go/src/cmd/compile/internal/ssa/config.go
Cherry Mui 656f0888b7 [dev.typeparams] cmd/compile: make softfloat mode work with register ABI
Previously, softfloat mode does not work with register ABI, mainly
because the compiler doesn't know how to pass floating point
arguments and results. According to the ABI it should be passed in
FP registers, but there isn't any in softfloat mode.

This CL makes it work. When softfloat is used, we define the ABI
as having 0 floating point registers (because there aren't any).
The integer registers are unchanged. So floating point arguments
and results are passed in memory.

Another option is to pass (the bit representation of) floating
point values in integer registers. But this complicates things
because it'd need to reorder integer argument registers.

Change-Id: Ibecbeccb658c10a868fa7f2dcf75138f719cc809
Reviewed-on: https://go-review.googlesource.com/c/go/+/327274
Trust: Cherry Mui <cherryyz@google.com>
Run-TryBot: Cherry Mui <cherryyz@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
2021-08-03 16:14:24 +00:00

368 lines
11 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/compile/internal/abi"
"cmd/compile/internal/ir"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/src"
"internal/buildcfg"
)
// A Config holds readonly compilation information.
// It is created once, early during compilation,
// and shared across all compilations.
type Config struct {
arch string // "amd64", etc.
PtrSize int64 // 4 or 8; copy of cmd/internal/sys.Arch.PtrSize
RegSize int64 // 4 or 8; copy of cmd/internal/sys.Arch.RegSize
Types Types
lowerBlock blockRewriter // lowering function
lowerValue valueRewriter // lowering function
splitLoad valueRewriter // function for splitting merged load ops; only used on some architectures
registers []Register // machine registers
gpRegMask regMask // general purpose integer register mask
fpRegMask regMask // floating point register mask
fp32RegMask regMask // floating point register mask
fp64RegMask regMask // floating point register mask
specialRegMask regMask // special register mask
intParamRegs []int8 // register numbers of integer param (in/out) registers
floatParamRegs []int8 // register numbers of floating param (in/out) registers
ABI1 *abi.ABIConfig // "ABIInternal" under development // TODO change comment when this becomes current
ABI0 *abi.ABIConfig
GCRegMap []*Register // garbage collector register map, by GC register index
FPReg int8 // register number of frame pointer, -1 if not used
LinkReg int8 // register number of link register if it is a general purpose register, -1 if not used
hasGReg bool // has hardware g register
ctxt *obj.Link // Generic arch information
optimize bool // Do optimization
noDuffDevice bool // Don't use Duff's device
useSSE bool // Use SSE for non-float operations
useAvg bool // Use optimizations that need Avg* operations
useHmul bool // Use optimizations that need Hmul* operations
SoftFloat bool //
Race bool // race detector enabled
BigEndian bool //
UseFMA bool // Use hardware FMA operation
}
type (
blockRewriter func(*Block) bool
valueRewriter func(*Value) bool
)
type Types struct {
Bool *types.Type
Int8 *types.Type
Int16 *types.Type
Int32 *types.Type
Int64 *types.Type
UInt8 *types.Type
UInt16 *types.Type
UInt32 *types.Type
UInt64 *types.Type
Int *types.Type
Float32 *types.Type
Float64 *types.Type
UInt *types.Type
Uintptr *types.Type
String *types.Type
BytePtr *types.Type // TODO: use unsafe.Pointer instead?
Int32Ptr *types.Type
UInt32Ptr *types.Type
IntPtr *types.Type
UintptrPtr *types.Type
Float32Ptr *types.Type
Float64Ptr *types.Type
BytePtrPtr *types.Type
}
// NewTypes creates and populates a Types.
func NewTypes() *Types {
t := new(Types)
t.SetTypPtrs()
return t
}
// SetTypPtrs populates t.
func (t *Types) SetTypPtrs() {
t.Bool = types.Types[types.TBOOL]
t.Int8 = types.Types[types.TINT8]
t.Int16 = types.Types[types.TINT16]
t.Int32 = types.Types[types.TINT32]
t.Int64 = types.Types[types.TINT64]
t.UInt8 = types.Types[types.TUINT8]
t.UInt16 = types.Types[types.TUINT16]
t.UInt32 = types.Types[types.TUINT32]
t.UInt64 = types.Types[types.TUINT64]
t.Int = types.Types[types.TINT]
t.Float32 = types.Types[types.TFLOAT32]
t.Float64 = types.Types[types.TFLOAT64]
t.UInt = types.Types[types.TUINT]
t.Uintptr = types.Types[types.TUINTPTR]
t.String = types.Types[types.TSTRING]
t.BytePtr = types.NewPtr(types.Types[types.TUINT8])
t.Int32Ptr = types.NewPtr(types.Types[types.TINT32])
t.UInt32Ptr = types.NewPtr(types.Types[types.TUINT32])
t.IntPtr = types.NewPtr(types.Types[types.TINT])
t.UintptrPtr = types.NewPtr(types.Types[types.TUINTPTR])
t.Float32Ptr = types.NewPtr(types.Types[types.TFLOAT32])
t.Float64Ptr = types.NewPtr(types.Types[types.TFLOAT64])
t.BytePtrPtr = types.NewPtr(types.NewPtr(types.Types[types.TUINT8]))
}
type Logger interface {
// Logf logs a message from the compiler.
Logf(string, ...interface{})
// Log reports whether logging is not a no-op
// some logging calls account for more than a few heap allocations.
Log() bool
// Fatal reports a compiler error and exits.
Fatalf(pos src.XPos, msg string, args ...interface{})
// Warnl writes compiler messages in the form expected by "errorcheck" tests
Warnl(pos src.XPos, fmt_ string, args ...interface{})
// Forwards the Debug flags from gc
Debug_checknil() bool
}
type Frontend interface {
CanSSA(t *types.Type) bool
Logger
// StringData returns a symbol pointing to the given string's contents.
StringData(string) *obj.LSym
// Auto returns a Node for an auto variable of the given type.
// The SSA compiler uses this function to allocate space for spills.
Auto(src.XPos, *types.Type) *ir.Name
// Given the name for a compound type, returns the name we should use
// for the parts of that compound type.
SplitSlot(parent *LocalSlot, suffix string, offset int64, t *types.Type) LocalSlot
// Line returns a string describing the given position.
Line(src.XPos) string
// AllocFrame assigns frame offsets to all live auto variables.
AllocFrame(f *Func)
// Syslook returns a symbol of the runtime function/variable with the
// given name.
Syslook(string) *obj.LSym
// UseWriteBarrier reports whether write barrier is enabled
UseWriteBarrier() bool
// SetWBPos indicates that a write barrier has been inserted
// in this function at position pos.
SetWBPos(pos src.XPos)
// MyImportPath provides the import name (roughly, the package) for the function being compiled.
MyImportPath() string
}
// NewConfig returns a new configuration object for the given architecture.
func NewConfig(arch string, types Types, ctxt *obj.Link, optimize, softfloat bool) *Config {
c := &Config{arch: arch, Types: types}
c.useAvg = true
c.useHmul = true
switch arch {
case "amd64":
c.PtrSize = 8
c.RegSize = 8
c.lowerBlock = rewriteBlockAMD64
c.lowerValue = rewriteValueAMD64
c.splitLoad = rewriteValueAMD64splitload
c.registers = registersAMD64[:]
c.gpRegMask = gpRegMaskAMD64
c.fpRegMask = fpRegMaskAMD64
c.specialRegMask = specialRegMaskAMD64
c.intParamRegs = paramIntRegAMD64
c.floatParamRegs = paramFloatRegAMD64
c.FPReg = framepointerRegAMD64
c.LinkReg = linkRegAMD64
c.hasGReg = true
case "386":
c.PtrSize = 4
c.RegSize = 4
c.lowerBlock = rewriteBlock386
c.lowerValue = rewriteValue386
c.splitLoad = rewriteValue386splitload
c.registers = registers386[:]
c.gpRegMask = gpRegMask386
c.fpRegMask = fpRegMask386
c.FPReg = framepointerReg386
c.LinkReg = linkReg386
c.hasGReg = false
case "arm":
c.PtrSize = 4
c.RegSize = 4
c.lowerBlock = rewriteBlockARM
c.lowerValue = rewriteValueARM
c.registers = registersARM[:]
c.gpRegMask = gpRegMaskARM
c.fpRegMask = fpRegMaskARM
c.FPReg = framepointerRegARM
c.LinkReg = linkRegARM
c.hasGReg = true
case "arm64":
c.PtrSize = 8
c.RegSize = 8
c.lowerBlock = rewriteBlockARM64
c.lowerValue = rewriteValueARM64
c.registers = registersARM64[:]
c.gpRegMask = gpRegMaskARM64
c.fpRegMask = fpRegMaskARM64
c.intParamRegs = paramIntRegARM64
c.floatParamRegs = paramFloatRegARM64
c.FPReg = framepointerRegARM64
c.LinkReg = linkRegARM64
c.hasGReg = true
c.noDuffDevice = buildcfg.GOOS == "darwin" || buildcfg.GOOS == "ios" // darwin linker cannot handle BR26 reloc with non-zero addend
case "ppc64":
c.BigEndian = true
fallthrough
case "ppc64le":
c.PtrSize = 8
c.RegSize = 8
c.lowerBlock = rewriteBlockPPC64
c.lowerValue = rewriteValuePPC64
c.registers = registersPPC64[:]
c.gpRegMask = gpRegMaskPPC64
c.fpRegMask = fpRegMaskPPC64
c.FPReg = framepointerRegPPC64
c.LinkReg = linkRegPPC64
c.noDuffDevice = true // TODO: Resolve PPC64 DuffDevice (has zero, but not copy)
c.hasGReg = true
case "mips64":
c.BigEndian = true
fallthrough
case "mips64le":
c.PtrSize = 8
c.RegSize = 8
c.lowerBlock = rewriteBlockMIPS64
c.lowerValue = rewriteValueMIPS64
c.registers = registersMIPS64[:]
c.gpRegMask = gpRegMaskMIPS64
c.fpRegMask = fpRegMaskMIPS64
c.specialRegMask = specialRegMaskMIPS64
c.FPReg = framepointerRegMIPS64
c.LinkReg = linkRegMIPS64
c.hasGReg = true
case "s390x":
c.PtrSize = 8
c.RegSize = 8
c.lowerBlock = rewriteBlockS390X
c.lowerValue = rewriteValueS390X
c.registers = registersS390X[:]
c.gpRegMask = gpRegMaskS390X
c.fpRegMask = fpRegMaskS390X
c.FPReg = framepointerRegS390X
c.LinkReg = linkRegS390X
c.hasGReg = true
c.noDuffDevice = true
c.BigEndian = true
case "mips":
c.BigEndian = true
fallthrough
case "mipsle":
c.PtrSize = 4
c.RegSize = 4
c.lowerBlock = rewriteBlockMIPS
c.lowerValue = rewriteValueMIPS
c.registers = registersMIPS[:]
c.gpRegMask = gpRegMaskMIPS
c.fpRegMask = fpRegMaskMIPS
c.specialRegMask = specialRegMaskMIPS
c.FPReg = framepointerRegMIPS
c.LinkReg = linkRegMIPS
c.hasGReg = true
c.noDuffDevice = true
case "riscv64":
c.PtrSize = 8
c.RegSize = 8
c.lowerBlock = rewriteBlockRISCV64
c.lowerValue = rewriteValueRISCV64
c.registers = registersRISCV64[:]
c.gpRegMask = gpRegMaskRISCV64
c.fpRegMask = fpRegMaskRISCV64
c.FPReg = framepointerRegRISCV64
c.hasGReg = true
case "wasm":
c.PtrSize = 8
c.RegSize = 8
c.lowerBlock = rewriteBlockWasm
c.lowerValue = rewriteValueWasm
c.registers = registersWasm[:]
c.gpRegMask = gpRegMaskWasm
c.fpRegMask = fpRegMaskWasm
c.fp32RegMask = fp32RegMaskWasm
c.fp64RegMask = fp64RegMaskWasm
c.FPReg = framepointerRegWasm
c.LinkReg = linkRegWasm
c.hasGReg = true
c.noDuffDevice = true
c.useAvg = false
c.useHmul = false
default:
ctxt.Diag("arch %s not implemented", arch)
}
c.ctxt = ctxt
c.optimize = optimize
c.useSSE = true
c.UseFMA = true
c.SoftFloat = softfloat
if softfloat {
c.floatParamRegs = nil // no FP registers in softfloat mode
}
c.ABI0 = abi.NewABIConfig(0, 0, ctxt.FixedFrameSize())
c.ABI1 = abi.NewABIConfig(len(c.intParamRegs), len(c.floatParamRegs), ctxt.FixedFrameSize())
// On Plan 9, floating point operations are not allowed in note handler.
if buildcfg.GOOS == "plan9" {
// Don't use FMA on Plan 9
c.UseFMA = false
// Don't use Duff's device and SSE on Plan 9 AMD64.
if arch == "amd64" {
c.noDuffDevice = true
c.useSSE = false
}
}
if ctxt.Flag_shared {
// LoweredWB is secretly a CALL and CALLs on 386 in
// shared mode get rewritten by obj6.go to go through
// the GOT, which clobbers BX.
opcodeTable[Op386LoweredWB].reg.clobbers |= 1 << 3 // BX
}
// Create the GC register map index.
// TODO: This is only used for debug printing. Maybe export config.registers?
gcRegMapSize := int16(0)
for _, r := range c.registers {
if r.gcNum+1 > gcRegMapSize {
gcRegMapSize = r.gcNum + 1
}
}
c.GCRegMap = make([]*Register, gcRegMapSize)
for i, r := range c.registers {
if r.gcNum != -1 {
c.GCRegMap[r.gcNum] = &c.registers[i]
}
}
return c
}
func (c *Config) Ctxt() *obj.Link { return c.ctxt }