mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
No code changes here, only copying of text. This will make the diffs in a future CL readable. Passes buildall w/ toolstash -cmp. Change-Id: I325a62e79edd82f1437769891ea63a32f51c0170 Reviewed-on: https://go-review.googlesource.com/c/go/+/274095 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
1284 lines
37 KiB
Go
1284 lines
37 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// “Abstract” syntax representation.
|
|
|
|
package ir
|
|
|
|
import (
|
|
"fmt"
|
|
"go/constant"
|
|
"sort"
|
|
"strings"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/src"
|
|
)
|
|
|
|
// A Node is the abstract interface to an IR node.
|
|
type Node interface {
|
|
// Formatting
|
|
Format(s fmt.State, verb rune)
|
|
String() string
|
|
|
|
// Source position.
|
|
Pos() src.XPos
|
|
SetPos(x src.XPos)
|
|
|
|
// For making copies. Mainly used by Copy and SepCopy.
|
|
RawCopy() Node
|
|
|
|
// Abstract graph structure, for generic traversals.
|
|
Op() Op
|
|
SetOp(x Op)
|
|
SubOp() Op
|
|
SetSubOp(x Op)
|
|
Left() Node
|
|
SetLeft(x Node)
|
|
Right() Node
|
|
SetRight(x Node)
|
|
Init() Nodes
|
|
PtrInit() *Nodes
|
|
SetInit(x Nodes)
|
|
Body() Nodes
|
|
PtrBody() *Nodes
|
|
SetBody(x Nodes)
|
|
List() Nodes
|
|
SetList(x Nodes)
|
|
PtrList() *Nodes
|
|
Rlist() Nodes
|
|
SetRlist(x Nodes)
|
|
PtrRlist() *Nodes
|
|
|
|
// Fields specific to certain Ops only.
|
|
Type() *types.Type
|
|
SetType(t *types.Type)
|
|
Func() *Func
|
|
SetFunc(x *Func)
|
|
Name() *Name
|
|
Sym() *types.Sym
|
|
SetSym(x *types.Sym)
|
|
Offset() int64
|
|
SetOffset(x int64)
|
|
Class() Class
|
|
SetClass(x Class)
|
|
Likely() bool
|
|
SetLikely(x bool)
|
|
SliceBounds() (low, high, max Node)
|
|
SetSliceBounds(low, high, max Node)
|
|
Iota() int64
|
|
SetIota(x int64)
|
|
Colas() bool
|
|
SetColas(x bool)
|
|
NoInline() bool
|
|
SetNoInline(x bool)
|
|
Transient() bool
|
|
SetTransient(x bool)
|
|
Implicit() bool
|
|
SetImplicit(x bool)
|
|
IsDDD() bool
|
|
SetIsDDD(x bool)
|
|
Embedded() bool
|
|
SetEmbedded(x bool)
|
|
IndexMapLValue() bool
|
|
SetIndexMapLValue(x bool)
|
|
TChanDir() types.ChanDir
|
|
SetTChanDir(x types.ChanDir)
|
|
ResetAux()
|
|
HasBreak() bool
|
|
SetHasBreak(x bool)
|
|
MarkReadonly()
|
|
Val() constant.Value
|
|
SetVal(v constant.Value)
|
|
Int64Val() int64
|
|
Uint64Val() uint64
|
|
CanInt64() bool
|
|
BoolVal() bool
|
|
StringVal() string
|
|
|
|
// Storage for analysis passes.
|
|
Esc() uint16
|
|
SetEsc(x uint16)
|
|
Walkdef() uint8
|
|
SetWalkdef(x uint8)
|
|
Opt() interface{}
|
|
SetOpt(x interface{})
|
|
Diag() bool
|
|
SetDiag(x bool)
|
|
Bounded() bool
|
|
SetBounded(x bool)
|
|
Typecheck() uint8
|
|
SetTypecheck(x uint8)
|
|
Initorder() uint8
|
|
SetInitorder(x uint8)
|
|
NonNil() bool
|
|
MarkNonNil()
|
|
HasCall() bool
|
|
SetHasCall(x bool)
|
|
|
|
// Only for SSA and should be removed when SSA starts
|
|
// using a more specific type than Node.
|
|
CanBeAnSSASym()
|
|
}
|
|
|
|
var _ Node = (*node)(nil)
|
|
|
|
// A Node is a single node in the syntax tree.
|
|
// Actually the syntax tree is a syntax DAG, because there is only one
|
|
// node with Op=ONAME for a given instance of a variable x.
|
|
// The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared.
|
|
type node struct {
|
|
// Tree structure.
|
|
// Generic recursive walks should follow these fields.
|
|
left Node
|
|
right Node
|
|
init Nodes
|
|
body Nodes
|
|
list Nodes
|
|
rlist Nodes
|
|
|
|
// most nodes
|
|
typ *types.Type
|
|
orig Node // original form, for printing, and tracking copies of ONAMEs
|
|
|
|
// func
|
|
fn *Func
|
|
|
|
sym *types.Sym // various
|
|
opt interface{}
|
|
|
|
// Various. Usually an offset into a struct. For example:
|
|
// - ONAME nodes that refer to local variables use it to identify their stack frame position.
|
|
// - ODOT, ODOTPTR, and ORESULT use it to indicate offset relative to their base address.
|
|
// - OSTRUCTKEY uses it to store the named field's offset.
|
|
// - Named OLITERALs use it to store their ambient iota value.
|
|
// - OINLMARK stores an index into the inlTree data structure.
|
|
// - OCLOSURE uses it to store ambient iota value, if any.
|
|
// Possibly still more uses. If you find any, document them.
|
|
offset int64
|
|
|
|
pos src.XPos
|
|
|
|
flags bitset32
|
|
|
|
esc uint16 // EscXXX
|
|
|
|
op Op
|
|
aux uint8
|
|
}
|
|
|
|
func (n *node) Left() Node { return n.left }
|
|
func (n *node) SetLeft(x Node) { n.left = x }
|
|
func (n *node) Right() Node { return n.right }
|
|
func (n *node) SetRight(x Node) { n.right = x }
|
|
func (n *node) Orig() Node { return n.orig }
|
|
func (n *node) SetOrig(x Node) { n.orig = x }
|
|
func (n *node) Type() *types.Type { return n.typ }
|
|
func (n *node) SetType(x *types.Type) { n.typ = x }
|
|
func (n *node) Func() *Func { return n.fn }
|
|
func (n *node) SetFunc(x *Func) { n.fn = x }
|
|
func (n *node) Name() *Name { return nil }
|
|
func (n *node) Sym() *types.Sym { return n.sym }
|
|
func (n *node) SetSym(x *types.Sym) { n.sym = x }
|
|
func (n *node) Pos() src.XPos { return n.pos }
|
|
func (n *node) SetPos(x src.XPos) { n.pos = x }
|
|
func (n *node) Offset() int64 { return n.offset }
|
|
func (n *node) SetOffset(x int64) { n.offset = x }
|
|
func (n *node) Esc() uint16 { return n.esc }
|
|
func (n *node) SetEsc(x uint16) { n.esc = x }
|
|
func (n *node) Op() Op { return n.op }
|
|
func (n *node) Init() Nodes { return n.init }
|
|
func (n *node) SetInit(x Nodes) { n.init = x }
|
|
func (n *node) PtrInit() *Nodes { return &n.init }
|
|
func (n *node) Body() Nodes { return n.body }
|
|
func (n *node) SetBody(x Nodes) { n.body = x }
|
|
func (n *node) PtrBody() *Nodes { return &n.body }
|
|
func (n *node) List() Nodes { return n.list }
|
|
func (n *node) SetList(x Nodes) { n.list = x }
|
|
func (n *node) PtrList() *Nodes { return &n.list }
|
|
func (n *node) Rlist() Nodes { return n.rlist }
|
|
func (n *node) SetRlist(x Nodes) { n.rlist = x }
|
|
func (n *node) PtrRlist() *Nodes { return &n.rlist }
|
|
func (n *node) MarkReadonly() { panic("node.MarkReadOnly") }
|
|
func (n *node) Val() constant.Value { panic("node.Val") }
|
|
func (n *node) SetVal(constant.Value) { panic("node.SetVal") }
|
|
func (n *node) Int64Val() int64 { panic("node.Int64Val") }
|
|
func (n *node) CanInt64() bool { return false }
|
|
func (n *node) Uint64Val() uint64 { panic("node.Uint64Val") }
|
|
func (n *node) BoolVal() bool { panic("node.BoolVal") }
|
|
func (n *node) StringVal() string { panic("node.StringVal") }
|
|
|
|
func (n *node) SetOp(op Op) {
|
|
if !okForNod[op] {
|
|
panic("cannot node.SetOp " + op.String())
|
|
}
|
|
n.op = op
|
|
}
|
|
|
|
func (n *node) ResetAux() {
|
|
n.aux = 0
|
|
}
|
|
|
|
func (n *node) SubOp() Op {
|
|
switch n.Op() {
|
|
case OASOP, ONAME:
|
|
default:
|
|
base.Fatalf("unexpected op: %v", n.Op())
|
|
}
|
|
return Op(n.aux)
|
|
}
|
|
|
|
func (n *node) SetSubOp(op Op) {
|
|
switch n.Op() {
|
|
case OASOP, ONAME:
|
|
default:
|
|
base.Fatalf("unexpected op: %v", n.Op())
|
|
}
|
|
n.aux = uint8(op)
|
|
}
|
|
|
|
func (n *node) IndexMapLValue() bool {
|
|
if n.Op() != OINDEXMAP {
|
|
base.Fatalf("unexpected op: %v", n.Op())
|
|
}
|
|
return n.aux != 0
|
|
}
|
|
|
|
func (n *node) SetIndexMapLValue(b bool) {
|
|
if n.Op() != OINDEXMAP {
|
|
base.Fatalf("unexpected op: %v", n.Op())
|
|
}
|
|
if b {
|
|
n.aux = 1
|
|
} else {
|
|
n.aux = 0
|
|
}
|
|
}
|
|
|
|
func (n *node) TChanDir() types.ChanDir {
|
|
if n.Op() != OTCHAN {
|
|
base.Fatalf("unexpected op: %v", n.Op())
|
|
}
|
|
return types.ChanDir(n.aux)
|
|
}
|
|
|
|
func (n *node) SetTChanDir(dir types.ChanDir) {
|
|
if n.Op() != OTCHAN {
|
|
base.Fatalf("unexpected op: %v", n.Op())
|
|
}
|
|
n.aux = uint8(dir)
|
|
}
|
|
|
|
func IsSynthetic(n Node) bool {
|
|
name := n.Sym().Name
|
|
return name[0] == '.' || name[0] == '~'
|
|
}
|
|
|
|
// IsAutoTmp indicates if n was created by the compiler as a temporary,
|
|
// based on the setting of the .AutoTemp flag in n's Name.
|
|
func IsAutoTmp(n Node) bool {
|
|
if n == nil || n.Op() != ONAME {
|
|
return false
|
|
}
|
|
return n.Name().AutoTemp()
|
|
}
|
|
|
|
const (
|
|
nodeClass, _ = iota, 1 << iota // PPARAM, PAUTO, PEXTERN, etc; three bits; first in the list because frequently accessed
|
|
_, _ // second nodeClass bit
|
|
_, _ // third nodeClass bit
|
|
nodeWalkdef, _ // tracks state during typecheckdef; 2 == loop detected; two bits
|
|
_, _ // second nodeWalkdef bit
|
|
nodeTypecheck, _ // tracks state during typechecking; 2 == loop detected; two bits
|
|
_, _ // second nodeTypecheck bit
|
|
nodeInitorder, _ // tracks state during init1; two bits
|
|
_, _ // second nodeInitorder bit
|
|
_, nodeHasBreak
|
|
_, nodeNoInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only
|
|
_, nodeImplicit // implicit OADDR or ODEREF; ++/-- statement represented as OASOP
|
|
_, nodeIsDDD // is the argument variadic
|
|
_, nodeDiag // already printed error about this
|
|
_, nodeColas // OAS resulting from :=
|
|
_, nodeNonNil // guaranteed to be non-nil
|
|
_, nodeTransient // storage can be reused immediately after this statement
|
|
_, nodeBounded // bounds check unnecessary
|
|
_, nodeHasCall // expression contains a function call
|
|
_, nodeLikely // if statement condition likely
|
|
_, nodeEmbedded // ODCLFIELD embedded type
|
|
)
|
|
|
|
func (n *node) Class() Class { return Class(n.flags.get3(nodeClass)) }
|
|
func (n *node) Walkdef() uint8 { return n.flags.get2(nodeWalkdef) }
|
|
func (n *node) Typecheck() uint8 { return n.flags.get2(nodeTypecheck) }
|
|
func (n *node) Initorder() uint8 { return n.flags.get2(nodeInitorder) }
|
|
|
|
func (n *node) HasBreak() bool { return n.flags&nodeHasBreak != 0 }
|
|
func (n *node) NoInline() bool { return n.flags&nodeNoInline != 0 }
|
|
func (n *node) Implicit() bool { return n.flags&nodeImplicit != 0 }
|
|
func (n *node) IsDDD() bool { return n.flags&nodeIsDDD != 0 }
|
|
func (n *node) Diag() bool { return n.flags&nodeDiag != 0 }
|
|
func (n *node) Colas() bool { return n.flags&nodeColas != 0 }
|
|
func (n *node) NonNil() bool { return n.flags&nodeNonNil != 0 }
|
|
func (n *node) Transient() bool { return n.flags&nodeTransient != 0 }
|
|
func (n *node) Bounded() bool { return n.flags&nodeBounded != 0 }
|
|
func (n *node) HasCall() bool { return n.flags&nodeHasCall != 0 }
|
|
func (n *node) Likely() bool { return n.flags&nodeLikely != 0 }
|
|
func (n *node) Embedded() bool { return n.flags&nodeEmbedded != 0 }
|
|
|
|
func (n *node) SetClass(b Class) { n.flags.set3(nodeClass, uint8(b)) }
|
|
func (n *node) SetWalkdef(b uint8) { n.flags.set2(nodeWalkdef, b) }
|
|
func (n *node) SetTypecheck(b uint8) { n.flags.set2(nodeTypecheck, b) }
|
|
func (n *node) SetInitorder(b uint8) { n.flags.set2(nodeInitorder, b) }
|
|
|
|
func (n *node) SetHasBreak(b bool) { n.flags.set(nodeHasBreak, b) }
|
|
func (n *node) SetNoInline(b bool) { n.flags.set(nodeNoInline, b) }
|
|
func (n *node) SetImplicit(b bool) { n.flags.set(nodeImplicit, b) }
|
|
func (n *node) SetIsDDD(b bool) { n.flags.set(nodeIsDDD, b) }
|
|
func (n *node) SetDiag(b bool) { n.flags.set(nodeDiag, b) }
|
|
func (n *node) SetColas(b bool) { n.flags.set(nodeColas, b) }
|
|
func (n *node) SetTransient(b bool) { n.flags.set(nodeTransient, b) }
|
|
func (n *node) SetHasCall(b bool) { n.flags.set(nodeHasCall, b) }
|
|
func (n *node) SetLikely(b bool) { n.flags.set(nodeLikely, b) }
|
|
func (n *node) SetEmbedded(b bool) { n.flags.set(nodeEmbedded, b) }
|
|
|
|
// MarkNonNil marks a pointer n as being guaranteed non-nil,
|
|
// on all code paths, at all times.
|
|
// During conversion to SSA, non-nil pointers won't have nil checks
|
|
// inserted before dereferencing. See state.exprPtr.
|
|
func (n *node) MarkNonNil() {
|
|
if !n.Type().IsPtr() && !n.Type().IsUnsafePtr() {
|
|
base.Fatalf("MarkNonNil(%v), type %v", n, n.Type())
|
|
}
|
|
n.flags.set(nodeNonNil, true)
|
|
}
|
|
|
|
// SetBounded indicates whether operation n does not need safety checks.
|
|
// When n is an index or slice operation, n does not need bounds checks.
|
|
// When n is a dereferencing operation, n does not need nil checks.
|
|
// When n is a makeslice+copy operation, n does not need length and cap checks.
|
|
func (n *node) SetBounded(b bool) {
|
|
switch n.Op() {
|
|
case OINDEX, OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR, OSLICESTR:
|
|
// No bounds checks needed.
|
|
case ODOTPTR, ODEREF:
|
|
// No nil check needed.
|
|
case OMAKESLICECOPY:
|
|
// No length and cap checks needed
|
|
// since new slice and copied over slice data have same length.
|
|
default:
|
|
base.Fatalf("SetBounded(%v)", n)
|
|
}
|
|
n.flags.set(nodeBounded, b)
|
|
}
|
|
|
|
// Opt returns the optimizer data for the node.
|
|
func (n *node) Opt() interface{} {
|
|
return n.opt
|
|
}
|
|
|
|
// SetOpt sets the optimizer data for the node, which must not have been used with SetVal.
|
|
// SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.
|
|
func (n *node) SetOpt(x interface{}) {
|
|
n.opt = x
|
|
}
|
|
|
|
func (n *node) Iota() int64 {
|
|
return n.Offset()
|
|
}
|
|
|
|
func (n *node) SetIota(x int64) {
|
|
n.SetOffset(x)
|
|
}
|
|
|
|
// mayBeShared reports whether n may occur in multiple places in the AST.
|
|
// Extra care must be taken when mutating such a node.
|
|
func MayBeShared(n Node) bool {
|
|
switch n.Op() {
|
|
case ONAME, OLITERAL, ONIL, OTYPE:
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// The compiler needs *Node to be assignable to cmd/compile/internal/ssa.Sym.
|
|
func (n *node) CanBeAnSSASym() {
|
|
}
|
|
|
|
//go:generate stringer -type=Op -trimprefix=O
|
|
|
|
type Op uint8
|
|
|
|
// Node ops.
|
|
const (
|
|
OXXX Op = iota
|
|
|
|
// names
|
|
ONAME // var or func name
|
|
// Unnamed arg or return value: f(int, string) (int, error) { etc }
|
|
// Also used for a qualified package identifier that hasn't been resolved yet.
|
|
ONONAME
|
|
OTYPE // type name
|
|
OPACK // import
|
|
OLITERAL // literal
|
|
ONIL // nil
|
|
|
|
// expressions
|
|
OADD // Left + Right
|
|
OSUB // Left - Right
|
|
OOR // Left | Right
|
|
OXOR // Left ^ Right
|
|
OADDSTR // +{List} (string addition, list elements are strings)
|
|
OADDR // &Left
|
|
OANDAND // Left && Right
|
|
OAPPEND // append(List); after walk, Left may contain elem type descriptor
|
|
OBYTES2STR // Type(Left) (Type is string, Left is a []byte)
|
|
OBYTES2STRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
|
|
ORUNES2STR // Type(Left) (Type is string, Left is a []rune)
|
|
OSTR2BYTES // Type(Left) (Type is []byte, Left is a string)
|
|
OSTR2BYTESTMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
|
|
OSTR2RUNES // Type(Left) (Type is []rune, Left is a string)
|
|
// Left = Right or (if Colas=true) Left := Right
|
|
// If Colas, then Ninit includes a DCL node for Left.
|
|
OAS
|
|
// List = Rlist (x, y, z = a, b, c) or (if Colas=true) List := Rlist
|
|
// If Colas, then Ninit includes DCL nodes for List
|
|
OAS2
|
|
OAS2DOTTYPE // List = Right (x, ok = I.(int))
|
|
OAS2FUNC // List = Right (x, y = f())
|
|
OAS2MAPR // List = Right (x, ok = m["foo"])
|
|
OAS2RECV // List = Right (x, ok = <-c)
|
|
OASOP // Left Etype= Right (x += y)
|
|
OCALL // Left(List) (function call, method call or type conversion)
|
|
|
|
// OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure.
|
|
// Prior to walk, they are: Left(List), where List is all regular arguments.
|
|
// After walk, List is a series of assignments to temporaries,
|
|
// and Rlist is an updated set of arguments.
|
|
// Nbody is all OVARLIVE nodes that are attached to OCALLxxx.
|
|
// TODO(josharian/khr): Use Ninit instead of List for the assignments to temporaries. See CL 114797.
|
|
OCALLFUNC // Left(List/Rlist) (function call f(args))
|
|
OCALLMETH // Left(List/Rlist) (direct method call x.Method(args))
|
|
OCALLINTER // Left(List/Rlist) (interface method call x.Method(args))
|
|
OCALLPART // Left.Right (method expression x.Method, not called)
|
|
OCAP // cap(Left)
|
|
OCLOSE // close(Left)
|
|
OCLOSURE // func Type { Func.Closure.Nbody } (func literal)
|
|
OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form)
|
|
OMAPLIT // Type{List} (composite literal, Type is map)
|
|
OSTRUCTLIT // Type{List} (composite literal, Type is struct)
|
|
OARRAYLIT // Type{List} (composite literal, Type is array)
|
|
OSLICELIT // Type{List} (composite literal, Type is slice) Right.Int64() = slice length.
|
|
OPTRLIT // &Left (left is composite literal)
|
|
OCONV // Type(Left) (type conversion)
|
|
OCONVIFACE // Type(Left) (type conversion, to interface)
|
|
OCONVNOP // Type(Left) (type conversion, no effect)
|
|
OCOPY // copy(Left, Right)
|
|
ODCL // var Left (declares Left of type Left.Type)
|
|
|
|
// Used during parsing but don't last.
|
|
ODCLFUNC // func f() or func (r) f()
|
|
ODCLFIELD // struct field, interface field, or func/method argument/return value.
|
|
ODCLCONST // const pi = 3.14
|
|
ODCLTYPE // type Int int or type Int = int
|
|
|
|
ODELETE // delete(List)
|
|
ODOT // Left.Sym (Left is of struct type)
|
|
ODOTPTR // Left.Sym (Left is of pointer to struct type)
|
|
ODOTMETH // Left.Sym (Left is non-interface, Right is method name)
|
|
ODOTINTER // Left.Sym (Left is interface, Right is method name)
|
|
OXDOT // Left.Sym (before rewrite to one of the preceding)
|
|
ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor
|
|
ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor
|
|
OEQ // Left == Right
|
|
ONE // Left != Right
|
|
OLT // Left < Right
|
|
OLE // Left <= Right
|
|
OGE // Left >= Right
|
|
OGT // Left > Right
|
|
ODEREF // *Left
|
|
OINDEX // Left[Right] (index of array or slice)
|
|
OINDEXMAP // Left[Right] (index of map)
|
|
OKEY // Left:Right (key:value in struct/array/map literal)
|
|
OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking)
|
|
OLEN // len(Left)
|
|
OMAKE // make(List) (before type checking converts to one of the following)
|
|
OMAKECHAN // make(Type, Left) (type is chan)
|
|
OMAKEMAP // make(Type, Left) (type is map)
|
|
OMAKESLICE // make(Type, Left, Right) (type is slice)
|
|
OMAKESLICECOPY // makeslicecopy(Type, Left, Right) (type is slice; Left is length and Right is the copied from slice)
|
|
// OMAKESLICECOPY is created by the order pass and corresponds to:
|
|
// s = make(Type, Left); copy(s, Right)
|
|
//
|
|
// Bounded can be set on the node when Left == len(Right) is known at compile time.
|
|
//
|
|
// This node is created so the walk pass can optimize this pattern which would
|
|
// otherwise be hard to detect after the order pass.
|
|
OMUL // Left * Right
|
|
ODIV // Left / Right
|
|
OMOD // Left % Right
|
|
OLSH // Left << Right
|
|
ORSH // Left >> Right
|
|
OAND // Left & Right
|
|
OANDNOT // Left &^ Right
|
|
ONEW // new(Left); corresponds to calls to new in source code
|
|
ONEWOBJ // runtime.newobject(n.Type); introduced by walk; Left is type descriptor
|
|
ONOT // !Left
|
|
OBITNOT // ^Left
|
|
OPLUS // +Left
|
|
ONEG // -Left
|
|
OOROR // Left || Right
|
|
OPANIC // panic(Left)
|
|
OPRINT // print(List)
|
|
OPRINTN // println(List)
|
|
OPAREN // (Left)
|
|
OSEND // Left <- Right
|
|
OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice)
|
|
OSLICEARR // Left[List[0] : List[1]] (Left is array)
|
|
OSLICESTR // Left[List[0] : List[1]] (Left is string)
|
|
OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
|
|
OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array)
|
|
OSLICEHEADER // sliceheader{Left, List[0], List[1]} (Left is unsafe.Pointer, List[0] is length, List[1] is capacity)
|
|
ORECOVER // recover()
|
|
ORECV // <-Left
|
|
ORUNESTR // Type(Left) (Type is string, Left is rune)
|
|
OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
|
|
OSELRECV2 // List = <-Right.Left: (appears as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
|
|
OIOTA // iota
|
|
OREAL // real(Left)
|
|
OIMAG // imag(Left)
|
|
OCOMPLEX // complex(Left, Right) or complex(List[0]) where List[0] is a 2-result function call
|
|
OALIGNOF // unsafe.Alignof(Left)
|
|
OOFFSETOF // unsafe.Offsetof(Left)
|
|
OSIZEOF // unsafe.Sizeof(Left)
|
|
OMETHEXPR // method expression
|
|
|
|
// statements
|
|
OBLOCK // { List } (block of code)
|
|
OBREAK // break [Sym]
|
|
// OCASE: case List: Nbody (List==nil means default)
|
|
// For OTYPESW, List is a OTYPE node for the specified type (or OLITERAL
|
|
// for nil), and, if a type-switch variable is specified, Rlist is an
|
|
// ONAME for the version of the type-switch variable with the specified
|
|
// type.
|
|
OCASE
|
|
OCONTINUE // continue [Sym]
|
|
ODEFER // defer Left (Left must be call)
|
|
OEMPTY // no-op (empty statement)
|
|
OFALL // fallthrough
|
|
OFOR // for Ninit; Left; Right { Nbody }
|
|
// OFORUNTIL is like OFOR, but the test (Left) is applied after the body:
|
|
// Ninit
|
|
// top: { Nbody } // Execute the body at least once
|
|
// cont: Right
|
|
// if Left { // And then test the loop condition
|
|
// List // Before looping to top, execute List
|
|
// goto top
|
|
// }
|
|
// OFORUNTIL is created by walk. There's no way to write this in Go code.
|
|
OFORUNTIL
|
|
OGOTO // goto Sym
|
|
OIF // if Ninit; Left { Nbody } else { Rlist }
|
|
OLABEL // Sym:
|
|
OGO // go Left (Left must be call)
|
|
ORANGE // for List = range Right { Nbody }
|
|
ORETURN // return List
|
|
OSELECT // select { List } (List is list of OCASE)
|
|
OSWITCH // switch Ninit; Left { List } (List is a list of OCASE)
|
|
// OTYPESW: Left := Right.(type) (appears as .Left of OSWITCH)
|
|
// Left is nil if there is no type-switch variable
|
|
OTYPESW
|
|
|
|
// types
|
|
OTCHAN // chan int
|
|
OTMAP // map[string]int
|
|
OTSTRUCT // struct{}
|
|
OTINTER // interface{}
|
|
// OTFUNC: func() - Left is receiver field, List is list of param fields, Rlist is
|
|
// list of result fields.
|
|
OTFUNC
|
|
OTARRAY // []int, [8]int, [N]int or [...]int
|
|
|
|
// misc
|
|
ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
|
|
OINLCALL // intermediary representation of an inlined call.
|
|
OEFACE // itable and data words of an empty-interface value.
|
|
OITAB // itable word of an interface value.
|
|
OIDATA // data word of an interface value in Left
|
|
OSPTR // base pointer of a slice or string.
|
|
OCLOSUREVAR // variable reference at beginning of closure function
|
|
OCFUNC // reference to c function pointer (not go func value)
|
|
OCHECKNIL // emit code to ensure pointer/interface not nil
|
|
OVARDEF // variable is about to be fully initialized
|
|
OVARKILL // variable is dead
|
|
OVARLIVE // variable is alive
|
|
ORESULT // result of a function call; Xoffset is stack offset
|
|
OINLMARK // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree.
|
|
|
|
// arch-specific opcodes
|
|
ORETJMP // return to other function
|
|
OGETG // runtime.getg() (read g pointer)
|
|
|
|
OEND
|
|
)
|
|
|
|
// Nodes is a pointer to a slice of *Node.
|
|
// For fields that are not used in most nodes, this is used instead of
|
|
// a slice to save space.
|
|
type Nodes struct{ slice *[]Node }
|
|
|
|
// immutableEmptyNodes is an immutable, empty Nodes list.
|
|
// The methods that would modify it panic instead.
|
|
var immutableEmptyNodes = Nodes{}
|
|
|
|
// asNodes returns a slice of *Node as a Nodes value.
|
|
func AsNodes(s []Node) Nodes {
|
|
return Nodes{&s}
|
|
}
|
|
|
|
// Slice returns the entries in Nodes as a slice.
|
|
// Changes to the slice entries (as in s[i] = n) will be reflected in
|
|
// the Nodes.
|
|
func (n Nodes) Slice() []Node {
|
|
if n.slice == nil {
|
|
return nil
|
|
}
|
|
return *n.slice
|
|
}
|
|
|
|
// Len returns the number of entries in Nodes.
|
|
func (n Nodes) Len() int {
|
|
if n.slice == nil {
|
|
return 0
|
|
}
|
|
return len(*n.slice)
|
|
}
|
|
|
|
// Index returns the i'th element of Nodes.
|
|
// It panics if n does not have at least i+1 elements.
|
|
func (n Nodes) Index(i int) Node {
|
|
return (*n.slice)[i]
|
|
}
|
|
|
|
// First returns the first element of Nodes (same as n.Index(0)).
|
|
// It panics if n has no elements.
|
|
func (n Nodes) First() Node {
|
|
return (*n.slice)[0]
|
|
}
|
|
|
|
// Second returns the second element of Nodes (same as n.Index(1)).
|
|
// It panics if n has fewer than two elements.
|
|
func (n Nodes) Second() Node {
|
|
return (*n.slice)[1]
|
|
}
|
|
|
|
func (n *Nodes) mutate() {
|
|
if n == &immutableEmptyNodes {
|
|
panic("immutable Nodes.Set")
|
|
}
|
|
}
|
|
|
|
// Set sets n to a slice.
|
|
// This takes ownership of the slice.
|
|
func (n *Nodes) Set(s []Node) {
|
|
if n == &immutableEmptyNodes {
|
|
if len(s) == 0 {
|
|
// Allow immutableEmptyNodes.Set(nil) (a no-op).
|
|
return
|
|
}
|
|
n.mutate()
|
|
}
|
|
if len(s) == 0 {
|
|
n.slice = nil
|
|
} else {
|
|
// Copy s and take address of t rather than s to avoid
|
|
// allocation in the case where len(s) == 0 (which is
|
|
// over 3x more common, dynamically, for make.bash).
|
|
t := s
|
|
n.slice = &t
|
|
}
|
|
}
|
|
|
|
// Set1 sets n to a slice containing a single node.
|
|
func (n *Nodes) Set1(n1 Node) {
|
|
n.mutate()
|
|
n.slice = &[]Node{n1}
|
|
}
|
|
|
|
// Set2 sets n to a slice containing two nodes.
|
|
func (n *Nodes) Set2(n1, n2 Node) {
|
|
n.mutate()
|
|
n.slice = &[]Node{n1, n2}
|
|
}
|
|
|
|
// Set3 sets n to a slice containing three nodes.
|
|
func (n *Nodes) Set3(n1, n2, n3 Node) {
|
|
n.mutate()
|
|
n.slice = &[]Node{n1, n2, n3}
|
|
}
|
|
|
|
// MoveNodes sets n to the contents of n2, then clears n2.
|
|
func (n *Nodes) MoveNodes(n2 *Nodes) {
|
|
n.mutate()
|
|
n.slice = n2.slice
|
|
n2.slice = nil
|
|
}
|
|
|
|
// SetIndex sets the i'th element of Nodes to node.
|
|
// It panics if n does not have at least i+1 elements.
|
|
func (n Nodes) SetIndex(i int, node Node) {
|
|
(*n.slice)[i] = node
|
|
}
|
|
|
|
// SetFirst sets the first element of Nodes to node.
|
|
// It panics if n does not have at least one elements.
|
|
func (n Nodes) SetFirst(node Node) {
|
|
(*n.slice)[0] = node
|
|
}
|
|
|
|
// SetSecond sets the second element of Nodes to node.
|
|
// It panics if n does not have at least two elements.
|
|
func (n Nodes) SetSecond(node Node) {
|
|
(*n.slice)[1] = node
|
|
}
|
|
|
|
// Addr returns the address of the i'th element of Nodes.
|
|
// It panics if n does not have at least i+1 elements.
|
|
func (n Nodes) Addr(i int) *Node {
|
|
return &(*n.slice)[i]
|
|
}
|
|
|
|
// Append appends entries to Nodes.
|
|
func (n *Nodes) Append(a ...Node) {
|
|
if len(a) == 0 {
|
|
return
|
|
}
|
|
n.mutate()
|
|
if n.slice == nil {
|
|
s := make([]Node, len(a))
|
|
copy(s, a)
|
|
n.slice = &s
|
|
return
|
|
}
|
|
*n.slice = append(*n.slice, a...)
|
|
}
|
|
|
|
// Prepend prepends entries to Nodes.
|
|
// If a slice is passed in, this will take ownership of it.
|
|
func (n *Nodes) Prepend(a ...Node) {
|
|
if len(a) == 0 {
|
|
return
|
|
}
|
|
n.mutate()
|
|
if n.slice == nil {
|
|
n.slice = &a
|
|
} else {
|
|
*n.slice = append(a, *n.slice...)
|
|
}
|
|
}
|
|
|
|
// AppendNodes appends the contents of *n2 to n, then clears n2.
|
|
func (n *Nodes) AppendNodes(n2 *Nodes) {
|
|
n.mutate()
|
|
switch {
|
|
case n2.slice == nil:
|
|
case n.slice == nil:
|
|
n.slice = n2.slice
|
|
default:
|
|
*n.slice = append(*n.slice, *n2.slice...)
|
|
}
|
|
n2.slice = nil
|
|
}
|
|
|
|
// inspect invokes f on each node in an AST in depth-first order.
|
|
// If f(n) returns false, inspect skips visiting n's children.
|
|
func Inspect(n Node, f func(Node) bool) {
|
|
if n == nil || !f(n) {
|
|
return
|
|
}
|
|
InspectList(n.Init(), f)
|
|
Inspect(n.Left(), f)
|
|
Inspect(n.Right(), f)
|
|
InspectList(n.List(), f)
|
|
InspectList(n.Body(), f)
|
|
InspectList(n.Rlist(), f)
|
|
}
|
|
|
|
func InspectList(l Nodes, f func(Node) bool) {
|
|
for _, n := range l.Slice() {
|
|
Inspect(n, f)
|
|
}
|
|
}
|
|
|
|
// nodeQueue is a FIFO queue of *Node. The zero value of nodeQueue is
|
|
// a ready-to-use empty queue.
|
|
type NodeQueue struct {
|
|
ring []Node
|
|
head, tail int
|
|
}
|
|
|
|
// empty reports whether q contains no Nodes.
|
|
func (q *NodeQueue) Empty() bool {
|
|
return q.head == q.tail
|
|
}
|
|
|
|
// pushRight appends n to the right of the queue.
|
|
func (q *NodeQueue) PushRight(n Node) {
|
|
if len(q.ring) == 0 {
|
|
q.ring = make([]Node, 16)
|
|
} else if q.head+len(q.ring) == q.tail {
|
|
// Grow the ring.
|
|
nring := make([]Node, len(q.ring)*2)
|
|
// Copy the old elements.
|
|
part := q.ring[q.head%len(q.ring):]
|
|
if q.tail-q.head <= len(part) {
|
|
part = part[:q.tail-q.head]
|
|
copy(nring, part)
|
|
} else {
|
|
pos := copy(nring, part)
|
|
copy(nring[pos:], q.ring[:q.tail%len(q.ring)])
|
|
}
|
|
q.ring, q.head, q.tail = nring, 0, q.tail-q.head
|
|
}
|
|
|
|
q.ring[q.tail%len(q.ring)] = n
|
|
q.tail++
|
|
}
|
|
|
|
// popLeft pops a node from the left of the queue. It panics if q is
|
|
// empty.
|
|
func (q *NodeQueue) PopLeft() Node {
|
|
if q.Empty() {
|
|
panic("dequeue empty")
|
|
}
|
|
n := q.ring[q.head%len(q.ring)]
|
|
q.head++
|
|
return n
|
|
}
|
|
|
|
// NodeSet is a set of Nodes.
|
|
type NodeSet map[Node]struct{}
|
|
|
|
// Has reports whether s contains n.
|
|
func (s NodeSet) Has(n Node) bool {
|
|
_, isPresent := s[n]
|
|
return isPresent
|
|
}
|
|
|
|
// Add adds n to s.
|
|
func (s *NodeSet) Add(n Node) {
|
|
if *s == nil {
|
|
*s = make(map[Node]struct{})
|
|
}
|
|
(*s)[n] = struct{}{}
|
|
}
|
|
|
|
// Sorted returns s sorted according to less.
|
|
func (s NodeSet) Sorted(less func(Node, Node) bool) []Node {
|
|
var res []Node
|
|
for n := range s {
|
|
res = append(res, n)
|
|
}
|
|
sort.Slice(res, func(i, j int) bool { return less(res[i], res[j]) })
|
|
return res
|
|
}
|
|
|
|
type PragmaFlag int16
|
|
|
|
const (
|
|
// Func pragmas.
|
|
Nointerface PragmaFlag = 1 << iota
|
|
Noescape // func parameters don't escape
|
|
Norace // func must not have race detector annotations
|
|
Nosplit // func should not execute on separate stack
|
|
Noinline // func should not be inlined
|
|
NoCheckPtr // func should not be instrumented by checkptr
|
|
CgoUnsafeArgs // treat a pointer to one arg as a pointer to them all
|
|
UintptrEscapes // pointers converted to uintptr escape
|
|
|
|
// Runtime-only func pragmas.
|
|
// See ../../../../runtime/README.md for detailed descriptions.
|
|
Systemstack // func must run on system stack
|
|
Nowritebarrier // emit compiler error instead of write barrier
|
|
Nowritebarrierrec // error on write barrier in this or recursive callees
|
|
Yeswritebarrierrec // cancels Nowritebarrierrec in this function and callees
|
|
|
|
// Runtime and cgo type pragmas
|
|
NotInHeap // values of this type must not be heap allocated
|
|
|
|
// Go command pragmas
|
|
GoBuildPragma
|
|
)
|
|
|
|
func AsNode(n types.IRNode) Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
return n.(Node)
|
|
}
|
|
|
|
var BlankNode Node
|
|
|
|
// origSym returns the original symbol written by the user.
|
|
func OrigSym(s *types.Sym) *types.Sym {
|
|
if s == nil {
|
|
return nil
|
|
}
|
|
|
|
if len(s.Name) > 1 && s.Name[0] == '~' {
|
|
switch s.Name[1] {
|
|
case 'r': // originally an unnamed result
|
|
return nil
|
|
case 'b': // originally the blank identifier _
|
|
// TODO(mdempsky): Does s.Pkg matter here?
|
|
return BlankNode.Sym()
|
|
}
|
|
return s
|
|
}
|
|
|
|
if strings.HasPrefix(s.Name, ".anon") {
|
|
// originally an unnamed or _ name (see subr.go: structargs)
|
|
return nil
|
|
}
|
|
|
|
return s
|
|
}
|
|
|
|
// SliceBounds returns n's slice bounds: low, high, and max in expr[low:high:max].
|
|
// n must be a slice expression. max is nil if n is a simple slice expression.
|
|
func (n *node) SliceBounds() (low, high, max Node) {
|
|
if n.List().Len() == 0 {
|
|
return nil, nil, nil
|
|
}
|
|
|
|
switch n.Op() {
|
|
case OSLICE, OSLICEARR, OSLICESTR:
|
|
s := n.List().Slice()
|
|
return s[0], s[1], nil
|
|
case OSLICE3, OSLICE3ARR:
|
|
s := n.List().Slice()
|
|
return s[0], s[1], s[2]
|
|
}
|
|
base.Fatalf("SliceBounds op %v: %v", n.Op(), n)
|
|
return nil, nil, nil
|
|
}
|
|
|
|
// SetSliceBounds sets n's slice bounds, where n is a slice expression.
|
|
// n must be a slice expression. If max is non-nil, n must be a full slice expression.
|
|
func (n *node) SetSliceBounds(low, high, max Node) {
|
|
switch n.Op() {
|
|
case OSLICE, OSLICEARR, OSLICESTR:
|
|
if max != nil {
|
|
base.Fatalf("SetSliceBounds %v given three bounds", n.Op())
|
|
}
|
|
s := n.List().Slice()
|
|
if s == nil {
|
|
if low == nil && high == nil {
|
|
return
|
|
}
|
|
n.PtrList().Set2(low, high)
|
|
return
|
|
}
|
|
s[0] = low
|
|
s[1] = high
|
|
return
|
|
case OSLICE3, OSLICE3ARR:
|
|
s := n.List().Slice()
|
|
if s == nil {
|
|
if low == nil && high == nil && max == nil {
|
|
return
|
|
}
|
|
n.PtrList().Set3(low, high, max)
|
|
return
|
|
}
|
|
s[0] = low
|
|
s[1] = high
|
|
s[2] = max
|
|
return
|
|
}
|
|
base.Fatalf("SetSliceBounds op %v: %v", n.Op(), n)
|
|
}
|
|
|
|
// IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR).
|
|
// o must be a slicing op.
|
|
func (o Op) IsSlice3() bool {
|
|
switch o {
|
|
case OSLICE, OSLICEARR, OSLICESTR:
|
|
return false
|
|
case OSLICE3, OSLICE3ARR:
|
|
return true
|
|
}
|
|
base.Fatalf("IsSlice3 op %v", o)
|
|
return false
|
|
}
|
|
|
|
func IsConst(n Node, ct constant.Kind) bool {
|
|
return ConstType(n) == ct
|
|
}
|
|
|
|
// rawcopy returns a shallow copy of n.
|
|
// Note: copy or sepcopy (rather than rawcopy) is usually the
|
|
// correct choice (see comment with Node.copy, below).
|
|
func (n *node) RawCopy() Node {
|
|
copy := *n
|
|
return ©
|
|
}
|
|
|
|
// A Node may implement the Orig and SetOrig method to
|
|
// maintain a pointer to the "unrewritten" form of a Node.
|
|
// If a Node does not implement OrigNode, it is its own Orig.
|
|
//
|
|
// Note that both SepCopy and Copy have definitions compatible
|
|
// with a Node that does not implement OrigNode: such a Node
|
|
// is its own Orig, and in that case, that's what both want to return
|
|
// anyway (SepCopy unconditionally, and Copy only when the input
|
|
// is its own Orig as well, but if the output does not implement
|
|
// OrigNode, then neither does the input, making the condition true).
|
|
type OrigNode interface {
|
|
Node
|
|
Orig() Node
|
|
SetOrig(Node)
|
|
}
|
|
|
|
func Orig(n Node) Node {
|
|
if n, ok := n.(OrigNode); ok {
|
|
o := n.Orig()
|
|
if o == nil {
|
|
Dump("Orig nil", n)
|
|
base.Fatalf("Orig returned nil")
|
|
}
|
|
return o
|
|
}
|
|
return n
|
|
}
|
|
|
|
// sepcopy returns a separate shallow copy of n, with the copy's
|
|
// Orig pointing to itself.
|
|
func SepCopy(n Node) Node {
|
|
n = n.RawCopy()
|
|
if n, ok := n.(OrigNode); ok {
|
|
n.SetOrig(n)
|
|
}
|
|
return n
|
|
}
|
|
|
|
// copy returns shallow copy of n and adjusts the copy's Orig if
|
|
// necessary: In general, if n.Orig points to itself, the copy's
|
|
// Orig should point to itself as well. Otherwise, if n is modified,
|
|
// the copy's Orig node appears modified, too, and then doesn't
|
|
// represent the original node anymore.
|
|
// (This caused the wrong complit Op to be used when printing error
|
|
// messages; see issues #26855, #27765).
|
|
func Copy(n Node) Node {
|
|
copy := n.RawCopy()
|
|
if n, ok := n.(OrigNode); ok && n.Orig() == n {
|
|
copy.(OrigNode).SetOrig(copy)
|
|
}
|
|
return copy
|
|
}
|
|
|
|
// isNil reports whether n represents the universal untyped zero value "nil".
|
|
func IsNil(n Node) bool {
|
|
// Check n.Orig because constant propagation may produce typed nil constants,
|
|
// which don't exist in the Go spec.
|
|
return Orig(n).Op() == ONIL
|
|
}
|
|
|
|
func IsBlank(n Node) bool {
|
|
if n == nil {
|
|
return false
|
|
}
|
|
return n.Sym().IsBlank()
|
|
}
|
|
|
|
// IsMethod reports whether n is a method.
|
|
// n must be a function or a method.
|
|
func IsMethod(n Node) bool {
|
|
return n.Type().Recv() != nil
|
|
}
|
|
|
|
func Nod(op Op, nleft, nright Node) Node {
|
|
return NodAt(base.Pos, op, nleft, nright)
|
|
}
|
|
|
|
func NodAt(pos src.XPos, op Op, nleft, nright Node) Node {
|
|
var n *node
|
|
switch op {
|
|
case ODCLFUNC:
|
|
var x struct {
|
|
n node
|
|
f Func
|
|
}
|
|
n = &x.n
|
|
n.SetFunc(&x.f)
|
|
n.Func().Decl = n
|
|
case OPACK:
|
|
return NewPkgName(pos, nil, nil)
|
|
case OEMPTY:
|
|
return NewEmptyStmt(pos)
|
|
case OBREAK, OCONTINUE, OFALL, OGOTO:
|
|
return NewBranchStmt(pos, op, nil)
|
|
case OLITERAL, OTYPE, OIOTA:
|
|
n := newNameAt(pos, nil)
|
|
n.SetOp(op)
|
|
return n
|
|
case OLABEL:
|
|
return NewLabelStmt(pos, nil)
|
|
default:
|
|
n = new(node)
|
|
}
|
|
n.SetOp(op)
|
|
n.SetLeft(nleft)
|
|
n.SetRight(nright)
|
|
n.SetPos(pos)
|
|
n.SetOffset(types.BADWIDTH)
|
|
n.SetOrig(n)
|
|
return n
|
|
}
|
|
|
|
var okForNod = [OEND]bool{
|
|
OADD: true,
|
|
OADDR: true,
|
|
OADDSTR: true,
|
|
OALIGNOF: true,
|
|
OAND: true,
|
|
OANDAND: true,
|
|
OANDNOT: true,
|
|
OAPPEND: true,
|
|
OARRAYLIT: true,
|
|
OAS: true,
|
|
OAS2: true,
|
|
OAS2DOTTYPE: true,
|
|
OAS2FUNC: true,
|
|
OAS2MAPR: true,
|
|
OAS2RECV: true,
|
|
OASOP: true,
|
|
OBITNOT: true,
|
|
OBLOCK: true,
|
|
OBYTES2STR: true,
|
|
OBYTES2STRTMP: true,
|
|
OCALL: true,
|
|
OCALLFUNC: true,
|
|
OCALLINTER: true,
|
|
OCALLMETH: true,
|
|
OCALLPART: true,
|
|
OCAP: true,
|
|
OCASE: true,
|
|
OCFUNC: true,
|
|
OCHECKNIL: true,
|
|
OCLOSE: true,
|
|
OCLOSURE: true,
|
|
OCLOSUREVAR: true,
|
|
OCOMPLEX: true,
|
|
OCOMPLIT: true,
|
|
OCONV: true,
|
|
OCONVIFACE: true,
|
|
OCONVNOP: true,
|
|
OCOPY: true,
|
|
ODCL: true,
|
|
ODCLCONST: true,
|
|
ODCLFIELD: true,
|
|
ODCLFUNC: true,
|
|
ODCLTYPE: true,
|
|
ODDD: true,
|
|
ODEFER: true,
|
|
ODELETE: true,
|
|
ODEREF: true,
|
|
ODIV: true,
|
|
ODOT: true,
|
|
ODOTINTER: true,
|
|
ODOTMETH: true,
|
|
ODOTPTR: true,
|
|
ODOTTYPE: true,
|
|
ODOTTYPE2: true,
|
|
OEFACE: true,
|
|
OEQ: true,
|
|
OFOR: true,
|
|
OFORUNTIL: true,
|
|
OGE: true,
|
|
OGETG: true,
|
|
OGO: true,
|
|
OGT: true,
|
|
OIDATA: true,
|
|
OIF: true,
|
|
OIMAG: true,
|
|
OINDEX: true,
|
|
OINDEXMAP: true,
|
|
OINLCALL: true,
|
|
OINLMARK: true,
|
|
OITAB: true,
|
|
OKEY: true,
|
|
OLABEL: true,
|
|
OLE: true,
|
|
OLEN: true,
|
|
OLSH: true,
|
|
OLT: true,
|
|
OMAKE: true,
|
|
OMAKECHAN: true,
|
|
OMAKEMAP: true,
|
|
OMAKESLICE: true,
|
|
OMAKESLICECOPY: true,
|
|
OMAPLIT: true,
|
|
OMETHEXPR: true,
|
|
OMOD: true,
|
|
OMUL: true,
|
|
ONE: true,
|
|
ONEG: true,
|
|
ONEW: true,
|
|
ONEWOBJ: true,
|
|
ONIL: true,
|
|
ONOT: true,
|
|
OOFFSETOF: true,
|
|
OOR: true,
|
|
OOROR: true,
|
|
OPANIC: true,
|
|
OPAREN: true,
|
|
OPLUS: true,
|
|
OPRINT: true,
|
|
OPRINTN: true,
|
|
OPTRLIT: true,
|
|
ORANGE: true,
|
|
OREAL: true,
|
|
ORECOVER: true,
|
|
ORECV: true,
|
|
ORESULT: true,
|
|
ORETJMP: true,
|
|
ORETURN: true,
|
|
ORSH: true,
|
|
ORUNES2STR: true,
|
|
ORUNESTR: true,
|
|
OSELECT: true,
|
|
OSELRECV: true,
|
|
OSELRECV2: true,
|
|
OSEND: true,
|
|
OSIZEOF: true,
|
|
OSLICE: true,
|
|
OSLICE3: true,
|
|
OSLICE3ARR: true,
|
|
OSLICEARR: true,
|
|
OSLICEHEADER: true,
|
|
OSLICELIT: true,
|
|
OSLICESTR: true,
|
|
OSPTR: true,
|
|
OSTR2BYTES: true,
|
|
OSTR2BYTESTMP: true,
|
|
OSTR2RUNES: true,
|
|
OSTRUCTKEY: true,
|
|
OSTRUCTLIT: true,
|
|
OSUB: true,
|
|
OSWITCH: true,
|
|
OTARRAY: true,
|
|
OTCHAN: true,
|
|
OTFUNC: true,
|
|
OTINTER: true,
|
|
OTMAP: true,
|
|
OTSTRUCT: true,
|
|
OTYPE: true, // TODO: Remove once setTypeNode is gone.
|
|
OTYPESW: true,
|
|
OVARDEF: true,
|
|
OVARKILL: true,
|
|
OVARLIVE: true,
|
|
OXDOT: true,
|
|
OXOR: true,
|
|
}
|