mirror of
https://github.com/golang/go.git
synced 2025-11-11 22:21:06 +00:00
Using statement nodes restricts the set of valid SetOp operations,
because you can't SetOp across representation. Rewrite various
code to avoid crossing those as-yet-unintroduced boundaries.
In particular, code like
x, y := v.(T)
x, y := f()
x, y := m[k]
x, y := <-c
starts out with Op = OAS2, and then it turns into a specific Op
OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV, and then
later in walk is lowered to an OAS2 again.
In the middle, the specific forms move the right-hand side from
n.Rlist().First() to n.Right(), and then the conversion to OAS2 moves
it back. This is unnecessary and makes it hard for these all to
share an underlying Node implementation.
This CL changes these specific forms to leave the right-hand side
in n.Rlist().First().
Similarly, OSELRECV2 is really just a temporary form of OAS2.
This CL changes it to use same fields too.
Finally, this CL fixes the printing of OAS2 nodes in ir/fmt.go,
which formerly printed n.Right() instead of n.Rlist().
This results in a (correct!) update to cmd/compile/internal/logopt's
expected output: ~R0 = <N> becomes ~R0 = &y.b.
Passes buildall w/ toolstash -cmp.
Change-Id: I164aa2e17dc55bfb292024de53d7d250192ad64a
Reviewed-on: https://go-review.googlesource.com/c/go/+/274105
Trust: Russ Cox <rsc@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
1475 lines
40 KiB
Go
1475 lines
40 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
//
|
|
// The inlining facility makes 2 passes: first caninl determines which
|
|
// functions are suitable for inlining, and for those that are it
|
|
// saves a copy of the body. Then inlcalls walks each function body to
|
|
// expand calls to inlinable functions.
|
|
//
|
|
// The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1,
|
|
// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
|
|
// are not supported.
|
|
// 0: disabled
|
|
// 1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default)
|
|
// 2: (unassigned)
|
|
// 3: (unassigned)
|
|
// 4: allow non-leaf functions
|
|
//
|
|
// At some point this may get another default and become switch-offable with -N.
|
|
//
|
|
// The -d typcheckinl flag enables early typechecking of all imported bodies,
|
|
// which is useful to flush out bugs.
|
|
//
|
|
// The Debug.m flag enables diagnostic output. a single -m is useful for verifying
|
|
// which calls get inlined or not, more is for debugging, and may go away at any point.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/logopt"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/src"
|
|
"fmt"
|
|
"go/constant"
|
|
"strings"
|
|
)
|
|
|
|
// Inlining budget parameters, gathered in one place
|
|
const (
|
|
inlineMaxBudget = 80
|
|
inlineExtraAppendCost = 0
|
|
// default is to inline if there's at most one call. -l=4 overrides this by using 1 instead.
|
|
inlineExtraCallCost = 57 // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742
|
|
inlineExtraPanicCost = 1 // do not penalize inlining panics.
|
|
inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help.
|
|
|
|
inlineBigFunctionNodes = 5000 // Functions with this many nodes are considered "big".
|
|
inlineBigFunctionMaxCost = 20 // Max cost of inlinee when inlining into a "big" function.
|
|
)
|
|
|
|
// Get the function's package. For ordinary functions it's on the ->sym, but for imported methods
|
|
// the ->sym can be re-used in the local package, so peel it off the receiver's type.
|
|
func fnpkg(fn *ir.Name) *types.Pkg {
|
|
if ir.IsMethod(fn) {
|
|
// method
|
|
rcvr := fn.Type().Recv().Type
|
|
|
|
if rcvr.IsPtr() {
|
|
rcvr = rcvr.Elem()
|
|
}
|
|
if rcvr.Sym == nil {
|
|
base.Fatalf("receiver with no sym: [%v] %L (%v)", fn.Sym(), fn, rcvr)
|
|
}
|
|
return rcvr.Sym.Pkg
|
|
}
|
|
|
|
// non-method
|
|
return fn.Sym().Pkg
|
|
}
|
|
|
|
// Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck
|
|
// because they're a copy of an already checked body.
|
|
func typecheckinl(fn *ir.Func) {
|
|
lno := setlineno(fn.Nname)
|
|
|
|
expandInline(fn)
|
|
|
|
// typecheckinl is only for imported functions;
|
|
// their bodies may refer to unsafe as long as the package
|
|
// was marked safe during import (which was checked then).
|
|
// the ->inl of a local function has been typechecked before caninl copied it.
|
|
pkg := fnpkg(fn.Nname)
|
|
|
|
if pkg == ir.LocalPkg || pkg == nil {
|
|
return // typecheckinl on local function
|
|
}
|
|
|
|
if base.Flag.LowerM > 2 || base.Debug.Export != 0 {
|
|
fmt.Printf("typecheck import [%v] %L { %#v }\n", fn.Sym(), fn, ir.AsNodes(fn.Inl.Body))
|
|
}
|
|
|
|
savefn := Curfn
|
|
Curfn = fn
|
|
typecheckslice(fn.Inl.Body, ctxStmt)
|
|
Curfn = savefn
|
|
|
|
// During expandInline (which imports fn.Func.Inl.Body),
|
|
// declarations are added to fn.Func.Dcl by funcHdr(). Move them
|
|
// to fn.Func.Inl.Dcl for consistency with how local functions
|
|
// behave. (Append because typecheckinl may be called multiple
|
|
// times.)
|
|
fn.Inl.Dcl = append(fn.Inl.Dcl, fn.Dcl...)
|
|
fn.Dcl = nil
|
|
|
|
base.Pos = lno
|
|
}
|
|
|
|
// Caninl determines whether fn is inlineable.
|
|
// If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy.
|
|
// fn and ->nbody will already have been typechecked.
|
|
func caninl(fn *ir.Func) {
|
|
if fn.Nname == nil {
|
|
base.Fatalf("caninl no nname %+v", fn)
|
|
}
|
|
|
|
var reason string // reason, if any, that the function was not inlined
|
|
if base.Flag.LowerM > 1 || logopt.Enabled() {
|
|
defer func() {
|
|
if reason != "" {
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason)
|
|
}
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason)
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
|
|
// If marked "go:noinline", don't inline
|
|
if fn.Pragma&ir.Noinline != 0 {
|
|
reason = "marked go:noinline"
|
|
return
|
|
}
|
|
|
|
// If marked "go:norace" and -race compilation, don't inline.
|
|
if base.Flag.Race && fn.Pragma&ir.Norace != 0 {
|
|
reason = "marked go:norace with -race compilation"
|
|
return
|
|
}
|
|
|
|
// If marked "go:nocheckptr" and -d checkptr compilation, don't inline.
|
|
if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 {
|
|
reason = "marked go:nocheckptr"
|
|
return
|
|
}
|
|
|
|
// If marked "go:cgo_unsafe_args", don't inline, since the
|
|
// function makes assumptions about its argument frame layout.
|
|
if fn.Pragma&ir.CgoUnsafeArgs != 0 {
|
|
reason = "marked go:cgo_unsafe_args"
|
|
return
|
|
}
|
|
|
|
// If marked as "go:uintptrescapes", don't inline, since the
|
|
// escape information is lost during inlining.
|
|
if fn.Pragma&ir.UintptrEscapes != 0 {
|
|
reason = "marked as having an escaping uintptr argument"
|
|
return
|
|
}
|
|
|
|
// The nowritebarrierrec checker currently works at function
|
|
// granularity, so inlining yeswritebarrierrec functions can
|
|
// confuse it (#22342). As a workaround, disallow inlining
|
|
// them for now.
|
|
if fn.Pragma&ir.Yeswritebarrierrec != 0 {
|
|
reason = "marked go:yeswritebarrierrec"
|
|
return
|
|
}
|
|
|
|
// If fn has no body (is defined outside of Go), cannot inline it.
|
|
if fn.Body().Len() == 0 {
|
|
reason = "no function body"
|
|
return
|
|
}
|
|
|
|
if fn.Typecheck() == 0 {
|
|
base.Fatalf("caninl on non-typechecked function %v", fn)
|
|
}
|
|
|
|
n := fn.Nname
|
|
if n.Func().InlinabilityChecked() {
|
|
return
|
|
}
|
|
defer n.Func().SetInlinabilityChecked(true)
|
|
|
|
cc := int32(inlineExtraCallCost)
|
|
if base.Flag.LowerL == 4 {
|
|
cc = 1 // this appears to yield better performance than 0.
|
|
}
|
|
|
|
// At this point in the game the function we're looking at may
|
|
// have "stale" autos, vars that still appear in the Dcl list, but
|
|
// which no longer have any uses in the function body (due to
|
|
// elimination by deadcode). We'd like to exclude these dead vars
|
|
// when creating the "Inline.Dcl" field below; to accomplish this,
|
|
// the hairyVisitor below builds up a map of used/referenced
|
|
// locals, and we use this map to produce a pruned Inline.Dcl
|
|
// list. See issue 25249 for more context.
|
|
|
|
visitor := hairyVisitor{
|
|
budget: inlineMaxBudget,
|
|
extraCallCost: cc,
|
|
usedLocals: make(map[ir.Node]bool),
|
|
}
|
|
if visitor.visitList(fn.Body()) {
|
|
reason = visitor.reason
|
|
return
|
|
}
|
|
if visitor.budget < 0 {
|
|
reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", inlineMaxBudget-visitor.budget, inlineMaxBudget)
|
|
return
|
|
}
|
|
|
|
n.Func().Inl = &ir.Inline{
|
|
Cost: inlineMaxBudget - visitor.budget,
|
|
Dcl: pruneUnusedAutos(n.Defn.Func().Dcl, &visitor),
|
|
Body: inlcopylist(fn.Body().Slice()),
|
|
}
|
|
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: can inline %#v with cost %d as: %#v { %#v }\n", ir.Line(fn), n, inlineMaxBudget-visitor.budget, fn.Type(), ir.AsNodes(n.Func().Inl.Body))
|
|
} else if base.Flag.LowerM != 0 {
|
|
fmt.Printf("%v: can inline %v\n", ir.Line(fn), n)
|
|
}
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", inlineMaxBudget-visitor.budget))
|
|
}
|
|
}
|
|
|
|
// inlFlood marks n's inline body for export and recursively ensures
|
|
// all called functions are marked too.
|
|
func inlFlood(n *ir.Name) {
|
|
if n == nil {
|
|
return
|
|
}
|
|
if n.Op() != ir.ONAME || n.Class() != ir.PFUNC {
|
|
base.Fatalf("inlFlood: unexpected %v, %v, %v", n, n.Op(), n.Class())
|
|
}
|
|
fn := n.Func()
|
|
if fn == nil {
|
|
base.Fatalf("inlFlood: missing Func on %v", n)
|
|
}
|
|
if fn.Inl == nil {
|
|
return
|
|
}
|
|
|
|
if fn.ExportInline() {
|
|
return
|
|
}
|
|
fn.SetExportInline(true)
|
|
|
|
typecheckinl(fn)
|
|
|
|
// Recursively identify all referenced functions for
|
|
// reexport. We want to include even non-called functions,
|
|
// because after inlining they might be callable.
|
|
ir.InspectList(ir.AsNodes(fn.Inl.Body), func(n ir.Node) bool {
|
|
switch n.Op() {
|
|
case ir.OMETHEXPR, ir.ODOTMETH:
|
|
inlFlood(methodExprName(n))
|
|
|
|
case ir.ONAME:
|
|
n := n.(*ir.Name)
|
|
switch n.Class() {
|
|
case ir.PFUNC:
|
|
inlFlood(n)
|
|
exportsym(n)
|
|
case ir.PEXTERN:
|
|
exportsym(n)
|
|
}
|
|
|
|
case ir.OCALLPART:
|
|
// Okay, because we don't yet inline indirect
|
|
// calls to method values.
|
|
case ir.OCLOSURE:
|
|
// If the closure is inlinable, we'll need to
|
|
// flood it too. But today we don't support
|
|
// inlining functions that contain closures.
|
|
//
|
|
// When we do, we'll probably want:
|
|
// inlFlood(n.Func.Closure.Func.Nname)
|
|
base.Fatalf("unexpected closure in inlinable function")
|
|
}
|
|
return true
|
|
})
|
|
}
|
|
|
|
// hairyVisitor visits a function body to determine its inlining
|
|
// hairiness and whether or not it can be inlined.
|
|
type hairyVisitor struct {
|
|
budget int32
|
|
reason string
|
|
extraCallCost int32
|
|
usedLocals map[ir.Node]bool
|
|
}
|
|
|
|
// Look for anything we want to punt on.
|
|
func (v *hairyVisitor) visitList(ll ir.Nodes) bool {
|
|
for _, n := range ll.Slice() {
|
|
if v.visit(n) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (v *hairyVisitor) visit(n ir.Node) bool {
|
|
if n == nil {
|
|
return false
|
|
}
|
|
|
|
switch n.Op() {
|
|
// Call is okay if inlinable and we have the budget for the body.
|
|
case ir.OCALLFUNC:
|
|
// Functions that call runtime.getcaller{pc,sp} can not be inlined
|
|
// because getcaller{pc,sp} expect a pointer to the caller's first argument.
|
|
//
|
|
// runtime.throw is a "cheap call" like panic in normal code.
|
|
if n.Left().Op() == ir.ONAME && n.Left().Class() == ir.PFUNC && isRuntimePkg(n.Left().Sym().Pkg) {
|
|
fn := n.Left().Sym().Name
|
|
if fn == "getcallerpc" || fn == "getcallersp" {
|
|
v.reason = "call to " + fn
|
|
return true
|
|
}
|
|
if fn == "throw" {
|
|
v.budget -= inlineExtraThrowCost
|
|
break
|
|
}
|
|
}
|
|
|
|
if isIntrinsicCall(n) {
|
|
// Treat like any other node.
|
|
break
|
|
}
|
|
|
|
if fn := inlCallee(n.Left()); fn != nil && fn.Inl != nil {
|
|
v.budget -= fn.Inl.Cost
|
|
break
|
|
}
|
|
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
// Call is okay if inlinable and we have the budget for the body.
|
|
case ir.OCALLMETH:
|
|
t := n.Left().Type()
|
|
if t == nil {
|
|
base.Fatalf("no function type for [%p] %+v\n", n.Left(), n.Left())
|
|
}
|
|
if isRuntimePkg(n.Left().Sym().Pkg) {
|
|
fn := n.Left().Sym().Name
|
|
if fn == "heapBits.nextArena" {
|
|
// Special case: explicitly allow
|
|
// mid-stack inlining of
|
|
// runtime.heapBits.next even though
|
|
// it calls slow-path
|
|
// runtime.heapBits.nextArena.
|
|
break
|
|
}
|
|
}
|
|
if inlfn := methodExprName(n.Left()).Func(); inlfn.Inl != nil {
|
|
v.budget -= inlfn.Inl.Cost
|
|
break
|
|
}
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
// Things that are too hairy, irrespective of the budget
|
|
case ir.OCALL, ir.OCALLINTER:
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
case ir.OPANIC:
|
|
v.budget -= inlineExtraPanicCost
|
|
|
|
case ir.ORECOVER:
|
|
// recover matches the argument frame pointer to find
|
|
// the right panic value, so it needs an argument frame.
|
|
v.reason = "call to recover"
|
|
return true
|
|
|
|
case ir.OCLOSURE,
|
|
ir.ORANGE,
|
|
ir.OSELECT,
|
|
ir.OGO,
|
|
ir.ODEFER,
|
|
ir.ODCLTYPE, // can't print yet
|
|
ir.ORETJMP:
|
|
v.reason = "unhandled op " + n.Op().String()
|
|
return true
|
|
|
|
case ir.OAPPEND:
|
|
v.budget -= inlineExtraAppendCost
|
|
|
|
case ir.ODCLCONST, ir.OEMPTY, ir.OFALL:
|
|
// These nodes don't produce code; omit from inlining budget.
|
|
return false
|
|
|
|
case ir.OFOR, ir.OFORUNTIL, ir.OSWITCH:
|
|
// ORANGE, OSELECT in "unhandled" above
|
|
if n.Sym() != nil {
|
|
v.reason = "labeled control"
|
|
return true
|
|
}
|
|
|
|
case ir.OBREAK, ir.OCONTINUE:
|
|
if n.Sym() != nil {
|
|
// Should have short-circuited due to labeled control error above.
|
|
base.Fatalf("unexpected labeled break/continue: %v", n)
|
|
}
|
|
|
|
case ir.OIF:
|
|
if ir.IsConst(n.Left(), constant.Bool) {
|
|
// This if and the condition cost nothing.
|
|
return v.visitList(n.Init()) || v.visitList(n.Body()) ||
|
|
v.visitList(n.Rlist())
|
|
}
|
|
|
|
case ir.ONAME:
|
|
if n.Class() == ir.PAUTO {
|
|
v.usedLocals[n] = true
|
|
}
|
|
|
|
}
|
|
|
|
v.budget--
|
|
|
|
// When debugging, don't stop early, to get full cost of inlining this function
|
|
if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() {
|
|
return true
|
|
}
|
|
|
|
return v.visit(n.Left()) || v.visit(n.Right()) ||
|
|
v.visitList(n.List()) || v.visitList(n.Rlist()) ||
|
|
v.visitList(n.Init()) || v.visitList(n.Body())
|
|
}
|
|
|
|
// inlcopylist (together with inlcopy) recursively copies a list of nodes, except
|
|
// that it keeps the same ONAME, OTYPE, and OLITERAL nodes. It is used for copying
|
|
// the body and dcls of an inlineable function.
|
|
func inlcopylist(ll []ir.Node) []ir.Node {
|
|
s := make([]ir.Node, 0, len(ll))
|
|
for _, n := range ll {
|
|
s = append(s, inlcopy(n))
|
|
}
|
|
return s
|
|
}
|
|
|
|
func inlcopy(n ir.Node) ir.Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
switch n.Op() {
|
|
case ir.ONAME, ir.OTYPE, ir.OLITERAL, ir.ONIL:
|
|
return n
|
|
}
|
|
|
|
m := ir.Copy(n)
|
|
if n.Op() != ir.OCALLPART && m.Func() != nil {
|
|
base.Fatalf("unexpected Func: %v", m)
|
|
}
|
|
m.SetLeft(inlcopy(n.Left()))
|
|
m.SetRight(inlcopy(n.Right()))
|
|
m.PtrList().Set(inlcopylist(n.List().Slice()))
|
|
m.PtrRlist().Set(inlcopylist(n.Rlist().Slice()))
|
|
m.PtrInit().Set(inlcopylist(n.Init().Slice()))
|
|
m.PtrBody().Set(inlcopylist(n.Body().Slice()))
|
|
|
|
return m
|
|
}
|
|
|
|
func countNodes(n ir.Node) int {
|
|
if n == nil {
|
|
return 0
|
|
}
|
|
cnt := 1
|
|
cnt += countNodes(n.Left())
|
|
cnt += countNodes(n.Right())
|
|
for _, n1 := range n.Init().Slice() {
|
|
cnt += countNodes(n1)
|
|
}
|
|
for _, n1 := range n.Body().Slice() {
|
|
cnt += countNodes(n1)
|
|
}
|
|
for _, n1 := range n.List().Slice() {
|
|
cnt += countNodes(n1)
|
|
}
|
|
for _, n1 := range n.Rlist().Slice() {
|
|
cnt += countNodes(n1)
|
|
}
|
|
return cnt
|
|
}
|
|
|
|
// Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any
|
|
// calls made to inlineable functions. This is the external entry point.
|
|
func inlcalls(fn *ir.Func) {
|
|
savefn := Curfn
|
|
Curfn = fn
|
|
maxCost := int32(inlineMaxBudget)
|
|
if countNodes(fn) >= inlineBigFunctionNodes {
|
|
maxCost = inlineBigFunctionMaxCost
|
|
}
|
|
// Map to keep track of functions that have been inlined at a particular
|
|
// call site, in order to stop inlining when we reach the beginning of a
|
|
// recursion cycle again. We don't inline immediately recursive functions,
|
|
// but allow inlining if there is a recursion cycle of many functions.
|
|
// Most likely, the inlining will stop before we even hit the beginning of
|
|
// the cycle again, but the map catches the unusual case.
|
|
inlMap := make(map[*ir.Func]bool)
|
|
fn = inlnode(fn, maxCost, inlMap).(*ir.Func)
|
|
if fn != Curfn {
|
|
base.Fatalf("inlnode replaced curfn")
|
|
}
|
|
Curfn = savefn
|
|
}
|
|
|
|
// Turn an OINLCALL into a statement.
|
|
func inlconv2stmt(inlcall ir.Node) ir.Node {
|
|
n := ir.NodAt(inlcall.Pos(), ir.OBLOCK, nil, nil)
|
|
n.SetList(inlcall.Body())
|
|
n.SetInit(inlcall.Init())
|
|
return n
|
|
}
|
|
|
|
// Turn an OINLCALL into a single valued expression.
|
|
// The result of inlconv2expr MUST be assigned back to n, e.g.
|
|
// n.Left = inlconv2expr(n.Left)
|
|
func inlconv2expr(n ir.Node) ir.Node {
|
|
r := n.Rlist().First()
|
|
return addinit(r, append(n.Init().Slice(), n.Body().Slice()...))
|
|
}
|
|
|
|
// Turn the rlist (with the return values) of the OINLCALL in
|
|
// n into an expression list lumping the ninit and body
|
|
// containing the inlined statements on the first list element so
|
|
// order will be preserved Used in return, oas2func and call
|
|
// statements.
|
|
func inlconv2list(n ir.Node) []ir.Node {
|
|
if n.Op() != ir.OINLCALL || n.Rlist().Len() == 0 {
|
|
base.Fatalf("inlconv2list %+v\n", n)
|
|
}
|
|
|
|
s := n.Rlist().Slice()
|
|
s[0] = addinit(s[0], append(n.Init().Slice(), n.Body().Slice()...))
|
|
return s
|
|
}
|
|
|
|
func inlnodelist(l ir.Nodes, maxCost int32, inlMap map[*ir.Func]bool) {
|
|
s := l.Slice()
|
|
for i := range s {
|
|
s[i] = inlnode(s[i], maxCost, inlMap)
|
|
}
|
|
}
|
|
|
|
// inlnode recurses over the tree to find inlineable calls, which will
|
|
// be turned into OINLCALLs by mkinlcall. When the recursion comes
|
|
// back up will examine left, right, list, rlist, ninit, ntest, nincr,
|
|
// nbody and nelse and use one of the 4 inlconv/glue functions above
|
|
// to turn the OINLCALL into an expression, a statement, or patch it
|
|
// in to this nodes list or rlist as appropriate.
|
|
// NOTE it makes no sense to pass the glue functions down the
|
|
// recursion to the level where the OINLCALL gets created because they
|
|
// have to edit /this/ n, so you'd have to push that one down as well,
|
|
// but then you may as well do it here. so this is cleaner and
|
|
// shorter and less complicated.
|
|
// The result of inlnode MUST be assigned back to n, e.g.
|
|
// n.Left = inlnode(n.Left)
|
|
func inlnode(n ir.Node, maxCost int32, inlMap map[*ir.Func]bool) ir.Node {
|
|
if n == nil {
|
|
return n
|
|
}
|
|
|
|
switch n.Op() {
|
|
case ir.ODEFER, ir.OGO:
|
|
switch n.Left().Op() {
|
|
case ir.OCALLFUNC, ir.OCALLMETH:
|
|
n.Left().SetNoInline(true)
|
|
}
|
|
|
|
// TODO do them here (or earlier),
|
|
// so escape analysis can avoid more heapmoves.
|
|
case ir.OCLOSURE:
|
|
return n
|
|
case ir.OCALLMETH:
|
|
// Prevent inlining some reflect.Value methods when using checkptr,
|
|
// even when package reflect was compiled without it (#35073).
|
|
if s := n.Left().Sym(); base.Debug.Checkptr != 0 && isReflectPkg(s.Pkg) && (s.Name == "Value.UnsafeAddr" || s.Name == "Value.Pointer") {
|
|
return n
|
|
}
|
|
}
|
|
|
|
lno := setlineno(n)
|
|
|
|
inlnodelist(n.Init(), maxCost, inlMap)
|
|
init := n.Init().Slice()
|
|
for i, n1 := range init {
|
|
if n1.Op() == ir.OINLCALL {
|
|
init[i] = inlconv2stmt(n1)
|
|
}
|
|
}
|
|
|
|
n.SetLeft(inlnode(n.Left(), maxCost, inlMap))
|
|
if n.Left() != nil && n.Left().Op() == ir.OINLCALL {
|
|
n.SetLeft(inlconv2expr(n.Left()))
|
|
}
|
|
|
|
n.SetRight(inlnode(n.Right(), maxCost, inlMap))
|
|
if n.Right() != nil && n.Right().Op() == ir.OINLCALL {
|
|
if n.Op() == ir.OFOR || n.Op() == ir.OFORUNTIL {
|
|
n.SetRight(inlconv2stmt(n.Right()))
|
|
} else {
|
|
n.SetRight(inlconv2expr(n.Right()))
|
|
}
|
|
}
|
|
|
|
inlnodelist(n.List(), maxCost, inlMap)
|
|
s := n.List().Slice()
|
|
convert := inlconv2expr
|
|
if n.Op() == ir.OBLOCK {
|
|
convert = inlconv2stmt
|
|
}
|
|
for i, n1 := range s {
|
|
if n1 != nil && n1.Op() == ir.OINLCALL {
|
|
s[i] = convert(n1)
|
|
}
|
|
}
|
|
|
|
inlnodelist(n.Rlist(), maxCost, inlMap)
|
|
|
|
if n.Op() == ir.OAS2FUNC && n.Rlist().First().Op() == ir.OINLCALL {
|
|
n.PtrRlist().Set(inlconv2list(n.Rlist().First()))
|
|
n.SetOp(ir.OAS2)
|
|
n.SetTypecheck(0)
|
|
n = typecheck(n, ctxStmt)
|
|
}
|
|
|
|
s = n.Rlist().Slice()
|
|
for i, n1 := range s {
|
|
if n1.Op() == ir.OINLCALL {
|
|
if n.Op() == ir.OIF {
|
|
s[i] = inlconv2stmt(n1)
|
|
} else {
|
|
s[i] = inlconv2expr(n1)
|
|
}
|
|
}
|
|
}
|
|
|
|
inlnodelist(n.Body(), maxCost, inlMap)
|
|
s = n.Body().Slice()
|
|
for i, n1 := range s {
|
|
if n1.Op() == ir.OINLCALL {
|
|
s[i] = inlconv2stmt(n1)
|
|
}
|
|
}
|
|
|
|
// with all the branches out of the way, it is now time to
|
|
// transmogrify this node itself unless inhibited by the
|
|
// switch at the top of this function.
|
|
switch n.Op() {
|
|
case ir.OCALLFUNC, ir.OCALLMETH:
|
|
if n.NoInline() {
|
|
return n
|
|
}
|
|
}
|
|
|
|
switch n.Op() {
|
|
case ir.OCALLFUNC:
|
|
if base.Flag.LowerM > 3 {
|
|
fmt.Printf("%v:call to func %+v\n", ir.Line(n), n.Left())
|
|
}
|
|
if isIntrinsicCall(n) {
|
|
break
|
|
}
|
|
if fn := inlCallee(n.Left()); fn != nil && fn.Inl != nil {
|
|
n = mkinlcall(n, fn, maxCost, inlMap)
|
|
}
|
|
|
|
case ir.OCALLMETH:
|
|
if base.Flag.LowerM > 3 {
|
|
fmt.Printf("%v:call to meth %L\n", ir.Line(n), n.Left().Right())
|
|
}
|
|
|
|
// typecheck should have resolved ODOTMETH->type, whose nname points to the actual function.
|
|
if n.Left().Type() == nil {
|
|
base.Fatalf("no function type for [%p] %+v\n", n.Left(), n.Left())
|
|
}
|
|
|
|
n = mkinlcall(n, methodExprName(n.Left()).Func(), maxCost, inlMap)
|
|
}
|
|
|
|
base.Pos = lno
|
|
return n
|
|
}
|
|
|
|
// inlCallee takes a function-typed expression and returns the underlying function ONAME
|
|
// that it refers to if statically known. Otherwise, it returns nil.
|
|
func inlCallee(fn ir.Node) *ir.Func {
|
|
fn = staticValue(fn)
|
|
switch {
|
|
case fn.Op() == ir.OMETHEXPR:
|
|
n := methodExprName(fn)
|
|
// Check that receiver type matches fn.Left.
|
|
// TODO(mdempsky): Handle implicit dereference
|
|
// of pointer receiver argument?
|
|
if n == nil || !types.Identical(n.Type().Recv().Type, fn.Left().Type()) {
|
|
return nil
|
|
}
|
|
return n.Func()
|
|
case fn.Op() == ir.ONAME && fn.Class() == ir.PFUNC:
|
|
return fn.Func()
|
|
case fn.Op() == ir.OCLOSURE:
|
|
c := fn.Func()
|
|
caninl(c)
|
|
return c
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func staticValue(n ir.Node) ir.Node {
|
|
for {
|
|
if n.Op() == ir.OCONVNOP {
|
|
n = n.Left()
|
|
continue
|
|
}
|
|
|
|
n1 := staticValue1(n)
|
|
if n1 == nil {
|
|
return n
|
|
}
|
|
n = n1
|
|
}
|
|
}
|
|
|
|
// staticValue1 implements a simple SSA-like optimization. If n is a local variable
|
|
// that is initialized and never reassigned, staticValue1 returns the initializer
|
|
// expression. Otherwise, it returns nil.
|
|
func staticValue1(n ir.Node) ir.Node {
|
|
if n.Op() != ir.ONAME || n.Class() != ir.PAUTO || n.Name().Addrtaken() {
|
|
return nil
|
|
}
|
|
|
|
defn := n.Name().Defn
|
|
if defn == nil {
|
|
return nil
|
|
}
|
|
|
|
var rhs ir.Node
|
|
FindRHS:
|
|
switch defn.Op() {
|
|
case ir.OAS:
|
|
rhs = defn.Right()
|
|
case ir.OAS2:
|
|
for i, lhs := range defn.List().Slice() {
|
|
if lhs == n {
|
|
rhs = defn.Rlist().Index(i)
|
|
break FindRHS
|
|
}
|
|
}
|
|
base.Fatalf("%v missing from LHS of %v", n, defn)
|
|
default:
|
|
return nil
|
|
}
|
|
if rhs == nil {
|
|
base.Fatalf("RHS is nil: %v", defn)
|
|
}
|
|
|
|
unsafe, _ := reassigned(n.(*ir.Name))
|
|
if unsafe {
|
|
return nil
|
|
}
|
|
|
|
return rhs
|
|
}
|
|
|
|
// reassigned takes an ONAME node, walks the function in which it is defined, and returns a boolean
|
|
// indicating whether the name has any assignments other than its declaration.
|
|
// The second return value is the first such assignment encountered in the walk, if any. It is mostly
|
|
// useful for -m output documenting the reason for inhibited optimizations.
|
|
// NB: global variables are always considered to be re-assigned.
|
|
// TODO: handle initial declaration not including an assignment and followed by a single assignment?
|
|
func reassigned(n *ir.Name) (bool, ir.Node) {
|
|
if n.Op() != ir.ONAME {
|
|
base.Fatalf("reassigned %v", n)
|
|
}
|
|
// no way to reliably check for no-reassignment of globals, assume it can be
|
|
if n.Curfn == nil {
|
|
return true, nil
|
|
}
|
|
f := n.Curfn
|
|
v := reassignVisitor{name: n}
|
|
a := v.visitList(f.Body())
|
|
return a != nil, a
|
|
}
|
|
|
|
type reassignVisitor struct {
|
|
name ir.Node
|
|
}
|
|
|
|
func (v *reassignVisitor) visit(n ir.Node) ir.Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
switch n.Op() {
|
|
case ir.OAS:
|
|
if n.Left() == v.name && n != v.name.Name().Defn {
|
|
return n
|
|
}
|
|
case ir.OAS2, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2DOTTYPE:
|
|
for _, p := range n.List().Slice() {
|
|
if p == v.name && n != v.name.Name().Defn {
|
|
return n
|
|
}
|
|
}
|
|
}
|
|
if a := v.visit(n.Left()); a != nil {
|
|
return a
|
|
}
|
|
if a := v.visit(n.Right()); a != nil {
|
|
return a
|
|
}
|
|
if a := v.visitList(n.List()); a != nil {
|
|
return a
|
|
}
|
|
if a := v.visitList(n.Rlist()); a != nil {
|
|
return a
|
|
}
|
|
if a := v.visitList(n.Init()); a != nil {
|
|
return a
|
|
}
|
|
if a := v.visitList(n.Body()); a != nil {
|
|
return a
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (v *reassignVisitor) visitList(l ir.Nodes) ir.Node {
|
|
for _, n := range l.Slice() {
|
|
if a := v.visit(n); a != nil {
|
|
return a
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func inlParam(t *types.Field, as ir.Node, inlvars map[*ir.Name]ir.Node) ir.Node {
|
|
n := ir.AsNode(t.Nname)
|
|
if n == nil || ir.IsBlank(n) {
|
|
return ir.BlankNode
|
|
}
|
|
|
|
inlvar := inlvars[n.(*ir.Name)]
|
|
if inlvar == nil {
|
|
base.Fatalf("missing inlvar for %v", n)
|
|
}
|
|
as.PtrInit().Append(ir.Nod(ir.ODCL, inlvar, nil))
|
|
inlvar.Name().Defn = as
|
|
return inlvar
|
|
}
|
|
|
|
var inlgen int
|
|
|
|
// If n is a call node (OCALLFUNC or OCALLMETH), and fn is an ONAME node for a
|
|
// function with an inlinable body, return an OINLCALL node that can replace n.
|
|
// The returned node's Ninit has the parameter assignments, the Nbody is the
|
|
// inlined function body, and (List, Rlist) contain the (input, output)
|
|
// parameters.
|
|
// The result of mkinlcall MUST be assigned back to n, e.g.
|
|
// n.Left = mkinlcall(n.Left, fn, isddd)
|
|
func mkinlcall(n ir.Node, fn *ir.Func, maxCost int32, inlMap map[*ir.Func]bool) ir.Node {
|
|
if fn.Inl == nil {
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(Curfn),
|
|
fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(fn)))
|
|
}
|
|
return n
|
|
}
|
|
if fn.Inl.Cost > maxCost {
|
|
// The inlined function body is too big. Typically we use this check to restrict
|
|
// inlining into very big functions. See issue 26546 and 17566.
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(Curfn),
|
|
fmt.Sprintf("cost %d of %s exceeds max large caller cost %d", fn.Inl.Cost, ir.PkgFuncName(fn), maxCost))
|
|
}
|
|
return n
|
|
}
|
|
|
|
if fn == Curfn {
|
|
// Can't recursively inline a function into itself.
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(Curfn)))
|
|
}
|
|
return n
|
|
}
|
|
|
|
if instrumenting && isRuntimePkg(fn.Sym().Pkg) {
|
|
// Runtime package must not be instrumented.
|
|
// Instrument skips runtime package. However, some runtime code can be
|
|
// inlined into other packages and instrumented there. To avoid this,
|
|
// we disable inlining of runtime functions when instrumenting.
|
|
// The example that we observed is inlining of LockOSThread,
|
|
// which lead to false race reports on m contents.
|
|
return n
|
|
}
|
|
|
|
if inlMap[fn] {
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), fn, ir.FuncName(Curfn))
|
|
}
|
|
return n
|
|
}
|
|
inlMap[fn] = true
|
|
defer func() {
|
|
inlMap[fn] = false
|
|
}()
|
|
if base.Debug.TypecheckInl == 0 {
|
|
typecheckinl(fn)
|
|
}
|
|
|
|
// We have a function node, and it has an inlineable body.
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: inlining call to %v %#v { %#v }\n", ir.Line(n), fn.Sym(), fn.Type(), ir.AsNodes(fn.Inl.Body))
|
|
} else if base.Flag.LowerM != 0 {
|
|
fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn)
|
|
}
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n)
|
|
}
|
|
|
|
if ssaDump != "" && ssaDump == ir.FuncName(Curfn) {
|
|
ssaDumpInlined = append(ssaDumpInlined, fn)
|
|
}
|
|
|
|
ninit := n.Init()
|
|
|
|
// For normal function calls, the function callee expression
|
|
// may contain side effects (e.g., added by addinit during
|
|
// inlconv2expr or inlconv2list). Make sure to preserve these,
|
|
// if necessary (#42703).
|
|
if n.Op() == ir.OCALLFUNC {
|
|
callee := n.Left()
|
|
for callee.Op() == ir.OCONVNOP {
|
|
ninit.AppendNodes(callee.PtrInit())
|
|
callee = callee.Left()
|
|
}
|
|
if callee.Op() != ir.ONAME && callee.Op() != ir.OCLOSURE && callee.Op() != ir.OMETHEXPR {
|
|
base.Fatalf("unexpected callee expression: %v", callee)
|
|
}
|
|
}
|
|
|
|
// Make temp names to use instead of the originals.
|
|
inlvars := make(map[*ir.Name]ir.Node)
|
|
|
|
// record formals/locals for later post-processing
|
|
var inlfvars []ir.Node
|
|
|
|
// Handle captured variables when inlining closures.
|
|
if c := fn.OClosure; c != nil {
|
|
for _, v := range fn.ClosureVars {
|
|
if v.Op() == ir.OXXX {
|
|
continue
|
|
}
|
|
|
|
o := v.Outer
|
|
// make sure the outer param matches the inlining location
|
|
// NB: if we enabled inlining of functions containing OCLOSURE or refined
|
|
// the reassigned check via some sort of copy propagation this would most
|
|
// likely need to be changed to a loop to walk up to the correct Param
|
|
if o == nil || o.Curfn != Curfn {
|
|
base.Fatalf("%v: unresolvable capture %v %v\n", ir.Line(n), fn, v)
|
|
}
|
|
|
|
if v.Byval() {
|
|
iv := typecheck(inlvar(v), ctxExpr)
|
|
ninit.Append(ir.Nod(ir.ODCL, iv, nil))
|
|
ninit.Append(typecheck(ir.Nod(ir.OAS, iv, o), ctxStmt))
|
|
inlvars[v] = iv
|
|
} else {
|
|
addr := NewName(lookup("&" + v.Sym().Name))
|
|
addr.SetType(types.NewPtr(v.Type()))
|
|
ia := typecheck(inlvar(addr), ctxExpr)
|
|
ninit.Append(ir.Nod(ir.ODCL, ia, nil))
|
|
ninit.Append(typecheck(ir.Nod(ir.OAS, ia, ir.Nod(ir.OADDR, o, nil)), ctxStmt))
|
|
inlvars[addr] = ia
|
|
|
|
// When capturing by reference, all occurrence of the captured var
|
|
// must be substituted with dereference of the temporary address
|
|
inlvars[v] = typecheck(ir.Nod(ir.ODEREF, ia, nil), ctxExpr)
|
|
}
|
|
}
|
|
}
|
|
|
|
for _, ln := range fn.Inl.Dcl {
|
|
if ln.Op() != ir.ONAME {
|
|
continue
|
|
}
|
|
if ln.Class() == ir.PPARAMOUT { // return values handled below.
|
|
continue
|
|
}
|
|
if isParamStackCopy(ln) { // ignore the on-stack copy of a parameter that moved to the heap
|
|
// TODO(mdempsky): Remove once I'm confident
|
|
// this never actually happens. We currently
|
|
// perform inlining before escape analysis, so
|
|
// nothing should have moved to the heap yet.
|
|
base.Fatalf("impossible: %v", ln)
|
|
}
|
|
inlf := typecheck(inlvar(ln), ctxExpr)
|
|
inlvars[ln] = inlf
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
if ln.Class() == ir.PPARAM {
|
|
inlf.Name().SetInlFormal(true)
|
|
} else {
|
|
inlf.Name().SetInlLocal(true)
|
|
}
|
|
inlf.SetPos(ln.Pos())
|
|
inlfvars = append(inlfvars, inlf)
|
|
}
|
|
}
|
|
|
|
nreturns := 0
|
|
ir.InspectList(ir.AsNodes(fn.Inl.Body), func(n ir.Node) bool {
|
|
if n != nil && n.Op() == ir.ORETURN {
|
|
nreturns++
|
|
}
|
|
return true
|
|
})
|
|
|
|
// We can delay declaring+initializing result parameters if:
|
|
// (1) there's only one "return" statement in the inlined
|
|
// function, and (2) the result parameters aren't named.
|
|
delayretvars := nreturns == 1
|
|
|
|
// temporaries for return values.
|
|
var retvars []ir.Node
|
|
for i, t := range fn.Type().Results().Fields().Slice() {
|
|
var m ir.Node
|
|
if n := ir.AsNode(t.Nname); n != nil && !ir.IsBlank(n) && !strings.HasPrefix(n.Sym().Name, "~r") {
|
|
n := n.(*ir.Name)
|
|
m = inlvar(n)
|
|
m = typecheck(m, ctxExpr)
|
|
inlvars[n] = m
|
|
delayretvars = false // found a named result parameter
|
|
} else {
|
|
// anonymous return values, synthesize names for use in assignment that replaces return
|
|
m = retvar(t, i)
|
|
}
|
|
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
// Don't update the src.Pos on a return variable if it
|
|
// was manufactured by the inliner (e.g. "~R2"); such vars
|
|
// were not part of the original callee.
|
|
if !strings.HasPrefix(m.Sym().Name, "~R") {
|
|
m.Name().SetInlFormal(true)
|
|
m.SetPos(t.Pos)
|
|
inlfvars = append(inlfvars, m)
|
|
}
|
|
}
|
|
|
|
retvars = append(retvars, m)
|
|
}
|
|
|
|
// Assign arguments to the parameters' temp names.
|
|
as := ir.Nod(ir.OAS2, nil, nil)
|
|
as.SetColas(true)
|
|
if n.Op() == ir.OCALLMETH {
|
|
if n.Left().Left() == nil {
|
|
base.Fatalf("method call without receiver: %+v", n)
|
|
}
|
|
as.PtrRlist().Append(n.Left().Left())
|
|
}
|
|
as.PtrRlist().Append(n.List().Slice()...)
|
|
|
|
// For non-dotted calls to variadic functions, we assign the
|
|
// variadic parameter's temp name separately.
|
|
var vas ir.Node
|
|
|
|
if recv := fn.Type().Recv(); recv != nil {
|
|
as.PtrList().Append(inlParam(recv, as, inlvars))
|
|
}
|
|
for _, param := range fn.Type().Params().Fields().Slice() {
|
|
// For ordinary parameters or variadic parameters in
|
|
// dotted calls, just add the variable to the
|
|
// assignment list, and we're done.
|
|
if !param.IsDDD() || n.IsDDD() {
|
|
as.PtrList().Append(inlParam(param, as, inlvars))
|
|
continue
|
|
}
|
|
|
|
// Otherwise, we need to collect the remaining values
|
|
// to pass as a slice.
|
|
|
|
x := as.List().Len()
|
|
for as.List().Len() < as.Rlist().Len() {
|
|
as.PtrList().Append(argvar(param.Type, as.List().Len()))
|
|
}
|
|
varargs := as.List().Slice()[x:]
|
|
|
|
vas = ir.Nod(ir.OAS, nil, nil)
|
|
vas.SetLeft(inlParam(param, vas, inlvars))
|
|
if len(varargs) == 0 {
|
|
vas.SetRight(nodnil())
|
|
vas.Right().SetType(param.Type)
|
|
} else {
|
|
vas.SetRight(ir.Nod(ir.OCOMPLIT, nil, ir.TypeNode(param.Type)))
|
|
vas.Right().PtrList().Set(varargs)
|
|
}
|
|
}
|
|
|
|
if as.Rlist().Len() != 0 {
|
|
as = typecheck(as, ctxStmt)
|
|
ninit.Append(as)
|
|
}
|
|
|
|
if vas != nil {
|
|
vas = typecheck(vas, ctxStmt)
|
|
ninit.Append(vas)
|
|
}
|
|
|
|
if !delayretvars {
|
|
// Zero the return parameters.
|
|
for _, n := range retvars {
|
|
ninit.Append(ir.Nod(ir.ODCL, n, nil))
|
|
ras := ir.Nod(ir.OAS, n, nil)
|
|
ras = typecheck(ras, ctxStmt)
|
|
ninit.Append(ras)
|
|
}
|
|
}
|
|
|
|
retlabel := autolabel(".i")
|
|
|
|
inlgen++
|
|
|
|
parent := -1
|
|
if b := base.Ctxt.PosTable.Pos(n.Pos()).Base(); b != nil {
|
|
parent = b.InliningIndex()
|
|
}
|
|
|
|
sym := fn.Sym().Linksym()
|
|
newIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym)
|
|
|
|
// Add an inline mark just before the inlined body.
|
|
// This mark is inline in the code so that it's a reasonable spot
|
|
// to put a breakpoint. Not sure if that's really necessary or not
|
|
// (in which case it could go at the end of the function instead).
|
|
// Note issue 28603.
|
|
inlMark := ir.Nod(ir.OINLMARK, nil, nil)
|
|
inlMark.SetPos(n.Pos().WithIsStmt())
|
|
inlMark.SetOffset(int64(newIndex))
|
|
ninit.Append(inlMark)
|
|
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
if !sym.WasInlined() {
|
|
base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn)
|
|
sym.Set(obj.AttrWasInlined, true)
|
|
}
|
|
}
|
|
|
|
subst := inlsubst{
|
|
retlabel: retlabel,
|
|
retvars: retvars,
|
|
delayretvars: delayretvars,
|
|
inlvars: inlvars,
|
|
bases: make(map[*src.PosBase]*src.PosBase),
|
|
newInlIndex: newIndex,
|
|
}
|
|
|
|
body := subst.list(ir.AsNodes(fn.Inl.Body))
|
|
|
|
lab := nodSym(ir.OLABEL, nil, retlabel)
|
|
body = append(body, lab)
|
|
|
|
typecheckslice(body, ctxStmt)
|
|
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
for _, v := range inlfvars {
|
|
v.SetPos(subst.updatedPos(v.Pos()))
|
|
}
|
|
}
|
|
|
|
//dumplist("ninit post", ninit);
|
|
|
|
call := ir.Nod(ir.OINLCALL, nil, nil)
|
|
call.PtrInit().Set(ninit.Slice())
|
|
call.PtrBody().Set(body)
|
|
call.PtrRlist().Set(retvars)
|
|
call.SetType(n.Type())
|
|
call.SetTypecheck(1)
|
|
|
|
// transitive inlining
|
|
// might be nice to do this before exporting the body,
|
|
// but can't emit the body with inlining expanded.
|
|
// instead we emit the things that the body needs
|
|
// and each use must redo the inlining.
|
|
// luckily these are small.
|
|
inlnodelist(call.Body(), maxCost, inlMap)
|
|
s := call.Body().Slice()
|
|
for i, n1 := range s {
|
|
if n1.Op() == ir.OINLCALL {
|
|
s[i] = inlconv2stmt(n1)
|
|
}
|
|
}
|
|
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("%v: After inlining %+v\n\n", ir.Line(call), call)
|
|
}
|
|
|
|
return call
|
|
}
|
|
|
|
// Every time we expand a function we generate a new set of tmpnames,
|
|
// PAUTO's in the calling functions, and link them off of the
|
|
// PPARAM's, PAUTOS and PPARAMOUTs of the called function.
|
|
func inlvar(var_ ir.Node) ir.Node {
|
|
if base.Flag.LowerM > 3 {
|
|
fmt.Printf("inlvar %+v\n", var_)
|
|
}
|
|
|
|
n := NewName(var_.Sym())
|
|
n.SetType(var_.Type())
|
|
n.SetClass(ir.PAUTO)
|
|
n.SetUsed(true)
|
|
n.Curfn = Curfn // the calling function, not the called one
|
|
n.SetAddrtaken(var_.Name().Addrtaken())
|
|
|
|
Curfn.Dcl = append(Curfn.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// Synthesize a variable to store the inlined function's results in.
|
|
func retvar(t *types.Field, i int) ir.Node {
|
|
n := NewName(lookupN("~R", i))
|
|
n.SetType(t.Type)
|
|
n.SetClass(ir.PAUTO)
|
|
n.SetUsed(true)
|
|
n.Curfn = Curfn // the calling function, not the called one
|
|
Curfn.Dcl = append(Curfn.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// Synthesize a variable to store the inlined function's arguments
|
|
// when they come from a multiple return call.
|
|
func argvar(t *types.Type, i int) ir.Node {
|
|
n := NewName(lookupN("~arg", i))
|
|
n.SetType(t.Elem())
|
|
n.SetClass(ir.PAUTO)
|
|
n.SetUsed(true)
|
|
n.Curfn = Curfn // the calling function, not the called one
|
|
Curfn.Dcl = append(Curfn.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// The inlsubst type implements the actual inlining of a single
|
|
// function call.
|
|
type inlsubst struct {
|
|
// Target of the goto substituted in place of a return.
|
|
retlabel *types.Sym
|
|
|
|
// Temporary result variables.
|
|
retvars []ir.Node
|
|
|
|
// Whether result variables should be initialized at the
|
|
// "return" statement.
|
|
delayretvars bool
|
|
|
|
inlvars map[*ir.Name]ir.Node
|
|
|
|
// bases maps from original PosBase to PosBase with an extra
|
|
// inlined call frame.
|
|
bases map[*src.PosBase]*src.PosBase
|
|
|
|
// newInlIndex is the index of the inlined call frame to
|
|
// insert for inlined nodes.
|
|
newInlIndex int
|
|
}
|
|
|
|
// list inlines a list of nodes.
|
|
func (subst *inlsubst) list(ll ir.Nodes) []ir.Node {
|
|
s := make([]ir.Node, 0, ll.Len())
|
|
for _, n := range ll.Slice() {
|
|
s = append(s, subst.node(n))
|
|
}
|
|
return s
|
|
}
|
|
|
|
// node recursively copies a node from the saved pristine body of the
|
|
// inlined function, substituting references to input/output
|
|
// parameters with ones to the tmpnames, and substituting returns with
|
|
// assignments to the output.
|
|
func (subst *inlsubst) node(n ir.Node) ir.Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
switch n.Op() {
|
|
case ir.ONAME:
|
|
n := n.(*ir.Name)
|
|
if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("substituting name %+v -> %+v\n", n, inlvar)
|
|
}
|
|
return inlvar
|
|
}
|
|
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("not substituting name %+v\n", n)
|
|
}
|
|
return n
|
|
|
|
case ir.OMETHEXPR:
|
|
return n
|
|
|
|
case ir.OLITERAL, ir.ONIL, ir.OTYPE:
|
|
// If n is a named constant or type, we can continue
|
|
// using it in the inline copy. Otherwise, make a copy
|
|
// so we can update the line number.
|
|
if n.Sym() != nil {
|
|
return n
|
|
}
|
|
|
|
// Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function.
|
|
|
|
// dump("Return before substitution", n);
|
|
case ir.ORETURN:
|
|
m := nodSym(ir.OGOTO, nil, subst.retlabel)
|
|
m.PtrInit().Set(subst.list(n.Init()))
|
|
|
|
if len(subst.retvars) != 0 && n.List().Len() != 0 {
|
|
as := ir.Nod(ir.OAS2, nil, nil)
|
|
|
|
// Make a shallow copy of retvars.
|
|
// Otherwise OINLCALL.Rlist will be the same list,
|
|
// and later walk and typecheck may clobber it.
|
|
for _, n := range subst.retvars {
|
|
as.PtrList().Append(n)
|
|
}
|
|
as.PtrRlist().Set(subst.list(n.List()))
|
|
|
|
if subst.delayretvars {
|
|
for _, n := range as.List().Slice() {
|
|
as.PtrInit().Append(ir.Nod(ir.ODCL, n, nil))
|
|
n.Name().Defn = as
|
|
}
|
|
}
|
|
|
|
as = typecheck(as, ctxStmt)
|
|
m.PtrInit().Append(as)
|
|
}
|
|
|
|
typecheckslice(m.Init().Slice(), ctxStmt)
|
|
m = typecheck(m, ctxStmt)
|
|
|
|
// dump("Return after substitution", m);
|
|
return m
|
|
|
|
case ir.OGOTO, ir.OLABEL:
|
|
m := ir.Copy(n)
|
|
m.SetPos(subst.updatedPos(m.Pos()))
|
|
m.PtrInit().Set(nil)
|
|
p := fmt.Sprintf("%s·%d", n.Sym().Name, inlgen)
|
|
m.SetSym(lookup(p))
|
|
|
|
return m
|
|
}
|
|
|
|
m := ir.Copy(n)
|
|
m.SetPos(subst.updatedPos(m.Pos()))
|
|
m.PtrInit().Set(nil)
|
|
|
|
if n.Op() == ir.OCLOSURE {
|
|
base.Fatalf("cannot inline function containing closure: %+v", n)
|
|
}
|
|
|
|
m.SetLeft(subst.node(n.Left()))
|
|
m.SetRight(subst.node(n.Right()))
|
|
m.PtrList().Set(subst.list(n.List()))
|
|
m.PtrRlist().Set(subst.list(n.Rlist()))
|
|
m.PtrInit().Set(append(m.Init().Slice(), subst.list(n.Init())...))
|
|
m.PtrBody().Set(subst.list(n.Body()))
|
|
|
|
return m
|
|
}
|
|
|
|
func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos {
|
|
pos := base.Ctxt.PosTable.Pos(xpos)
|
|
oldbase := pos.Base() // can be nil
|
|
newbase := subst.bases[oldbase]
|
|
if newbase == nil {
|
|
newbase = src.NewInliningBase(oldbase, subst.newInlIndex)
|
|
subst.bases[oldbase] = newbase
|
|
}
|
|
pos.SetBase(newbase)
|
|
return base.Ctxt.PosTable.XPos(pos)
|
|
}
|
|
|
|
func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name {
|
|
s := make([]*ir.Name, 0, len(ll))
|
|
for _, n := range ll {
|
|
if n.Class() == ir.PAUTO {
|
|
if _, found := vis.usedLocals[n]; !found {
|
|
continue
|
|
}
|
|
}
|
|
s = append(s, n)
|
|
}
|
|
return s
|
|
}
|
|
|
|
// devirtualize replaces interface method calls within fn with direct
|
|
// concrete-type method calls where applicable.
|
|
func devirtualize(fn *ir.Func) {
|
|
Curfn = fn
|
|
ir.InspectList(fn.Body(), func(n ir.Node) bool {
|
|
if n.Op() == ir.OCALLINTER {
|
|
devirtualizeCall(n)
|
|
}
|
|
return true
|
|
})
|
|
}
|
|
|
|
func devirtualizeCall(call ir.Node) {
|
|
recv := staticValue(call.Left().Left())
|
|
if recv.Op() != ir.OCONVIFACE {
|
|
return
|
|
}
|
|
|
|
typ := recv.Left().Type()
|
|
if typ.IsInterface() {
|
|
return
|
|
}
|
|
|
|
x := ir.NodAt(call.Left().Pos(), ir.ODOTTYPE, call.Left().Left(), nil)
|
|
x.SetType(typ)
|
|
x = nodlSym(call.Left().Pos(), ir.OXDOT, x, call.Left().Sym())
|
|
x = typecheck(x, ctxExpr|ctxCallee)
|
|
switch x.Op() {
|
|
case ir.ODOTMETH:
|
|
if base.Flag.LowerM != 0 {
|
|
base.WarnfAt(call.Pos(), "devirtualizing %v to %v", call.Left(), typ)
|
|
}
|
|
call.SetOp(ir.OCALLMETH)
|
|
call.SetLeft(x)
|
|
case ir.ODOTINTER:
|
|
// Promoted method from embedded interface-typed field (#42279).
|
|
if base.Flag.LowerM != 0 {
|
|
base.WarnfAt(call.Pos(), "partially devirtualizing %v to %v", call.Left(), typ)
|
|
}
|
|
call.SetOp(ir.OCALLINTER)
|
|
call.SetLeft(x)
|
|
default:
|
|
// TODO(mdempsky): Turn back into Fatalf after more testing.
|
|
if base.Flag.LowerM != 0 {
|
|
base.WarnfAt(call.Pos(), "failed to devirtualize %v (%v)", x, x.Op())
|
|
}
|
|
return
|
|
}
|
|
|
|
// Duplicated logic from typecheck for function call return
|
|
// value types.
|
|
//
|
|
// Receiver parameter size may have changed; need to update
|
|
// call.Type to get correct stack offsets for result
|
|
// parameters.
|
|
checkwidth(x.Type())
|
|
switch ft := x.Type(); ft.NumResults() {
|
|
case 0:
|
|
case 1:
|
|
call.SetType(ft.Results().Field(0).Type)
|
|
default:
|
|
call.SetType(ft.Results())
|
|
}
|
|
}
|