mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
Change-Id: I9ae39aa2da2bfa6bb5d3f279bca764128d9cc401
GitHub-Last-Rev: 7a5945ae12
GitHub-Pull-Request: golang/go#44990
Reviewed-on: https://go-review.googlesource.com/c/go/+/301529
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Trust: Tobias Klauser <tobias.klauser@gmail.com>
449 lines
15 KiB
Go
449 lines
15 KiB
Go
// Copyright 2019 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ld
|
|
|
|
import (
|
|
"cmd/internal/goobj"
|
|
"cmd/internal/objabi"
|
|
"cmd/internal/sys"
|
|
"cmd/link/internal/loader"
|
|
"cmd/link/internal/sym"
|
|
"fmt"
|
|
"unicode"
|
|
)
|
|
|
|
var _ = fmt.Print
|
|
|
|
type deadcodePass struct {
|
|
ctxt *Link
|
|
ldr *loader.Loader
|
|
wq heap // work queue, using min-heap for better locality
|
|
|
|
ifaceMethod map[methodsig]bool // methods declared in reached interfaces
|
|
markableMethods []methodref // methods of reached types
|
|
reflectSeen bool // whether we have seen a reflect method call
|
|
dynlink bool
|
|
|
|
methodsigstmp []methodsig // scratch buffer for decoding method signatures
|
|
}
|
|
|
|
func (d *deadcodePass) init() {
|
|
d.ldr.InitReachable()
|
|
d.ifaceMethod = make(map[methodsig]bool)
|
|
if objabi.Fieldtrack_enabled != 0 {
|
|
d.ldr.Reachparent = make([]loader.Sym, d.ldr.NSym())
|
|
}
|
|
d.dynlink = d.ctxt.DynlinkingGo()
|
|
|
|
if d.ctxt.BuildMode == BuildModeShared {
|
|
// Mark all symbols defined in this library as reachable when
|
|
// building a shared library.
|
|
n := d.ldr.NDef()
|
|
for i := 1; i < n; i++ {
|
|
s := loader.Sym(i)
|
|
d.mark(s, 0)
|
|
}
|
|
return
|
|
}
|
|
|
|
var names []string
|
|
|
|
// In a normal binary, start at main.main and the init
|
|
// functions and mark what is reachable from there.
|
|
if d.ctxt.linkShared && (d.ctxt.BuildMode == BuildModeExe || d.ctxt.BuildMode == BuildModePIE) {
|
|
names = append(names, "main.main", "main..inittask")
|
|
} else {
|
|
// The external linker refers main symbol directly.
|
|
if d.ctxt.LinkMode == LinkExternal && (d.ctxt.BuildMode == BuildModeExe || d.ctxt.BuildMode == BuildModePIE) {
|
|
if d.ctxt.HeadType == objabi.Hwindows && d.ctxt.Arch.Family == sys.I386 {
|
|
*flagEntrySymbol = "_main"
|
|
} else {
|
|
*flagEntrySymbol = "main"
|
|
}
|
|
}
|
|
names = append(names, *flagEntrySymbol)
|
|
if !d.ctxt.linkShared && d.ctxt.BuildMode != BuildModePlugin {
|
|
// runtime.buildVersion and runtime.modinfo are referenced in .go.buildinfo section
|
|
// (see function buildinfo in data.go). They should normally be reachable from the
|
|
// runtime. Just make it explicit, in case.
|
|
names = append(names, "runtime.buildVersion", "runtime.modinfo")
|
|
}
|
|
if d.ctxt.BuildMode == BuildModePlugin {
|
|
names = append(names, objabi.PathToPrefix(*flagPluginPath)+"..inittask", objabi.PathToPrefix(*flagPluginPath)+".main", "go.plugin.tabs")
|
|
|
|
// We don't keep the go.plugin.exports symbol,
|
|
// but we do keep the symbols it refers to.
|
|
exportsIdx := d.ldr.Lookup("go.plugin.exports", 0)
|
|
if exportsIdx != 0 {
|
|
relocs := d.ldr.Relocs(exportsIdx)
|
|
for i := 0; i < relocs.Count(); i++ {
|
|
d.mark(relocs.At(i).Sym(), 0)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
dynexpMap := d.ctxt.cgo_export_dynamic
|
|
if d.ctxt.LinkMode == LinkExternal {
|
|
dynexpMap = d.ctxt.cgo_export_static
|
|
}
|
|
for exp := range dynexpMap {
|
|
names = append(names, exp)
|
|
}
|
|
|
|
if d.ctxt.Debugvlog > 1 {
|
|
d.ctxt.Logf("deadcode start names: %v\n", names)
|
|
}
|
|
|
|
for _, name := range names {
|
|
// Mark symbol as a data/ABI0 symbol.
|
|
d.mark(d.ldr.Lookup(name, 0), 0)
|
|
// Also mark any Go functions (internal ABI).
|
|
d.mark(d.ldr.Lookup(name, sym.SymVerABIInternal), 0)
|
|
}
|
|
}
|
|
|
|
func (d *deadcodePass) flood() {
|
|
var methods []methodref
|
|
for !d.wq.empty() {
|
|
symIdx := d.wq.pop()
|
|
|
|
d.reflectSeen = d.reflectSeen || d.ldr.IsReflectMethod(symIdx)
|
|
|
|
isgotype := d.ldr.IsGoType(symIdx)
|
|
relocs := d.ldr.Relocs(symIdx)
|
|
var usedInIface bool
|
|
|
|
if isgotype {
|
|
if d.dynlink {
|
|
// When dynamic linking, a type may be passed across DSO
|
|
// boundary and get converted to interface at the other side.
|
|
d.ldr.SetAttrUsedInIface(symIdx, true)
|
|
}
|
|
usedInIface = d.ldr.AttrUsedInIface(symIdx)
|
|
}
|
|
|
|
methods = methods[:0]
|
|
for i := 0; i < relocs.Count(); i++ {
|
|
r := relocs.At(i)
|
|
if r.Weak() {
|
|
continue
|
|
}
|
|
t := r.Type()
|
|
switch t {
|
|
case objabi.R_METHODOFF:
|
|
if i+2 >= relocs.Count() {
|
|
panic("expect three consecutive R_METHODOFF relocs")
|
|
}
|
|
if usedInIface {
|
|
methods = append(methods, methodref{src: symIdx, r: i})
|
|
// The method descriptor is itself a type descriptor, and
|
|
// it can be used to reach other types, e.g. by using
|
|
// reflect.Type.Method(i).Type.In(j). We need to traverse
|
|
// its child types with UsedInIface set. (See also the
|
|
// comment below.)
|
|
rs := r.Sym()
|
|
if !d.ldr.AttrUsedInIface(rs) {
|
|
d.ldr.SetAttrUsedInIface(rs, true)
|
|
if d.ldr.AttrReachable(rs) {
|
|
d.ldr.SetAttrReachable(rs, false)
|
|
d.mark(rs, symIdx)
|
|
}
|
|
}
|
|
}
|
|
i += 2
|
|
continue
|
|
case objabi.R_USETYPE:
|
|
// type symbol used for DWARF. we need to load the symbol but it may not
|
|
// be otherwise reachable in the program.
|
|
// do nothing for now as we still load all type symbols.
|
|
continue
|
|
case objabi.R_USEIFACE:
|
|
// R_USEIFACE is a marker relocation that tells the linker the type is
|
|
// converted to an interface, i.e. should have UsedInIface set. See the
|
|
// comment below for why we need to unset the Reachable bit and re-mark it.
|
|
rs := r.Sym()
|
|
if !d.ldr.AttrUsedInIface(rs) {
|
|
d.ldr.SetAttrUsedInIface(rs, true)
|
|
if d.ldr.AttrReachable(rs) {
|
|
d.ldr.SetAttrReachable(rs, false)
|
|
d.mark(rs, symIdx)
|
|
}
|
|
}
|
|
continue
|
|
case objabi.R_USEIFACEMETHOD:
|
|
// R_USEIFACEMETHOD is a marker relocation that marks an interface
|
|
// method as used.
|
|
rs := r.Sym()
|
|
if d.ctxt.linkShared && (d.ldr.SymType(rs) == sym.SDYNIMPORT || d.ldr.SymType(rs) == sym.Sxxx) {
|
|
// Don't decode symbol from shared library (we'll mark all exported methods anyway).
|
|
// We check for both SDYNIMPORT and Sxxx because name-mangled symbols haven't
|
|
// been resolved at this point.
|
|
continue
|
|
}
|
|
m := d.decodeIfaceMethod(d.ldr, d.ctxt.Arch, rs, r.Add())
|
|
if d.ctxt.Debugvlog > 1 {
|
|
d.ctxt.Logf("reached iface method: %v\n", m)
|
|
}
|
|
d.ifaceMethod[m] = true
|
|
continue
|
|
}
|
|
rs := r.Sym()
|
|
if isgotype && usedInIface && d.ldr.IsGoType(rs) && !d.ldr.AttrUsedInIface(rs) {
|
|
// If a type is converted to an interface, it is possible to obtain an
|
|
// interface with a "child" type of it using reflection (e.g. obtain an
|
|
// interface of T from []chan T). We need to traverse its "child" types
|
|
// with UsedInIface attribute set.
|
|
// When visiting the child type (chan T in the example above), it will
|
|
// have UsedInIface set, so it in turn will mark and (re)visit its children
|
|
// (e.g. T above).
|
|
// We unset the reachable bit here, so if the child type is already visited,
|
|
// it will be visited again.
|
|
// Note that a type symbol can be visited at most twice, one without
|
|
// UsedInIface and one with. So termination is still guaranteed.
|
|
d.ldr.SetAttrUsedInIface(rs, true)
|
|
d.ldr.SetAttrReachable(rs, false)
|
|
}
|
|
d.mark(rs, symIdx)
|
|
}
|
|
naux := d.ldr.NAux(symIdx)
|
|
for i := 0; i < naux; i++ {
|
|
a := d.ldr.Aux(symIdx, i)
|
|
if a.Type() == goobj.AuxGotype {
|
|
// A symbol being reachable doesn't imply we need its
|
|
// type descriptor. Don't mark it.
|
|
continue
|
|
}
|
|
d.mark(a.Sym(), symIdx)
|
|
}
|
|
// Some host object symbols have an outer object, which acts like a
|
|
// "carrier" symbol, or it holds all the symbols for a particular
|
|
// section. We need to mark all "referenced" symbols from that carrier,
|
|
// so we make sure we're pulling in all outer symbols, and their sub
|
|
// symbols. This is not ideal, and these carrier/section symbols could
|
|
// be removed.
|
|
if d.ldr.IsExternal(symIdx) {
|
|
d.mark(d.ldr.OuterSym(symIdx), symIdx)
|
|
d.mark(d.ldr.SubSym(symIdx), symIdx)
|
|
}
|
|
|
|
if len(methods) != 0 {
|
|
if !isgotype {
|
|
panic("method found on non-type symbol")
|
|
}
|
|
// Decode runtime type information for type methods
|
|
// to help work out which methods can be called
|
|
// dynamically via interfaces.
|
|
methodsigs := d.decodetypeMethods(d.ldr, d.ctxt.Arch, symIdx, &relocs)
|
|
if len(methods) != len(methodsigs) {
|
|
panic(fmt.Sprintf("%q has %d method relocations for %d methods", d.ldr.SymName(symIdx), len(methods), len(methodsigs)))
|
|
}
|
|
for i, m := range methodsigs {
|
|
methods[i].m = m
|
|
if d.ctxt.Debugvlog > 1 {
|
|
d.ctxt.Logf("markable method: %v of sym %v %s\n", m, symIdx, d.ldr.SymName(symIdx))
|
|
}
|
|
}
|
|
d.markableMethods = append(d.markableMethods, methods...)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (d *deadcodePass) mark(symIdx, parent loader.Sym) {
|
|
if symIdx != 0 && !d.ldr.AttrReachable(symIdx) {
|
|
d.wq.push(symIdx)
|
|
d.ldr.SetAttrReachable(symIdx, true)
|
|
if objabi.Fieldtrack_enabled != 0 && d.ldr.Reachparent[symIdx] == 0 {
|
|
d.ldr.Reachparent[symIdx] = parent
|
|
}
|
|
if *flagDumpDep {
|
|
to := d.ldr.SymName(symIdx)
|
|
if to != "" {
|
|
if d.ldr.AttrUsedInIface(symIdx) {
|
|
to += " <UsedInIface>"
|
|
}
|
|
from := "_"
|
|
if parent != 0 {
|
|
from = d.ldr.SymName(parent)
|
|
if d.ldr.AttrUsedInIface(parent) {
|
|
from += " <UsedInIface>"
|
|
}
|
|
}
|
|
fmt.Printf("%s -> %s\n", from, to)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (d *deadcodePass) markMethod(m methodref) {
|
|
relocs := d.ldr.Relocs(m.src)
|
|
d.mark(relocs.At(m.r).Sym(), m.src)
|
|
d.mark(relocs.At(m.r+1).Sym(), m.src)
|
|
d.mark(relocs.At(m.r+2).Sym(), m.src)
|
|
}
|
|
|
|
// deadcode marks all reachable symbols.
|
|
//
|
|
// The basis of the dead code elimination is a flood fill of symbols,
|
|
// following their relocations, beginning at *flagEntrySymbol.
|
|
//
|
|
// This flood fill is wrapped in logic for pruning unused methods.
|
|
// All methods are mentioned by relocations on their receiver's *rtype.
|
|
// These relocations are specially defined as R_METHODOFF by the compiler
|
|
// so we can detect and manipulated them here.
|
|
//
|
|
// There are three ways a method of a reachable type can be invoked:
|
|
//
|
|
// 1. direct call
|
|
// 2. through a reachable interface type
|
|
// 3. reflect.Value.Method (or MethodByName), or reflect.Type.Method
|
|
// (or MethodByName)
|
|
//
|
|
// The first case is handled by the flood fill, a directly called method
|
|
// is marked as reachable.
|
|
//
|
|
// The second case is handled by decomposing all reachable interface
|
|
// types into method signatures. Each encountered method is compared
|
|
// against the interface method signatures, if it matches it is marked
|
|
// as reachable. This is extremely conservative, but easy and correct.
|
|
//
|
|
// The third case is handled by looking to see if any of:
|
|
// - reflect.Value.Method or MethodByName is reachable
|
|
// - reflect.Type.Method or MethodByName is called (through the
|
|
// REFLECTMETHOD attribute marked by the compiler).
|
|
// If any of these happen, all bets are off and all exported methods
|
|
// of reachable types are marked reachable.
|
|
//
|
|
// Any unreached text symbols are removed from ctxt.Textp.
|
|
func deadcode(ctxt *Link) {
|
|
ldr := ctxt.loader
|
|
d := deadcodePass{ctxt: ctxt, ldr: ldr}
|
|
d.init()
|
|
d.flood()
|
|
|
|
methSym := ldr.Lookup("reflect.Value.Method", sym.SymVerABIInternal)
|
|
methByNameSym := ldr.Lookup("reflect.Value.MethodByName", sym.SymVerABIInternal)
|
|
|
|
if ctxt.DynlinkingGo() {
|
|
// Exported methods may satisfy interfaces we don't know
|
|
// about yet when dynamically linking.
|
|
d.reflectSeen = true
|
|
}
|
|
|
|
for {
|
|
// Methods might be called via reflection. Give up on
|
|
// static analysis, mark all exported methods of
|
|
// all reachable types as reachable.
|
|
d.reflectSeen = d.reflectSeen || (methSym != 0 && ldr.AttrReachable(methSym)) || (methByNameSym != 0 && ldr.AttrReachable(methByNameSym))
|
|
|
|
// Mark all methods that could satisfy a discovered
|
|
// interface as reachable. We recheck old marked interfaces
|
|
// as new types (with new methods) may have been discovered
|
|
// in the last pass.
|
|
rem := d.markableMethods[:0]
|
|
for _, m := range d.markableMethods {
|
|
if (d.reflectSeen && m.isExported()) || d.ifaceMethod[m.m] {
|
|
d.markMethod(m)
|
|
} else {
|
|
rem = append(rem, m)
|
|
}
|
|
}
|
|
d.markableMethods = rem
|
|
|
|
if d.wq.empty() {
|
|
// No new work was discovered. Done.
|
|
break
|
|
}
|
|
d.flood()
|
|
}
|
|
}
|
|
|
|
// methodsig is a typed method signature (name + type).
|
|
type methodsig struct {
|
|
name string
|
|
typ loader.Sym // type descriptor symbol of the function
|
|
}
|
|
|
|
// methodref holds the relocations from a receiver type symbol to its
|
|
// method. There are three relocations, one for each of the fields in
|
|
// the reflect.method struct: mtyp, ifn, and tfn.
|
|
type methodref struct {
|
|
m methodsig
|
|
src loader.Sym // receiver type symbol
|
|
r int // the index of R_METHODOFF relocations
|
|
}
|
|
|
|
func (m methodref) isExported() bool {
|
|
for _, r := range m.m.name {
|
|
return unicode.IsUpper(r)
|
|
}
|
|
panic("methodref has no signature")
|
|
}
|
|
|
|
// decodeMethodSig decodes an array of method signature information.
|
|
// Each element of the array is size bytes. The first 4 bytes is a
|
|
// nameOff for the method name, and the next 4 bytes is a typeOff for
|
|
// the function type.
|
|
//
|
|
// Conveniently this is the layout of both runtime.method and runtime.imethod.
|
|
func (d *deadcodePass) decodeMethodSig(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, relocs *loader.Relocs, off, size, count int) []methodsig {
|
|
if cap(d.methodsigstmp) < count {
|
|
d.methodsigstmp = append(d.methodsigstmp[:0], make([]methodsig, count)...)
|
|
}
|
|
var methods = d.methodsigstmp[:count]
|
|
for i := 0; i < count; i++ {
|
|
methods[i].name = decodetypeName(ldr, symIdx, relocs, off)
|
|
methods[i].typ = decodeRelocSym(ldr, symIdx, relocs, int32(off+4))
|
|
off += size
|
|
}
|
|
return methods
|
|
}
|
|
|
|
// Decode the method of interface type symbol symIdx at offset off.
|
|
func (d *deadcodePass) decodeIfaceMethod(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, off int64) methodsig {
|
|
p := ldr.Data(symIdx)
|
|
if decodetypeKind(arch, p)&kindMask != kindInterface {
|
|
panic(fmt.Sprintf("symbol %q is not an interface", ldr.SymName(symIdx)))
|
|
}
|
|
relocs := ldr.Relocs(symIdx)
|
|
var m methodsig
|
|
m.name = decodetypeName(ldr, symIdx, &relocs, int(off))
|
|
m.typ = decodeRelocSym(ldr, symIdx, &relocs, int32(off+4))
|
|
return m
|
|
}
|
|
|
|
func (d *deadcodePass) decodetypeMethods(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, relocs *loader.Relocs) []methodsig {
|
|
p := ldr.Data(symIdx)
|
|
if !decodetypeHasUncommon(arch, p) {
|
|
panic(fmt.Sprintf("no methods on %q", ldr.SymName(symIdx)))
|
|
}
|
|
off := commonsize(arch) // reflect.rtype
|
|
switch decodetypeKind(arch, p) & kindMask {
|
|
case kindStruct: // reflect.structType
|
|
off += 4 * arch.PtrSize
|
|
case kindPtr: // reflect.ptrType
|
|
off += arch.PtrSize
|
|
case kindFunc: // reflect.funcType
|
|
off += arch.PtrSize // 4 bytes, pointer aligned
|
|
case kindSlice: // reflect.sliceType
|
|
off += arch.PtrSize
|
|
case kindArray: // reflect.arrayType
|
|
off += 3 * arch.PtrSize
|
|
case kindChan: // reflect.chanType
|
|
off += 2 * arch.PtrSize
|
|
case kindMap: // reflect.mapType
|
|
off += 4*arch.PtrSize + 8
|
|
case kindInterface: // reflect.interfaceType
|
|
off += 3 * arch.PtrSize
|
|
default:
|
|
// just Sizeof(rtype)
|
|
}
|
|
|
|
mcount := int(decodeInuxi(arch, p[off+4:], 2))
|
|
moff := int(decodeInuxi(arch, p[off+4+2+2:], 4))
|
|
off += moff // offset to array of reflect.method values
|
|
const sizeofMethod = 4 * 4 // sizeof reflect.method in program
|
|
return d.decodeMethodSig(ldr, arch, symIdx, relocs, off, sizeofMethod, mcount)
|
|
}
|