go/src/runtime/sigqueue.go
Shenghou Ma 5da9c8cd0a runtime: ignore SIGPROF to foreign threads before cgocallback is fully initialized
Some libraries, for example, OpenBLAS, create work threads in a global constructor.
If we're doing cpu profiling, it's possible that SIGPROF might come to some of the
worker threads before we make our first cgo call. Cgocallback used to terminate the
process when that happens, but it's better to miss a couple profiling signals than
to abort in this case.

Fixes #9456.

Change-Id: I112b8e1a6e10e6cc8ac695a4b518c0f577309b6b
Reviewed-on: https://go-review.googlesource.com/2141
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2014-12-31 23:10:44 +00:00

167 lines
4.6 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements runtime support for signal handling.
//
// Most synchronization primitives are not available from
// the signal handler (it cannot block, allocate memory, or use locks)
// so the handler communicates with a processing goroutine
// via struct sig, below.
//
// sigsend is called by the signal handler to queue a new signal.
// signal_recv is called by the Go program to receive a newly queued signal.
// Synchronization between sigsend and signal_recv is based on the sig.state
// variable. It can be in 3 states: sigIdle, sigReceiving and sigSending.
// sigReceiving means that signal_recv is blocked on sig.Note and there are no
// new pending signals.
// sigSending means that sig.mask *may* contain new pending signals,
// signal_recv can't be blocked in this state.
// sigIdle means that there are no new pending signals and signal_recv is not blocked.
// Transitions between states are done atomically with CAS.
// When signal_recv is unblocked, it resets sig.Note and rechecks sig.mask.
// If several sigsends and signal_recv execute concurrently, it can lead to
// unnecessary rechecks of sig.mask, but it cannot lead to missed signals
// nor deadlocks.
package runtime
import "unsafe"
var sig struct {
note note
mask [(_NSIG + 31) / 32]uint32
wanted [(_NSIG + 31) / 32]uint32
recv [(_NSIG + 31) / 32]uint32
state uint32
inuse bool
}
const (
sigIdle = iota
sigReceiving
sigSending
)
// Called from sighandler to send a signal back out of the signal handling thread.
// Reports whether the signal was sent. If not, the caller typically crashes the program.
func sigsend(s uint32) bool {
bit := uint32(1) << uint(s&31)
if !sig.inuse || s < 0 || int(s) >= 32*len(sig.wanted) || sig.wanted[s/32]&bit == 0 {
return false
}
// Add signal to outgoing queue.
for {
mask := sig.mask[s/32]
if mask&bit != 0 {
return true // signal already in queue
}
if cas(&sig.mask[s/32], mask, mask|bit) {
break
}
}
// Notify receiver that queue has new bit.
Send:
for {
switch atomicload(&sig.state) {
default:
throw("sigsend: inconsistent state")
case sigIdle:
if cas(&sig.state, sigIdle, sigSending) {
break Send
}
case sigSending:
// notification already pending
break Send
case sigReceiving:
if cas(&sig.state, sigReceiving, sigIdle) {
notewakeup(&sig.note)
break Send
}
}
}
return true
}
// Called to receive the next queued signal.
// Must only be called from a single goroutine at a time.
func signal_recv() uint32 {
for {
// Serve any signals from local copy.
for i := uint32(0); i < _NSIG; i++ {
if sig.recv[i/32]&(1<<(i&31)) != 0 {
sig.recv[i/32] &^= 1 << (i & 31)
return i
}
}
// Wait for updates to be available from signal sender.
Receive:
for {
switch atomicload(&sig.state) {
default:
throw("signal_recv: inconsistent state")
case sigIdle:
if cas(&sig.state, sigIdle, sigReceiving) {
notetsleepg(&sig.note, -1)
noteclear(&sig.note)
break Receive
}
case sigSending:
if cas(&sig.state, sigSending, sigIdle) {
break Receive
}
}
}
// Incorporate updates from sender into local copy.
for i := range sig.mask {
sig.recv[i] = xchg(&sig.mask[i], 0)
}
}
}
// Must only be called from a single goroutine at a time.
func signal_enable(s uint32) {
if !sig.inuse {
// The first call to signal_enable is for us
// to use for initialization. It does not pass
// signal information in m.
sig.inuse = true // enable reception of signals; cannot disable
noteclear(&sig.note)
return
}
if int(s) >= len(sig.wanted)*32 {
return
}
sig.wanted[s/32] |= 1 << (s & 31)
sigenable(s)
}
// Must only be called from a single goroutine at a time.
func signal_disable(s uint32) {
if int(s) >= len(sig.wanted)*32 {
return
}
sig.wanted[s/32] &^= 1 << (s & 31)
sigdisable(s)
}
// This runs on a foreign stack, without an m or a g. No stack split.
//go:nosplit
func badsignal(sig uintptr) {
// Some external libraries, for example, OpenBLAS, create worker threads in
// a global constructor. If we're doing cpu profiling, and the SIGPROF signal
// comes to one of the foreign threads before we make our first cgo call, the
// call to cgocallback below will bring down the whole process.
// It's better to miss a few SIGPROF signals than to abort in this case.
// See http://golang.org/issue/9456.
if sig == _SIGPROF && needextram != 0 {
return
}
cgocallback(unsafe.Pointer(funcPC(sigsend)), noescape(unsafe.Pointer(&sig)), unsafe.Sizeof(sig))
}