mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
For struct like { { a int64; b int16 }; c int32 }, on 64-bit
machines the offset of c is 16, as the inner struct takes 16
bytes because we round up type size to its alignment. Update the
abi package's offset calculation to include this.
We only need to do this for struct type, because for all other
types its size is naturally aligned.
TODO: add a test.
Change-Id: I0c661768cb1ed3cb409b20a88b7e23e059f8e3e1
Reviewed-on: https://go-review.googlesource.com/c/go/+/306449
Trust: Cherry Zhang <cherryyz@google.com>
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Than McIntosh <thanm@google.com>
Reviewed-by: David Chase <drchase@google.com>
784 lines
26 KiB
Go
784 lines
26 KiB
Go
// Copyright 2020 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package abi
|
|
|
|
import (
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/src"
|
|
"fmt"
|
|
"sync"
|
|
)
|
|
|
|
//......................................................................
|
|
//
|
|
// Public/exported bits of the ABI utilities.
|
|
//
|
|
|
|
// ABIParamResultInfo stores the results of processing a given
|
|
// function type to compute stack layout and register assignments. For
|
|
// each input and output parameter we capture whether the param was
|
|
// register-assigned (and to which register(s)) or the stack offset
|
|
// for the param if is not going to be passed in registers according
|
|
// to the rules in the Go internal ABI specification (1.17).
|
|
type ABIParamResultInfo struct {
|
|
inparams []ABIParamAssignment // Includes receiver for method calls. Does NOT include hidden closure pointer.
|
|
outparams []ABIParamAssignment
|
|
offsetToSpillArea int64
|
|
spillAreaSize int64
|
|
inRegistersUsed int
|
|
outRegistersUsed int
|
|
config *ABIConfig // to enable String() method
|
|
}
|
|
|
|
func (a *ABIParamResultInfo) Config() *ABIConfig {
|
|
return a.config
|
|
}
|
|
|
|
func (a *ABIParamResultInfo) InParams() []ABIParamAssignment {
|
|
return a.inparams
|
|
}
|
|
|
|
func (a *ABIParamResultInfo) OutParams() []ABIParamAssignment {
|
|
return a.outparams
|
|
}
|
|
|
|
func (a *ABIParamResultInfo) InRegistersUsed() int {
|
|
return a.inRegistersUsed
|
|
}
|
|
|
|
func (a *ABIParamResultInfo) OutRegistersUsed() int {
|
|
return a.outRegistersUsed
|
|
}
|
|
|
|
func (a *ABIParamResultInfo) InParam(i int) *ABIParamAssignment {
|
|
return &a.inparams[i]
|
|
}
|
|
|
|
func (a *ABIParamResultInfo) OutParam(i int) *ABIParamAssignment {
|
|
return &a.outparams[i]
|
|
}
|
|
|
|
func (a *ABIParamResultInfo) SpillAreaOffset() int64 {
|
|
return a.offsetToSpillArea
|
|
}
|
|
|
|
func (a *ABIParamResultInfo) SpillAreaSize() int64 {
|
|
return a.spillAreaSize
|
|
}
|
|
|
|
// ArgWidth returns the amount of stack needed for all the inputs
|
|
// and outputs of a function or method, including ABI-defined parameter
|
|
// slots and ABI-defined spill slots for register-resident parameters.
|
|
// The name is inherited from (*Type).ArgWidth(), which it replaces.
|
|
func (a *ABIParamResultInfo) ArgWidth() int64 {
|
|
return a.spillAreaSize + a.offsetToSpillArea - a.config.LocalsOffset()
|
|
}
|
|
|
|
// RegIndex stores the index into the set of machine registers used by
|
|
// the ABI on a specific architecture for parameter passing. RegIndex
|
|
// values 0 through N-1 (where N is the number of integer registers
|
|
// used for param passing according to the ABI rules) describe integer
|
|
// registers; values N through M (where M is the number of floating
|
|
// point registers used). Thus if the ABI says there are 5 integer
|
|
// registers and 7 floating point registers, then RegIndex value of 4
|
|
// indicates the 5th integer register, and a RegIndex value of 11
|
|
// indicates the 7th floating point register.
|
|
type RegIndex uint8
|
|
|
|
// ABIParamAssignment holds information about how a specific param or
|
|
// result will be passed: in registers (in which case 'Registers' is
|
|
// populated) or on the stack (in which case 'Offset' is set to a
|
|
// non-negative stack offset. The values in 'Registers' are indices
|
|
// (as described above), not architected registers.
|
|
type ABIParamAssignment struct {
|
|
Type *types.Type
|
|
Name types.Object // should always be *ir.Name, used to match with a particular ssa.OpArg.
|
|
Registers []RegIndex
|
|
offset int32
|
|
}
|
|
|
|
// Offset returns the stack offset for addressing the parameter that "a" describes.
|
|
// This will panic if "a" describes a register-allocated parameter.
|
|
func (a *ABIParamAssignment) Offset() int32 {
|
|
if len(a.Registers) > 0 {
|
|
panic("Register allocated parameters have no offset")
|
|
}
|
|
return a.offset
|
|
}
|
|
|
|
// RegisterTypes returns a slice of the types of the registers
|
|
// corresponding to a slice of parameters. The returned slice
|
|
// has capacity for one more, likely a memory type.
|
|
func RegisterTypes(apa []ABIParamAssignment) []*types.Type {
|
|
rcount := 0
|
|
for _, pa := range apa {
|
|
rcount += len(pa.Registers)
|
|
}
|
|
if rcount == 0 {
|
|
// Note that this catches top-level struct{} and [0]Foo, which are stack allocated.
|
|
return make([]*types.Type, 0, 1)
|
|
}
|
|
rts := make([]*types.Type, 0, rcount+1)
|
|
for _, pa := range apa {
|
|
if len(pa.Registers) == 0 {
|
|
continue
|
|
}
|
|
rts = appendParamTypes(rts, pa.Type)
|
|
}
|
|
return rts
|
|
}
|
|
|
|
func (pa *ABIParamAssignment) RegisterTypesAndOffsets() ([]*types.Type, []int64) {
|
|
l := len(pa.Registers)
|
|
if l == 0 {
|
|
return nil, nil
|
|
}
|
|
typs := make([]*types.Type, 0, l)
|
|
offs := make([]int64, 0, l)
|
|
offs, _ = appendParamOffsets(offs, 0, pa.Type)
|
|
return appendParamTypes(typs, pa.Type), offs
|
|
}
|
|
|
|
func appendParamTypes(rts []*types.Type, t *types.Type) []*types.Type {
|
|
w := t.Width
|
|
if w == 0 {
|
|
return rts
|
|
}
|
|
if t.IsScalar() || t.IsPtrShaped() {
|
|
if t.IsComplex() {
|
|
c := types.FloatForComplex(t)
|
|
return append(rts, c, c)
|
|
} else {
|
|
if int(t.Size()) <= types.RegSize {
|
|
return append(rts, t)
|
|
}
|
|
// assume 64bit int on 32-bit machine
|
|
// TODO endianness? Should high-order (sign bits) word come first?
|
|
if t.IsSigned() {
|
|
rts = append(rts, types.Types[types.TINT32])
|
|
} else {
|
|
rts = append(rts, types.Types[types.TUINT32])
|
|
}
|
|
return append(rts, types.Types[types.TUINT32])
|
|
}
|
|
} else {
|
|
typ := t.Kind()
|
|
switch typ {
|
|
case types.TARRAY:
|
|
for i := int64(0); i < t.NumElem(); i++ { // 0 gets no registers, plus future-proofing.
|
|
rts = appendParamTypes(rts, t.Elem())
|
|
}
|
|
case types.TSTRUCT:
|
|
for _, f := range t.FieldSlice() {
|
|
if f.Type.Size() > 0 { // embedded zero-width types receive no registers
|
|
rts = appendParamTypes(rts, f.Type)
|
|
}
|
|
}
|
|
case types.TSLICE:
|
|
return appendParamTypes(rts, synthSlice)
|
|
case types.TSTRING:
|
|
return appendParamTypes(rts, synthString)
|
|
case types.TINTER:
|
|
return appendParamTypes(rts, synthIface)
|
|
}
|
|
}
|
|
return rts
|
|
}
|
|
|
|
// appendParamOffsets appends the offset(s) of type t, starting from "at",
|
|
// to input offsets, and returns the longer slice and the next unused offset.
|
|
func appendParamOffsets(offsets []int64, at int64, t *types.Type) ([]int64, int64) {
|
|
at = align(at, t)
|
|
w := t.Width
|
|
if w == 0 {
|
|
return offsets, at
|
|
}
|
|
if t.IsScalar() || t.IsPtrShaped() {
|
|
if t.IsComplex() || int(t.Width) > types.RegSize { // complex and *int64 on 32-bit
|
|
s := w / 2
|
|
return append(offsets, at, at+s), at + w
|
|
} else {
|
|
return append(offsets, at), at + w
|
|
}
|
|
} else {
|
|
typ := t.Kind()
|
|
switch typ {
|
|
case types.TARRAY:
|
|
for i := int64(0); i < t.NumElem(); i++ {
|
|
offsets, at = appendParamOffsets(offsets, at, t.Elem())
|
|
}
|
|
case types.TSTRUCT:
|
|
for _, f := range t.FieldSlice() {
|
|
offsets, at = appendParamOffsets(offsets, at, f.Type)
|
|
}
|
|
at = align(at, t) // type size is rounded up to its alignment
|
|
case types.TSLICE:
|
|
return appendParamOffsets(offsets, at, synthSlice)
|
|
case types.TSTRING:
|
|
return appendParamOffsets(offsets, at, synthString)
|
|
case types.TINTER:
|
|
return appendParamOffsets(offsets, at, synthIface)
|
|
}
|
|
}
|
|
return offsets, at
|
|
}
|
|
|
|
// FrameOffset returns the frame-pointer-relative location that a function
|
|
// would spill its input or output parameter to, if such a spill slot exists.
|
|
// If there is none defined (e.g., register-allocated outputs) it panics.
|
|
// For register-allocated inputs that is their spill offset reserved for morestack;
|
|
// for stack-allocated inputs and outputs, that is their location on the stack.
|
|
// (In a future version of the ABI, register-resident inputs may lose their defined
|
|
// spill area to help reduce stack sizes.)
|
|
func (a *ABIParamAssignment) FrameOffset(i *ABIParamResultInfo) int64 {
|
|
if a.offset == -1 {
|
|
panic("Function parameter has no ABI-defined frame-pointer offset")
|
|
}
|
|
if len(a.Registers) == 0 { // passed on stack
|
|
return int64(a.offset) - i.config.LocalsOffset()
|
|
}
|
|
// spill area for registers
|
|
return int64(a.offset) + i.SpillAreaOffset() - i.config.LocalsOffset()
|
|
}
|
|
|
|
// RegAmounts holds a specified number of integer/float registers.
|
|
type RegAmounts struct {
|
|
intRegs int
|
|
floatRegs int
|
|
}
|
|
|
|
// ABIConfig captures the number of registers made available
|
|
// by the ABI rules for parameter passing and result returning.
|
|
type ABIConfig struct {
|
|
// Do we need anything more than this?
|
|
offsetForLocals int64 // e.g., obj.(*Link).FixedFrameSize() -- extra linkage information on some architectures.
|
|
regAmounts RegAmounts
|
|
regsForTypeCache map[*types.Type]int
|
|
}
|
|
|
|
// NewABIConfig returns a new ABI configuration for an architecture with
|
|
// iRegsCount integer/pointer registers and fRegsCount floating point registers.
|
|
func NewABIConfig(iRegsCount, fRegsCount int, offsetForLocals int64) *ABIConfig {
|
|
return &ABIConfig{offsetForLocals: offsetForLocals, regAmounts: RegAmounts{iRegsCount, fRegsCount}, regsForTypeCache: make(map[*types.Type]int)}
|
|
}
|
|
|
|
// Copy returns a copy of an ABIConfig for use in a function's compilation so that access to the cache does not need to be protected with a mutex.
|
|
func (a *ABIConfig) Copy() *ABIConfig {
|
|
b := *a
|
|
b.regsForTypeCache = make(map[*types.Type]int)
|
|
return &b
|
|
}
|
|
|
|
// LocalsOffset returns the architecture-dependent offset from SP for args and results.
|
|
// In theory this is only used for debugging; it ought to already be incorporated into
|
|
// results from the ABI-related methods
|
|
func (a *ABIConfig) LocalsOffset() int64 {
|
|
return a.offsetForLocals
|
|
}
|
|
|
|
// FloatIndexFor translates r into an index in the floating point parameter
|
|
// registers. If the result is negative, the input index was actually for the
|
|
// integer parameter registers.
|
|
func (a *ABIConfig) FloatIndexFor(r RegIndex) int64 {
|
|
return int64(r) - int64(a.regAmounts.intRegs)
|
|
}
|
|
|
|
// NumParamRegs returns the number of parameter registers used for a given type,
|
|
// without regard for the number available.
|
|
func (a *ABIConfig) NumParamRegs(t *types.Type) int {
|
|
var n int
|
|
if n, ok := a.regsForTypeCache[t]; ok {
|
|
return n
|
|
}
|
|
|
|
if t.IsScalar() || t.IsPtrShaped() {
|
|
if t.IsComplex() {
|
|
n = 2
|
|
} else {
|
|
n = (int(t.Size()) + types.RegSize - 1) / types.RegSize
|
|
}
|
|
} else {
|
|
typ := t.Kind()
|
|
switch typ {
|
|
case types.TARRAY:
|
|
n = a.NumParamRegs(t.Elem()) * int(t.NumElem())
|
|
case types.TSTRUCT:
|
|
for _, f := range t.FieldSlice() {
|
|
n += a.NumParamRegs(f.Type)
|
|
}
|
|
case types.TSLICE:
|
|
n = a.NumParamRegs(synthSlice)
|
|
case types.TSTRING:
|
|
n = a.NumParamRegs(synthString)
|
|
case types.TINTER:
|
|
n = a.NumParamRegs(synthIface)
|
|
}
|
|
}
|
|
a.regsForTypeCache[t] = n
|
|
|
|
return n
|
|
}
|
|
|
|
// preAllocateParams gets the slice sizes right for inputs and outputs.
|
|
func (a *ABIParamResultInfo) preAllocateParams(hasRcvr bool, nIns, nOuts int) {
|
|
if hasRcvr {
|
|
nIns++
|
|
}
|
|
a.inparams = make([]ABIParamAssignment, 0, nIns)
|
|
a.outparams = make([]ABIParamAssignment, 0, nOuts)
|
|
}
|
|
|
|
// ABIAnalyzeTypes takes an optional receiver type, arrays of ins and outs, and returns an ABIParamResultInfo,
|
|
// based on the given configuration. This is the same result computed by config.ABIAnalyze applied to the
|
|
// corresponding method/function type, except that all the embedded parameter names are nil.
|
|
// This is intended for use by ssagen/ssa.go:(*state).rtcall, for runtime functions that lack a parsed function type.
|
|
func (config *ABIConfig) ABIAnalyzeTypes(rcvr *types.Type, ins, outs []*types.Type) *ABIParamResultInfo {
|
|
setup()
|
|
s := assignState{
|
|
stackOffset: config.offsetForLocals,
|
|
rTotal: config.regAmounts,
|
|
}
|
|
result := &ABIParamResultInfo{config: config}
|
|
result.preAllocateParams(rcvr != nil, len(ins), len(outs))
|
|
|
|
// Receiver
|
|
if rcvr != nil {
|
|
result.inparams = append(result.inparams,
|
|
s.assignParamOrReturn(rcvr, nil, false))
|
|
}
|
|
|
|
// Inputs
|
|
for _, t := range ins {
|
|
result.inparams = append(result.inparams,
|
|
s.assignParamOrReturn(t, nil, false))
|
|
}
|
|
s.stackOffset = types.Rnd(s.stackOffset, int64(types.RegSize))
|
|
result.inRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
|
|
|
|
// Outputs
|
|
s.rUsed = RegAmounts{}
|
|
for _, t := range outs {
|
|
result.outparams = append(result.outparams, s.assignParamOrReturn(t, nil, true))
|
|
}
|
|
// The spill area is at a register-aligned offset and its size is rounded up to a register alignment.
|
|
// TODO in theory could align offset only to minimum required by spilled data types.
|
|
result.offsetToSpillArea = alignTo(s.stackOffset, types.RegSize)
|
|
result.spillAreaSize = alignTo(s.spillOffset, types.RegSize)
|
|
result.outRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
|
|
|
|
return result
|
|
}
|
|
|
|
// ABIAnalyzeFuncType takes a function type 'ft' and an ABI rules description
|
|
// 'config' and analyzes the function to determine how its parameters
|
|
// and results will be passed (in registers or on the stack), returning
|
|
// an ABIParamResultInfo object that holds the results of the analysis.
|
|
func (config *ABIConfig) ABIAnalyzeFuncType(ft *types.Func) *ABIParamResultInfo {
|
|
setup()
|
|
s := assignState{
|
|
stackOffset: config.offsetForLocals,
|
|
rTotal: config.regAmounts,
|
|
}
|
|
result := &ABIParamResultInfo{config: config}
|
|
result.preAllocateParams(ft.Receiver != nil, ft.Params.NumFields(), ft.Results.NumFields())
|
|
|
|
// Receiver
|
|
// TODO(register args) ? seems like "struct" and "fields" is not right anymore for describing function parameters
|
|
if ft.Receiver != nil && ft.Receiver.NumFields() != 0 {
|
|
r := ft.Receiver.FieldSlice()[0]
|
|
result.inparams = append(result.inparams,
|
|
s.assignParamOrReturn(r.Type, r.Nname, false))
|
|
}
|
|
|
|
// Inputs
|
|
ifsl := ft.Params.FieldSlice()
|
|
for _, f := range ifsl {
|
|
result.inparams = append(result.inparams,
|
|
s.assignParamOrReturn(f.Type, f.Nname, false))
|
|
}
|
|
s.stackOffset = types.Rnd(s.stackOffset, int64(types.RegSize))
|
|
result.inRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
|
|
|
|
// Outputs
|
|
s.rUsed = RegAmounts{}
|
|
ofsl := ft.Results.FieldSlice()
|
|
for _, f := range ofsl {
|
|
result.outparams = append(result.outparams, s.assignParamOrReturn(f.Type, f.Nname, true))
|
|
}
|
|
// The spill area is at a register-aligned offset and its size is rounded up to a register alignment.
|
|
// TODO in theory could align offset only to minimum required by spilled data types.
|
|
result.offsetToSpillArea = alignTo(s.stackOffset, types.RegSize)
|
|
result.spillAreaSize = alignTo(s.spillOffset, types.RegSize)
|
|
result.outRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
|
|
return result
|
|
}
|
|
|
|
// ABIAnalyze returns the same result as ABIAnalyzeFuncType, but also
|
|
// updates the offsets of all the receiver, input, and output fields.
|
|
// If setNname is true, it also sets the FrameOffset of the Nname for
|
|
// the field(s); this is for use when compiling a function and figuring out
|
|
// spill locations. Doing this for callers can cause races for register
|
|
// outputs because their frame location transitions from BOGUS_FUNARG_OFFSET
|
|
// to zero to an as-if-AUTO offset that has no use for callers.
|
|
func (config *ABIConfig) ABIAnalyze(t *types.Type, setNname bool) *ABIParamResultInfo {
|
|
ft := t.FuncType()
|
|
result := config.ABIAnalyzeFuncType(ft)
|
|
// Fill in the frame offsets for receiver, inputs, results
|
|
k := 0
|
|
if t.NumRecvs() != 0 {
|
|
config.updateOffset(result, ft.Receiver.FieldSlice()[0], result.inparams[0], false, setNname)
|
|
k++
|
|
}
|
|
for i, f := range ft.Params.FieldSlice() {
|
|
config.updateOffset(result, f, result.inparams[k+i], false, setNname)
|
|
}
|
|
for i, f := range ft.Results.FieldSlice() {
|
|
config.updateOffset(result, f, result.outparams[i], true, setNname)
|
|
}
|
|
return result
|
|
}
|
|
|
|
// parameterUpdateMu protects the Offset field of function/method parameters (a subset of structure Fields)
|
|
var parameterUpdateMu sync.Mutex
|
|
|
|
// FieldOffsetOf returns a concurency-safe version of f.Offset
|
|
func FieldOffsetOf(f *types.Field) int64 {
|
|
parameterUpdateMu.Lock()
|
|
defer parameterUpdateMu.Unlock()
|
|
return f.Offset
|
|
}
|
|
|
|
func (config *ABIConfig) updateOffset(result *ABIParamResultInfo, f *types.Field, a ABIParamAssignment, isReturn, setNname bool) {
|
|
// Everything except return values in registers has either a frame home (if not in a register) or a frame spill location.
|
|
if !isReturn || len(a.Registers) == 0 {
|
|
// The type frame offset DOES NOT show effects of minimum frame size.
|
|
// Getting this wrong breaks stackmaps, see liveness/plive.go:WriteFuncMap and typebits/typebits.go:Set
|
|
parameterUpdateMu.Lock()
|
|
defer parameterUpdateMu.Unlock()
|
|
off := a.FrameOffset(result)
|
|
fOffset := f.Offset
|
|
if fOffset == types.BOGUS_FUNARG_OFFSET {
|
|
// Set the Offset the first time. After that, we may recompute it, but it should never change.
|
|
f.Offset = off
|
|
if f.Nname != nil {
|
|
// always set it in this case.
|
|
f.Nname.(*ir.Name).SetFrameOffset(off)
|
|
f.Nname.(*ir.Name).SetIsOutputParamInRegisters(false)
|
|
}
|
|
} else if fOffset != off {
|
|
panic(fmt.Errorf("Offset changed from %d to %d", fOffset, off))
|
|
}
|
|
} else {
|
|
if setNname && f.Nname != nil {
|
|
fname := f.Nname.(*ir.Name)
|
|
fname.SetIsOutputParamInRegisters(true)
|
|
fname.SetFrameOffset(0)
|
|
}
|
|
}
|
|
}
|
|
|
|
//......................................................................
|
|
//
|
|
// Non-public portions.
|
|
|
|
// regString produces a human-readable version of a RegIndex.
|
|
func (c *RegAmounts) regString(r RegIndex) string {
|
|
if int(r) < c.intRegs {
|
|
return fmt.Sprintf("I%d", int(r))
|
|
} else if int(r) < c.intRegs+c.floatRegs {
|
|
return fmt.Sprintf("F%d", int(r)-c.intRegs)
|
|
}
|
|
return fmt.Sprintf("<?>%d", r)
|
|
}
|
|
|
|
// ToString method renders an ABIParamAssignment in human-readable
|
|
// form, suitable for debugging or unit testing.
|
|
func (ri *ABIParamAssignment) ToString(config *ABIConfig, extra bool) string {
|
|
regs := "R{"
|
|
offname := "spilloffset" // offset is for spill for register(s)
|
|
if len(ri.Registers) == 0 {
|
|
offname = "offset" // offset is for memory arg
|
|
}
|
|
for _, r := range ri.Registers {
|
|
regs += " " + config.regAmounts.regString(r)
|
|
if extra {
|
|
regs += fmt.Sprintf("(%d)", r)
|
|
}
|
|
}
|
|
if extra {
|
|
regs += fmt.Sprintf(" | #I=%d, #F=%d", config.regAmounts.intRegs, config.regAmounts.floatRegs)
|
|
}
|
|
return fmt.Sprintf("%s } %s: %d typ: %v", regs, offname, ri.offset, ri.Type)
|
|
}
|
|
|
|
// String method renders an ABIParamResultInfo in human-readable
|
|
// form, suitable for debugging or unit testing.
|
|
func (ri *ABIParamResultInfo) String() string {
|
|
res := ""
|
|
for k, p := range ri.inparams {
|
|
res += fmt.Sprintf("IN %d: %s\n", k, p.ToString(ri.config, false))
|
|
}
|
|
for k, r := range ri.outparams {
|
|
res += fmt.Sprintf("OUT %d: %s\n", k, r.ToString(ri.config, false))
|
|
}
|
|
res += fmt.Sprintf("offsetToSpillArea: %d spillAreaSize: %d",
|
|
ri.offsetToSpillArea, ri.spillAreaSize)
|
|
return res
|
|
}
|
|
|
|
// assignState holds intermediate state during the register assigning process
|
|
// for a given function signature.
|
|
type assignState struct {
|
|
rTotal RegAmounts // total reg amounts from ABI rules
|
|
rUsed RegAmounts // regs used by params completely assigned so far
|
|
pUsed RegAmounts // regs used by the current param (or pieces therein)
|
|
stackOffset int64 // current stack offset
|
|
spillOffset int64 // current spill offset
|
|
}
|
|
|
|
// align returns a rounded up to t's alignment
|
|
func align(a int64, t *types.Type) int64 {
|
|
return alignTo(a, int(t.Align))
|
|
}
|
|
|
|
// alignTo returns a rounded up to t, where t must be 0 or a power of 2.
|
|
func alignTo(a int64, t int) int64 {
|
|
if t == 0 {
|
|
return a
|
|
}
|
|
return types.Rnd(a, int64(t))
|
|
}
|
|
|
|
// stackSlot returns a stack offset for a param or result of the
|
|
// specified type.
|
|
func (state *assignState) stackSlot(t *types.Type) int64 {
|
|
rv := align(state.stackOffset, t)
|
|
state.stackOffset = rv + t.Width
|
|
return rv
|
|
}
|
|
|
|
// allocateRegs returns an ordered list of register indices for a parameter or result
|
|
// that we've just determined to be register-assignable. The number of registers
|
|
// needed is assumed to be stored in state.pUsed.
|
|
func (state *assignState) allocateRegs(regs []RegIndex, t *types.Type) []RegIndex {
|
|
if t.Width == 0 {
|
|
return regs
|
|
}
|
|
ri := state.rUsed.intRegs
|
|
rf := state.rUsed.floatRegs
|
|
if t.IsScalar() || t.IsPtrShaped() {
|
|
if t.IsComplex() {
|
|
regs = append(regs, RegIndex(rf+state.rTotal.intRegs), RegIndex(rf+1+state.rTotal.intRegs))
|
|
rf += 2
|
|
} else if t.IsFloat() {
|
|
regs = append(regs, RegIndex(rf+state.rTotal.intRegs))
|
|
rf += 1
|
|
} else {
|
|
n := (int(t.Size()) + types.RegSize - 1) / types.RegSize
|
|
for i := 0; i < n; i++ { // looking ahead to really big integers
|
|
regs = append(regs, RegIndex(ri))
|
|
ri += 1
|
|
}
|
|
}
|
|
state.rUsed.intRegs = ri
|
|
state.rUsed.floatRegs = rf
|
|
return regs
|
|
} else {
|
|
typ := t.Kind()
|
|
switch typ {
|
|
case types.TARRAY:
|
|
for i := int64(0); i < t.NumElem(); i++ {
|
|
regs = state.allocateRegs(regs, t.Elem())
|
|
}
|
|
return regs
|
|
case types.TSTRUCT:
|
|
for _, f := range t.FieldSlice() {
|
|
regs = state.allocateRegs(regs, f.Type)
|
|
}
|
|
return regs
|
|
case types.TSLICE:
|
|
return state.allocateRegs(regs, synthSlice)
|
|
case types.TSTRING:
|
|
return state.allocateRegs(regs, synthString)
|
|
case types.TINTER:
|
|
return state.allocateRegs(regs, synthIface)
|
|
}
|
|
}
|
|
panic(fmt.Errorf("Was not expecting type %s", t))
|
|
}
|
|
|
|
// regAllocate creates a register ABIParamAssignment object for a param
|
|
// or result with the specified type, as a final step (this assumes
|
|
// that all of the safety/suitability analysis is complete).
|
|
func (state *assignState) regAllocate(t *types.Type, name types.Object, isReturn bool) ABIParamAssignment {
|
|
spillLoc := int64(-1)
|
|
if !isReturn {
|
|
// Spill for register-resident t must be aligned for storage of a t.
|
|
spillLoc = align(state.spillOffset, t)
|
|
state.spillOffset = spillLoc + t.Size()
|
|
}
|
|
return ABIParamAssignment{
|
|
Type: t,
|
|
Name: name,
|
|
Registers: state.allocateRegs([]RegIndex{}, t),
|
|
offset: int32(spillLoc),
|
|
}
|
|
}
|
|
|
|
// stackAllocate creates a stack memory ABIParamAssignment object for
|
|
// a param or result with the specified type, as a final step (this
|
|
// assumes that all of the safety/suitability analysis is complete).
|
|
func (state *assignState) stackAllocate(t *types.Type, name types.Object) ABIParamAssignment {
|
|
return ABIParamAssignment{
|
|
Type: t,
|
|
Name: name,
|
|
offset: int32(state.stackSlot(t)),
|
|
}
|
|
}
|
|
|
|
// intUsed returns the number of integer registers consumed
|
|
// at a given point within an assignment stage.
|
|
func (state *assignState) intUsed() int {
|
|
return state.rUsed.intRegs + state.pUsed.intRegs
|
|
}
|
|
|
|
// floatUsed returns the number of floating point registers consumed at
|
|
// a given point within an assignment stage.
|
|
func (state *assignState) floatUsed() int {
|
|
return state.rUsed.floatRegs + state.pUsed.floatRegs
|
|
}
|
|
|
|
// regassignIntegral examines a param/result of integral type 't' to
|
|
// determines whether it can be register-assigned. Returns TRUE if we
|
|
// can register allocate, FALSE otherwise (and updates state
|
|
// accordingly).
|
|
func (state *assignState) regassignIntegral(t *types.Type) bool {
|
|
regsNeeded := int(types.Rnd(t.Width, int64(types.PtrSize)) / int64(types.PtrSize))
|
|
if t.IsComplex() {
|
|
regsNeeded = 2
|
|
}
|
|
|
|
// Floating point and complex.
|
|
if t.IsFloat() || t.IsComplex() {
|
|
if regsNeeded+state.floatUsed() > state.rTotal.floatRegs {
|
|
// not enough regs
|
|
return false
|
|
}
|
|
state.pUsed.floatRegs += regsNeeded
|
|
return true
|
|
}
|
|
|
|
// Non-floating point
|
|
if regsNeeded+state.intUsed() > state.rTotal.intRegs {
|
|
// not enough regs
|
|
return false
|
|
}
|
|
state.pUsed.intRegs += regsNeeded
|
|
return true
|
|
}
|
|
|
|
// regassignArray processes an array type (or array component within some
|
|
// other enclosing type) to determine if it can be register assigned.
|
|
// Returns TRUE if we can register allocate, FALSE otherwise.
|
|
func (state *assignState) regassignArray(t *types.Type) bool {
|
|
|
|
nel := t.NumElem()
|
|
if nel == 0 {
|
|
return true
|
|
}
|
|
if nel > 1 {
|
|
// Not an array of length 1: stack assign
|
|
return false
|
|
}
|
|
// Visit element
|
|
return state.regassign(t.Elem())
|
|
}
|
|
|
|
// regassignStruct processes a struct type (or struct component within
|
|
// some other enclosing type) to determine if it can be register
|
|
// assigned. Returns TRUE if we can register allocate, FALSE otherwise.
|
|
func (state *assignState) regassignStruct(t *types.Type) bool {
|
|
for _, field := range t.FieldSlice() {
|
|
if !state.regassign(field.Type) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// synthOnce ensures that we only create the synth* fake types once.
|
|
var synthOnce sync.Once
|
|
|
|
// synthSlice, synthString, and syncIface are synthesized struct types
|
|
// meant to capture the underlying implementations of string/slice/interface.
|
|
var synthSlice *types.Type
|
|
var synthString *types.Type
|
|
var synthIface *types.Type
|
|
|
|
// setup performs setup for the register assignment utilities, manufacturing
|
|
// a small set of synthesized types that we'll need along the way.
|
|
func setup() {
|
|
synthOnce.Do(func() {
|
|
fname := types.BuiltinPkg.Lookup
|
|
nxp := src.NoXPos
|
|
unsp := types.Types[types.TUNSAFEPTR]
|
|
ui := types.Types[types.TUINTPTR]
|
|
synthSlice = types.NewStruct(types.NoPkg, []*types.Field{
|
|
types.NewField(nxp, fname("ptr"), unsp),
|
|
types.NewField(nxp, fname("len"), ui),
|
|
types.NewField(nxp, fname("cap"), ui),
|
|
})
|
|
synthString = types.NewStruct(types.NoPkg, []*types.Field{
|
|
types.NewField(nxp, fname("data"), unsp),
|
|
types.NewField(nxp, fname("len"), ui),
|
|
})
|
|
synthIface = types.NewStruct(types.NoPkg, []*types.Field{
|
|
types.NewField(nxp, fname("f1"), unsp),
|
|
types.NewField(nxp, fname("f2"), unsp),
|
|
})
|
|
})
|
|
}
|
|
|
|
// regassign examines a given param type (or component within some
|
|
// composite) to determine if it can be register assigned. Returns
|
|
// TRUE if we can register allocate, FALSE otherwise.
|
|
func (state *assignState) regassign(pt *types.Type) bool {
|
|
typ := pt.Kind()
|
|
if pt.IsScalar() || pt.IsPtrShaped() {
|
|
return state.regassignIntegral(pt)
|
|
}
|
|
switch typ {
|
|
case types.TARRAY:
|
|
return state.regassignArray(pt)
|
|
case types.TSTRUCT:
|
|
return state.regassignStruct(pt)
|
|
case types.TSLICE:
|
|
return state.regassignStruct(synthSlice)
|
|
case types.TSTRING:
|
|
return state.regassignStruct(synthString)
|
|
case types.TINTER:
|
|
return state.regassignStruct(synthIface)
|
|
default:
|
|
panic("not expected")
|
|
}
|
|
}
|
|
|
|
// assignParamOrReturn processes a given receiver, param, or result
|
|
// of field f to determine whether it can be register assigned.
|
|
// The result of the analysis is recorded in the result
|
|
// ABIParamResultInfo held in 'state'.
|
|
func (state *assignState) assignParamOrReturn(pt *types.Type, n types.Object, isReturn bool) ABIParamAssignment {
|
|
state.pUsed = RegAmounts{}
|
|
if pt.Width == types.BADWIDTH {
|
|
panic("should never happen")
|
|
} else if pt.Width == 0 {
|
|
return state.stackAllocate(pt, n)
|
|
} else if state.regassign(pt) {
|
|
return state.regAllocate(pt, n, isReturn)
|
|
} else {
|
|
return state.stackAllocate(pt, n)
|
|
}
|
|
}
|