go/src/cmd/internal/gc/sinit.go
Matthew Dempsky 632217aae4 cmd/internal/gc: statically initialize function pointers
Previously, gc would compile code like

    func foo() { ... }
    var bar = foo

by emitting a static closure to wrap "foo", but then emitting runtime
initialization code to assign the closure to "bar".  This CL changes
gc to instead statically initialize "bar".

Notably, this change shrinks the "go" tool's text segment by ~7.4kB on
linux/amd64 while only increasing the data segment by ~100B:

   text	   data	    bss	    dec	    hex	filename
7237819	 122412	 215616	7575847	 739927	go.before
7230398	 122540	 215232	7568170	 737b2a	go.after

Fixes issue #10081.

Change-Id: If5e26cf46b323393ba6f2199a82a06e9e4baf411
Reviewed-on: https://go-review.googlesource.com/6880
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2015-03-05 21:35:07 +00:00

1543 lines
28 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/internal/obj"
"fmt"
)
/*
* static initialization
*/
const (
InitNotStarted = 0
InitDone = 1
InitPending = 2
)
var initlist *NodeList
// init1 walks the AST starting at n, and accumulates in out
// the list of definitions needing init code in dependency order.
func init1(n *Node, out **NodeList) {
if n == nil {
return
}
init1(n.Left, out)
init1(n.Right, out)
for l := n.List; l != nil; l = l.Next {
init1(l.N, out)
}
if n.Left != nil && n.Type != nil && n.Left.Op == OTYPE && n.Class == PFUNC {
// Methods called as Type.Method(receiver, ...).
// Definitions for method expressions are stored in type->nname.
init1(n.Type.Nname, out)
}
if n.Op != ONAME {
return
}
switch n.Class {
case PEXTERN,
PFUNC:
break
default:
if isblank(n) && n.Curfn == nil && n.Defn != nil && n.Defn.Initorder == InitNotStarted {
// blank names initialization is part of init() but not
// when they are inside a function.
break
}
return
}
if n.Initorder == InitDone {
return
}
if n.Initorder == InitPending {
// Since mutually recursive sets of functions are allowed,
// we don't necessarily raise an error if n depends on a node
// which is already waiting for its dependencies to be visited.
//
// initlist contains a cycle of identifiers referring to each other.
// If this cycle contains a variable, then this variable refers to itself.
// Conversely, if there exists an initialization cycle involving
// a variable in the program, the tree walk will reach a cycle
// involving that variable.
var nv *Node
if n.Class != PFUNC {
nv = n
goto foundinitloop
}
for l := initlist; l.N != n; l = l.Next {
if l.N.Class != PFUNC {
nv = l.N
goto foundinitloop
}
}
// The loop involves only functions, ok.
return
// if there have already been errors printed,
// those errors probably confused us and
// there might not be a loop. let the user
// fix those first.
foundinitloop:
Flusherrors()
if nerrors > 0 {
errorexit()
}
// There is a loop involving nv. We know about
// n and initlist = n1 <- ... <- nv <- ... <- n <- ...
fmt.Printf("%v: initialization loop:\n", nv.Line())
// Build back pointers in initlist.
for l := initlist; l != nil; l = l.Next {
if l.Next != nil {
l.Next.End = l
}
}
// Print nv -> ... -> n1 -> n.
var l *NodeList
for l = initlist; l.N != nv; l = l.Next {
}
for ; l != nil; l = l.End {
fmt.Printf("\t%v %v refers to\n", l.N.Line(), Sconv(l.N.Sym, 0))
}
// Print n -> ... -> nv.
for l = initlist; l.N != n; l = l.Next {
}
for ; l.N != nv; l = l.End {
fmt.Printf("\t%v %v refers to\n", l.N.Line(), Sconv(l.N.Sym, 0))
}
fmt.Printf("\t%v %v\n", nv.Line(), Sconv(nv.Sym, 0))
errorexit()
}
// reached a new unvisited node.
n.Initorder = InitPending
l := new(NodeList)
if l == nil {
Flusherrors()
Yyerror("out of memory")
errorexit()
}
l.Next = initlist
l.N = n
l.End = nil
initlist = l
// make sure that everything n depends on is initialized.
// n->defn is an assignment to n
if n.Defn != nil {
switch n.Defn.Op {
default:
goto bad
case ODCLFUNC:
init2list(n.Defn.Nbody, out)
case OAS:
if n.Defn.Left != n {
goto bad
}
if isblank(n.Defn.Left) && candiscard(n.Defn.Right) {
n.Defn.Op = OEMPTY
n.Defn.Left = nil
n.Defn.Right = nil
break
}
init2(n.Defn.Right, out)
if Debug['j'] != 0 {
fmt.Printf("%v\n", Sconv(n.Sym, 0))
}
if isblank(n) || !staticinit(n, out) {
if Debug['%'] != 0 {
Dump("nonstatic", n.Defn)
}
*out = list(*out, n.Defn)
}
case OAS2FUNC,
OAS2MAPR,
OAS2DOTTYPE,
OAS2RECV:
if n.Defn.Initorder != InitNotStarted {
break
}
n.Defn.Initorder = InitDone
for l := n.Defn.Rlist; l != nil; l = l.Next {
init1(l.N, out)
}
if Debug['%'] != 0 {
Dump("nonstatic", n.Defn)
}
*out = list(*out, n.Defn)
}
}
l = initlist
initlist = l.Next
if l.N != n {
Fatal("bad initlist")
}
n.Initorder = InitDone
return
bad:
Dump("defn", n.Defn)
Fatal("init1: bad defn")
}
// recurse over n, doing init1 everywhere.
func init2(n *Node, out **NodeList) {
if n == nil || n.Initorder == InitDone {
return
}
if n.Op == ONAME && n.Ninit != nil {
Fatal("name %v with ninit: %v\n", Sconv(n.Sym, 0), Nconv(n, obj.FmtSign))
}
init1(n, out)
init2(n.Left, out)
init2(n.Right, out)
init2(n.Ntest, out)
init2list(n.Ninit, out)
init2list(n.List, out)
init2list(n.Rlist, out)
init2list(n.Nbody, out)
init2list(n.Nelse, out)
if n.Op == OCLOSURE {
init2list(n.Closure.Nbody, out)
}
if n.Op == ODOTMETH || n.Op == OCALLPART {
init2(n.Type.Nname, out)
}
}
func init2list(l *NodeList, out **NodeList) {
for ; l != nil; l = l.Next {
init2(l.N, out)
}
}
func initreorder(l *NodeList, out **NodeList) {
var n *Node
for ; l != nil; l = l.Next {
n = l.N
switch n.Op {
case ODCLFUNC,
ODCLCONST,
ODCLTYPE:
continue
}
initreorder(n.Ninit, out)
n.Ninit = nil
init1(n, out)
}
}
// initfix computes initialization order for a list l of top-level
// declarations and outputs the corresponding list of statements
// to include in the init() function body.
func initfix(l *NodeList) *NodeList {
var lout *NodeList
lno := int(lineno)
initreorder(l, &lout)
lineno = int32(lno)
return lout
}
/*
* compilation of top-level (static) assignments
* into DATA statements if at all possible.
*/
func staticinit(n *Node, out **NodeList) bool {
if n.Op != ONAME || n.Class != PEXTERN || n.Defn == nil || n.Defn.Op != OAS {
Fatal("staticinit")
}
lineno = n.Lineno
l := n.Defn.Left
r := n.Defn.Right
return staticassign(l, r, out)
}
// like staticassign but we are copying an already
// initialized value r.
func staticcopy(l *Node, r *Node, out **NodeList) bool {
if r.Op != ONAME {
return false
}
if r.Class == PFUNC {
gdata(l, r, Widthptr)
return true
}
if r.Class != PEXTERN || r.Sym.Pkg != localpkg {
return false
}
if r.Defn == nil { // probably zeroed but perhaps supplied externally and of unknown value
return false
}
if r.Defn.Op != OAS {
return false
}
orig := r
r = r.Defn.Right
switch r.Op {
case ONAME:
if staticcopy(l, r, out) {
return true
}
*out = list(*out, Nod(OAS, l, r))
return true
case OLITERAL:
if iszero(r) {
return true
}
gdata(l, r, int(l.Type.Width))
return true
case OADDR:
switch r.Left.Op {
case ONAME:
gdata(l, r, int(l.Type.Width))
return true
}
case OPTRLIT:
switch r.Left.Op {
//dump("not static addr", r);
default:
break
// copy pointer
case OARRAYLIT,
OSTRUCTLIT,
OMAPLIT:
gdata(l, Nod(OADDR, r.Nname, nil), int(l.Type.Width))
return true
}
case OARRAYLIT:
if Isslice(r.Type) {
// copy slice
a := r.Nname
n1 := *l
n1.Xoffset = l.Xoffset + int64(Array_array)
gdata(&n1, Nod(OADDR, a, nil), Widthptr)
n1.Xoffset = l.Xoffset + int64(Array_nel)
gdata(&n1, r.Right, Widthint)
n1.Xoffset = l.Xoffset + int64(Array_cap)
gdata(&n1, r.Right, Widthint)
return true
}
fallthrough
// fall through
case OSTRUCTLIT:
p := r.Initplan
n1 := *l
var e *InitEntry
var ll *Node
var rr *Node
for i := 0; i < len(p.E); i++ {
e = &p.E[i]
n1.Xoffset = l.Xoffset + e.Xoffset
n1.Type = e.Expr.Type
if e.Expr.Op == OLITERAL {
gdata(&n1, e.Expr, int(n1.Type.Width))
} else {
ll = Nod(OXXX, nil, nil)
*ll = n1
ll.Orig = ll // completely separate copy
if !staticassign(ll, e.Expr, out) {
// Requires computation, but we're
// copying someone else's computation.
rr = Nod(OXXX, nil, nil)
*rr = *orig
rr.Orig = rr // completely separate copy
rr.Type = ll.Type
rr.Xoffset += e.Xoffset
*out = list(*out, Nod(OAS, ll, rr))
}
}
}
return true
}
return false
}
func staticassign(l *Node, r *Node, out **NodeList) bool {
var n1 Node
switch r.Op {
//dump("not static", r);
default:
break
case ONAME:
return staticcopy(l, r, out)
case OLITERAL:
if iszero(r) {
return true
}
gdata(l, r, int(l.Type.Width))
return true
case OADDR:
var nam Node
if stataddr(&nam, r.Left) {
n1 := *r
n1.Left = &nam
gdata(l, &n1, int(l.Type.Width))
return true
}
fallthrough
case OPTRLIT:
switch r.Left.Op {
//dump("not static ptrlit", r);
default:
break
// Init pointer.
case OARRAYLIT,
OMAPLIT,
OSTRUCTLIT:
a := staticname(r.Left.Type, 1)
r.Nname = a
gdata(l, Nod(OADDR, a, nil), int(l.Type.Width))
// Init underlying literal.
if !staticassign(a, r.Left, out) {
*out = list(*out, Nod(OAS, a, r.Left))
}
return true
}
case OSTRARRAYBYTE:
if l.Class == PEXTERN && r.Left.Op == OLITERAL {
sval := r.Left.Val.U.Sval
slicebytes(l, sval, len(sval))
return true
}
case OARRAYLIT:
initplan(r)
if Isslice(r.Type) {
// Init slice.
ta := typ(TARRAY)
ta.Type = r.Type.Type
ta.Bound = Mpgetfix(r.Right.Val.U.Xval)
a := staticname(ta, 1)
r.Nname = a
n1 = *l
n1.Xoffset = l.Xoffset + int64(Array_array)
gdata(&n1, Nod(OADDR, a, nil), Widthptr)
n1.Xoffset = l.Xoffset + int64(Array_nel)
gdata(&n1, r.Right, Widthint)
n1.Xoffset = l.Xoffset + int64(Array_cap)
gdata(&n1, r.Right, Widthint)
// Fall through to init underlying array.
l = a
}
fallthrough
// fall through
case OSTRUCTLIT:
initplan(r)
p := r.Initplan
n1 = *l
var e *InitEntry
var a *Node
for i := 0; i < len(p.E); i++ {
e = &p.E[i]
n1.Xoffset = l.Xoffset + e.Xoffset
n1.Type = e.Expr.Type
if e.Expr.Op == OLITERAL {
gdata(&n1, e.Expr, int(n1.Type.Width))
} else {
a = Nod(OXXX, nil, nil)
*a = n1
a.Orig = a // completely separate copy
if !staticassign(a, e.Expr, out) {
*out = list(*out, Nod(OAS, a, e.Expr))
}
}
}
return true
// TODO: Table-driven map insert.
case OMAPLIT:
break
}
return false
}
/*
* from here down is the walk analysis
* of composite literals.
* most of the work is to generate
* data statements for the constant
* part of the composite literal.
*/
func staticname(t *Type, ctxt int) *Node {
namebuf = fmt.Sprintf("statictmp_%.4d", statuniqgen)
statuniqgen++
n := newname(Lookup(namebuf))
if ctxt == 0 {
n.Readonly = 1
}
addvar(n, t, PEXTERN)
return n
}
func isliteral(n *Node) bool {
if n.Op == OLITERAL {
if n.Val.Ctype != CTNIL {
return true
}
}
return false
}
func simplename(n *Node) bool {
if n.Op != ONAME {
return false
}
if n.Addable == 0 {
return false
}
if n.Class&PHEAP != 0 {
return false
}
if n.Class == PPARAMREF {
return false
}
return true
}
func litas(l *Node, r *Node, init **NodeList) {
a := Nod(OAS, l, r)
typecheck(&a, Etop)
walkexpr(&a, init)
*init = list(*init, a)
}
const (
MODEDYNAM = 1
MODECONST = 2
)
func getdyn(n *Node, top int) int {
mode := 0
switch n.Op {
default:
if isliteral(n) {
return MODECONST
}
return MODEDYNAM
case OARRAYLIT:
if top == 0 && n.Type.Bound < 0 {
return MODEDYNAM
}
fallthrough
case OSTRUCTLIT:
break
}
var value *Node
for nl := n.List; nl != nil; nl = nl.Next {
value = nl.N.Right
mode |= getdyn(value, 0)
if mode == MODEDYNAM|MODECONST {
break
}
}
return mode
}
func structlit(ctxt int, pass int, n *Node, var_ *Node, init **NodeList) {
var r *Node
var a *Node
var index *Node
var value *Node
for nl := n.List; nl != nil; nl = nl.Next {
r = nl.N
if r.Op != OKEY {
Fatal("structlit: rhs not OKEY: %v", Nconv(r, 0))
}
index = r.Left
value = r.Right
switch value.Op {
case OARRAYLIT:
if value.Type.Bound < 0 {
if pass == 1 && ctxt != 0 {
a = Nod(ODOT, var_, newname(index.Sym))
slicelit(ctxt, value, a, init)
} else if pass == 2 && ctxt == 0 {
a = Nod(ODOT, var_, newname(index.Sym))
slicelit(ctxt, value, a, init)
} else if pass == 3 {
break
}
continue
}
a = Nod(ODOT, var_, newname(index.Sym))
arraylit(ctxt, pass, value, a, init)
continue
case OSTRUCTLIT:
a = Nod(ODOT, var_, newname(index.Sym))
structlit(ctxt, pass, value, a, init)
continue
}
if isliteral(value) {
if pass == 2 {
continue
}
} else if pass == 1 {
continue
}
// build list of var.field = expr
a = Nod(ODOT, var_, newname(index.Sym))
a = Nod(OAS, a, value)
typecheck(&a, Etop)
if pass == 1 {
walkexpr(&a, init) // add any assignments in r to top
if a.Op != OAS {
Fatal("structlit: not as")
}
a.Dodata = 2
} else {
orderstmtinplace(&a)
walkstmt(&a)
}
*init = list(*init, a)
}
}
func arraylit(ctxt int, pass int, n *Node, var_ *Node, init **NodeList) {
var r *Node
var a *Node
var index *Node
var value *Node
for l := n.List; l != nil; l = l.Next {
r = l.N
if r.Op != OKEY {
Fatal("arraylit: rhs not OKEY: %v", Nconv(r, 0))
}
index = r.Left
value = r.Right
switch value.Op {
case OARRAYLIT:
if value.Type.Bound < 0 {
if pass == 1 && ctxt != 0 {
a = Nod(OINDEX, var_, index)
slicelit(ctxt, value, a, init)
} else if pass == 2 && ctxt == 0 {
a = Nod(OINDEX, var_, index)
slicelit(ctxt, value, a, init)
} else if pass == 3 {
break
}
continue
}
a = Nod(OINDEX, var_, index)
arraylit(ctxt, pass, value, a, init)
continue
case OSTRUCTLIT:
a = Nod(OINDEX, var_, index)
structlit(ctxt, pass, value, a, init)
continue
}
if isliteral(index) && isliteral(value) {
if pass == 2 {
continue
}
} else if pass == 1 {
continue
}
// build list of var[index] = value
a = Nod(OINDEX, var_, index)
a = Nod(OAS, a, value)
typecheck(&a, Etop)
if pass == 1 {
walkexpr(&a, init)
if a.Op != OAS {
Fatal("arraylit: not as")
}
a.Dodata = 2
} else {
orderstmtinplace(&a)
walkstmt(&a)
}
*init = list(*init, a)
}
}
func slicelit(ctxt int, n *Node, var_ *Node, init **NodeList) {
// make an array type
t := shallow(n.Type)
t.Bound = Mpgetfix(n.Right.Val.U.Xval)
t.Width = 0
t.Sym = nil
t.Haspointers = 0
dowidth(t)
if ctxt != 0 {
// put everything into static array
vstat := staticname(t, ctxt)
arraylit(ctxt, 1, n, vstat, init)
arraylit(ctxt, 2, n, vstat, init)
// copy static to slice
a := Nod(OSLICE, vstat, Nod(OKEY, nil, nil))
a = Nod(OAS, var_, a)
typecheck(&a, Etop)
a.Dodata = 2
*init = list(*init, a)
return
}
// recipe for var = []t{...}
// 1. make a static array
// var vstat [...]t
// 2. assign (data statements) the constant part
// vstat = constpart{}
// 3. make an auto pointer to array and allocate heap to it
// var vauto *[...]t = new([...]t)
// 4. copy the static array to the auto array
// *vauto = vstat
// 5. assign slice of allocated heap to var
// var = [0:]*auto
// 6. for each dynamic part assign to the slice
// var[i] = dynamic part
//
// an optimization is done if there is no constant part
// 3. var vauto *[...]t = new([...]t)
// 5. var = [0:]*auto
// 6. var[i] = dynamic part
// if the literal contains constants,
// make static initialized array (1),(2)
var vstat *Node
mode := getdyn(n, 1)
if mode&MODECONST != 0 {
vstat = staticname(t, ctxt)
arraylit(ctxt, 1, n, vstat, init)
}
// make new auto *array (3 declare)
vauto := temp(Ptrto(t))
// set auto to point at new temp or heap (3 assign)
var a *Node
if n.Alloc != nil {
// temp allocated during order.c for dddarg
n.Alloc.Type = t
if vstat == nil {
a = Nod(OAS, n.Alloc, nil)
typecheck(&a, Etop)
*init = list(*init, a) // zero new temp
}
a = Nod(OADDR, n.Alloc, nil)
} else if n.Esc == EscNone {
a = temp(t)
if vstat == nil {
a = Nod(OAS, temp(t), nil)
typecheck(&a, Etop)
*init = list(*init, a) // zero new temp
a = a.Left
}
a = Nod(OADDR, a, nil)
} else {
a = Nod(ONEW, nil, nil)
a.List = list1(typenod(t))
}
a = Nod(OAS, vauto, a)
typecheck(&a, Etop)
walkexpr(&a, init)
*init = list(*init, a)
if vstat != nil {
// copy static to heap (4)
a = Nod(OIND, vauto, nil)
a = Nod(OAS, a, vstat)
typecheck(&a, Etop)
walkexpr(&a, init)
*init = list(*init, a)
}
// make slice out of heap (5)
a = Nod(OAS, var_, Nod(OSLICE, vauto, Nod(OKEY, nil, nil)))
typecheck(&a, Etop)
orderstmtinplace(&a)
walkstmt(&a)
*init = list(*init, a)
// put dynamics into slice (6)
var value *Node
var r *Node
var index *Node
for l := n.List; l != nil; l = l.Next {
r = l.N
if r.Op != OKEY {
Fatal("slicelit: rhs not OKEY: %v", Nconv(r, 0))
}
index = r.Left
value = r.Right
a = Nod(OINDEX, var_, index)
a.Bounded = true
// TODO need to check bounds?
switch value.Op {
case OARRAYLIT:
if value.Type.Bound < 0 {
break
}
arraylit(ctxt, 2, value, a, init)
continue
case OSTRUCTLIT:
structlit(ctxt, 2, value, a, init)
continue
}
if isliteral(index) && isliteral(value) {
continue
}
// build list of var[c] = expr
a = Nod(OAS, a, value)
typecheck(&a, Etop)
orderstmtinplace(&a)
walkstmt(&a)
*init = list(*init, a)
}
}
func maplit(ctxt int, n *Node, var_ *Node, init **NodeList) {
var r *Node
var index *Node
var value *Node
ctxt = 0
// make the map var
nerr := nerrors
a := Nod(OMAKE, nil, nil)
a.List = list1(typenod(n.Type))
litas(var_, a, init)
// count the initializers
b := int64(0)
for l := n.List; l != nil; l = l.Next {
r = l.N
if r.Op != OKEY {
Fatal("maplit: rhs not OKEY: %v", Nconv(r, 0))
}
index = r.Left
value = r.Right
if isliteral(index) && isliteral(value) {
b++
}
}
if b != 0 {
// build type [count]struct { a Tindex, b Tvalue }
t := n.Type
tk := t.Down
tv := t.Type
symb := Lookup("b")
t = typ(TFIELD)
t.Type = tv
t.Sym = symb
syma := Lookup("a")
t1 := t
t = typ(TFIELD)
t.Type = tk
t.Sym = syma
t.Down = t1
t1 = t
t = typ(TSTRUCT)
t.Type = t1
t1 = t
t = typ(TARRAY)
t.Bound = b
t.Type = t1
dowidth(t)
// make and initialize static array
vstat := staticname(t, ctxt)
b := int64(0)
var index *Node
var r *Node
var value *Node
for l := n.List; l != nil; l = l.Next {
r = l.N
if r.Op != OKEY {
Fatal("maplit: rhs not OKEY: %v", Nconv(r, 0))
}
index = r.Left
value = r.Right
if isliteral(index) && isliteral(value) {
// build vstat[b].a = key;
a = Nodintconst(b)
a = Nod(OINDEX, vstat, a)
a = Nod(ODOT, a, newname(syma))
a = Nod(OAS, a, index)
typecheck(&a, Etop)
walkexpr(&a, init)
a.Dodata = 2
*init = list(*init, a)
// build vstat[b].b = value;
a = Nodintconst(b)
a = Nod(OINDEX, vstat, a)
a = Nod(ODOT, a, newname(symb))
a = Nod(OAS, a, value)
typecheck(&a, Etop)
walkexpr(&a, init)
a.Dodata = 2
*init = list(*init, a)
b++
}
}
// loop adding structure elements to map
// for i = 0; i < len(vstat); i++ {
// map[vstat[i].a] = vstat[i].b
// }
index = temp(Types[TINT])
a = Nod(OINDEX, vstat, index)
a.Bounded = true
a = Nod(ODOT, a, newname(symb))
r = Nod(OINDEX, vstat, index)
r.Bounded = true
r = Nod(ODOT, r, newname(syma))
r = Nod(OINDEX, var_, r)
r = Nod(OAS, r, a)
a = Nod(OFOR, nil, nil)
a.Nbody = list1(r)
a.Ninit = list1(Nod(OAS, index, Nodintconst(0)))
a.Ntest = Nod(OLT, index, Nodintconst(t.Bound))
a.Nincr = Nod(OAS, index, Nod(OADD, index, Nodintconst(1)))
typecheck(&a, Etop)
walkstmt(&a)
*init = list(*init, a)
}
// put in dynamic entries one-at-a-time
var key *Node
var val *Node
for l := n.List; l != nil; l = l.Next {
r = l.N
if r.Op != OKEY {
Fatal("maplit: rhs not OKEY: %v", Nconv(r, 0))
}
index = r.Left
value = r.Right
if isliteral(index) && isliteral(value) {
continue
}
// build list of var[c] = expr.
// use temporary so that mapassign1 can have addressable key, val.
if key == nil {
key = temp(var_.Type.Down)
val = temp(var_.Type.Type)
}
a = Nod(OAS, key, r.Left)
typecheck(&a, Etop)
walkstmt(&a)
*init = list(*init, a)
a = Nod(OAS, val, r.Right)
typecheck(&a, Etop)
walkstmt(&a)
*init = list(*init, a)
a = Nod(OAS, Nod(OINDEX, var_, key), val)
typecheck(&a, Etop)
walkstmt(&a)
*init = list(*init, a)
if nerr != nerrors {
break
}
}
if key != nil {
a = Nod(OVARKILL, key, nil)
typecheck(&a, Etop)
*init = list(*init, a)
a = Nod(OVARKILL, val, nil)
typecheck(&a, Etop)
*init = list(*init, a)
}
}
func anylit(ctxt int, n *Node, var_ *Node, init **NodeList) {
t := n.Type
switch n.Op {
default:
Fatal("anylit: not lit")
case OPTRLIT:
if !Isptr[t.Etype] {
Fatal("anylit: not ptr")
}
var r *Node
if n.Right != nil {
r = Nod(OADDR, n.Right, nil)
typecheck(&r, Erv)
} else {
r = Nod(ONEW, nil, nil)
r.Typecheck = 1
r.Type = t
r.Esc = n.Esc
}
walkexpr(&r, init)
a := Nod(OAS, var_, r)
typecheck(&a, Etop)
*init = list(*init, a)
var_ = Nod(OIND, var_, nil)
typecheck(&var_, Erv|Easgn)
anylit(ctxt, n.Left, var_, init)
case OSTRUCTLIT:
if t.Etype != TSTRUCT {
Fatal("anylit: not struct")
}
if simplename(var_) && count(n.List) > 4 {
if ctxt == 0 {
// lay out static data
vstat := staticname(t, ctxt)
structlit(ctxt, 1, n, vstat, init)
// copy static to var
a := Nod(OAS, var_, vstat)
typecheck(&a, Etop)
walkexpr(&a, init)
*init = list(*init, a)
// add expressions to automatic
structlit(ctxt, 2, n, var_, init)
break
}
structlit(ctxt, 1, n, var_, init)
structlit(ctxt, 2, n, var_, init)
break
}
// initialize of not completely specified
if simplename(var_) || count(n.List) < structcount(t) {
a := Nod(OAS, var_, nil)
typecheck(&a, Etop)
walkexpr(&a, init)
*init = list(*init, a)
}
structlit(ctxt, 3, n, var_, init)
case OARRAYLIT:
if t.Etype != TARRAY {
Fatal("anylit: not array")
}
if t.Bound < 0 {
slicelit(ctxt, n, var_, init)
break
}
if simplename(var_) && count(n.List) > 4 {
if ctxt == 0 {
// lay out static data
vstat := staticname(t, ctxt)
arraylit(1, 1, n, vstat, init)
// copy static to automatic
a := Nod(OAS, var_, vstat)
typecheck(&a, Etop)
walkexpr(&a, init)
*init = list(*init, a)
// add expressions to automatic
arraylit(ctxt, 2, n, var_, init)
break
}
arraylit(ctxt, 1, n, var_, init)
arraylit(ctxt, 2, n, var_, init)
break
}
// initialize of not completely specified
if simplename(var_) || int64(count(n.List)) < t.Bound {
a := Nod(OAS, var_, nil)
typecheck(&a, Etop)
walkexpr(&a, init)
*init = list(*init, a)
}
arraylit(ctxt, 3, n, var_, init)
case OMAPLIT:
if t.Etype != TMAP {
Fatal("anylit: not map")
}
maplit(ctxt, n, var_, init)
}
}
func oaslit(n *Node, init **NodeList) bool {
if n.Left == nil || n.Right == nil {
// not a special composit literal assignment
return false
}
if n.Left.Type == nil || n.Right.Type == nil {
// not a special composit literal assignment
return false
}
if !simplename(n.Left) {
// not a special composit literal assignment
return false
}
if !Eqtype(n.Left.Type, n.Right.Type) {
// not a special composit literal assignment
return false
}
// context is init() function.
// implies generated data executed
// exactly once and not subject to races.
ctxt := 0
// if(n->dodata == 1)
// ctxt = 1;
switch n.Right.Op {
default:
// not a special composit literal assignment
return false
case OSTRUCTLIT,
OARRAYLIT,
OMAPLIT:
if vmatch1(n.Left, n.Right) {
// not a special composit literal assignment
return false
}
anylit(ctxt, n.Right, n.Left, init)
}
n.Op = OEMPTY
return true
}
func getlit(lit *Node) int {
if Smallintconst(lit) {
return int(Mpgetfix(lit.Val.U.Xval))
}
return -1
}
func stataddr(nam *Node, n *Node) bool {
if n == nil {
return false
}
switch n.Op {
case ONAME:
*nam = *n
return n.Addable != 0
case ODOT:
if !stataddr(nam, n.Left) {
break
}
nam.Xoffset += n.Xoffset
nam.Type = n.Type
return true
case OINDEX:
if n.Left.Type.Bound < 0 {
break
}
if !stataddr(nam, n.Left) {
break
}
l := getlit(n.Right)
if l < 0 {
break
}
// Check for overflow.
if n.Type.Width != 0 && Thearch.MAXWIDTH/n.Type.Width <= int64(l) {
break
}
nam.Xoffset += int64(l) * n.Type.Width
nam.Type = n.Type
return true
}
return false
}
func initplan(n *Node) {
if n.Initplan != nil {
return
}
p := new(InitPlan)
n.Initplan = p
switch n.Op {
default:
Fatal("initplan")
case OARRAYLIT:
var a *Node
for l := n.List; l != nil; l = l.Next {
a = l.N
if a.Op != OKEY || !Smallintconst(a.Left) {
Fatal("initplan arraylit")
}
addvalue(p, n.Type.Type.Width*Mpgetfix(a.Left.Val.U.Xval), nil, a.Right)
}
case OSTRUCTLIT:
var a *Node
for l := n.List; l != nil; l = l.Next {
a = l.N
if a.Op != OKEY || a.Left.Type == nil {
Fatal("initplan structlit")
}
addvalue(p, a.Left.Type.Width, nil, a.Right)
}
case OMAPLIT:
var a *Node
for l := n.List; l != nil; l = l.Next {
a = l.N
if a.Op != OKEY {
Fatal("initplan maplit")
}
addvalue(p, -1, a.Left, a.Right)
}
}
}
func addvalue(p *InitPlan, xoffset int64, key *Node, n *Node) {
// special case: zero can be dropped entirely
if iszero(n) {
p.Zero += n.Type.Width
return
}
// special case: inline struct and array (not slice) literals
if isvaluelit(n) {
initplan(n)
q := n.Initplan
var e *InitEntry
for i := 0; i < len(q.E); i++ {
e = entry(p)
*e = q.E[i]
e.Xoffset += xoffset
}
return
}
// add to plan
if n.Op == OLITERAL {
p.Lit += n.Type.Width
} else {
p.Expr += n.Type.Width
}
e := entry(p)
e.Xoffset = xoffset
e.Expr = n
}
func iszero(n *Node) bool {
switch n.Op {
case OLITERAL:
switch n.Val.Ctype {
default:
Dump("unexpected literal", n)
Fatal("iszero")
case CTNIL:
return true
case CTSTR:
return n.Val.U.Sval == ""
case CTBOOL:
return n.Val.U.Bval == 0
case CTINT,
CTRUNE:
return mpcmpfixc(n.Val.U.Xval, 0) == 0
case CTFLT:
return mpcmpfltc(n.Val.U.Fval, 0) == 0
case CTCPLX:
return mpcmpfltc(&n.Val.U.Cval.Real, 0) == 0 && mpcmpfltc(&n.Val.U.Cval.Imag, 0) == 0
}
case OARRAYLIT:
if Isslice(n.Type) {
break
}
fallthrough
// fall through
case OSTRUCTLIT:
for l := n.List; l != nil; l = l.Next {
if !iszero(l.N.Right) {
return false
}
}
return true
}
return false
}
func isvaluelit(n *Node) bool {
return (n.Op == OARRAYLIT && Isfixedarray(n.Type)) || n.Op == OSTRUCTLIT
}
func entry(p *InitPlan) *InitEntry {
p.E = append(p.E, InitEntry{})
return &p.E[len(p.E)-1]
}
func gen_as_init(n *Node) bool {
var nr *Node
var nl *Node
var nam Node
if n.Dodata == 0 {
goto no
}
nr = n.Right
nl = n.Left
if nr == nil {
var nam Node
if !stataddr(&nam, nl) {
goto no
}
if nam.Class != PEXTERN {
goto no
}
return true
}
if nr.Type == nil || !Eqtype(nl.Type, nr.Type) {
goto no
}
if !stataddr(&nam, nl) {
goto no
}
if nam.Class != PEXTERN {
goto no
}
switch nr.Op {
default:
goto no
case OCONVNOP:
nr = nr.Left
if nr == nil || nr.Op != OSLICEARR {
goto no
}
fallthrough
// fall through
case OSLICEARR:
if nr.Right.Op == OKEY && nr.Right.Left == nil && nr.Right.Right == nil {
nr = nr.Left
gused(nil) // in case the data is the dest of a goto
nl := nr
if nr == nil || nr.Op != OADDR {
goto no
}
nr = nr.Left
if nr == nil || nr.Op != ONAME {
goto no
}
// nr is the array being converted to a slice
if nr.Type == nil || nr.Type.Etype != TARRAY || nr.Type.Bound < 0 {
goto no
}
nam.Xoffset += int64(Array_array)
gdata(&nam, nl, int(Types[Tptr].Width))
nam.Xoffset += int64(Array_nel) - int64(Array_array)
var nod1 Node
Nodconst(&nod1, Types[TINT], nr.Type.Bound)
gdata(&nam, &nod1, Widthint)
nam.Xoffset += int64(Array_cap) - int64(Array_nel)
gdata(&nam, &nod1, Widthint)
return true
}
goto no
case OLITERAL:
break
}
switch nr.Type.Etype {
default:
goto no
case TBOOL,
TINT8,
TUINT8,
TINT16,
TUINT16,
TINT32,
TUINT32,
TINT64,
TUINT64,
TINT,
TUINT,
TUINTPTR,
TPTR32,
TPTR64,
TFLOAT32,
TFLOAT64:
gdata(&nam, nr, int(nr.Type.Width))
case TCOMPLEX64,
TCOMPLEX128:
gdatacomplex(&nam, nr.Val.U.Cval)
case TSTRING:
gdatastring(&nam, nr.Val.U.Sval)
}
return true
no:
if n.Dodata == 2 {
Dump("\ngen_as_init", n)
Fatal("gen_as_init couldnt make data statement")
}
return false
}