go/src/cmd/compile/internal/gc/swt.go
Russ Cox 6f27d29be0 [dev.regabi] cmd/compile: remove ir.Nod [generated]
Rewrite all uses of ir.Nod and friends to call the IR constructors directly.
This gives the results a more specific type and will play nicely with
introduction of more specific types throughout the code in a followup CL.

Passes buildall w/ toolstash -cmp.

[git-generate]
cd src/cmd/compile/internal/gc
rf '
ex . ../ir {
	import "cmd/compile/internal/ir"
	import "cmd/compile/internal/types"
	import "cmd/compile/internal/syntax"
	import "cmd/internal/src"

	var p *noder
	var orig syntax.Node
	var op ir.Op
	var l, r ir.Node
	var sym *types.Sym
	p.nod(orig, op, l, r) -> ir.NodAt(p.pos(orig), op, l, r)
	p.nodSym(orig, op, l, sym) -> nodlSym(p.pos(orig), op, l, sym)

	var xpos src.XPos
	var ns ir.Nodes
	npos(xpos, nodSym(op, l, sym)) -> nodlSym(xpos, op, l, sym)
	npos(xpos, liststmt(ns)) -> ir.NewBlockStmt(xpos, ns)
}
ex . ../ir {
	import "cmd/compile/internal/base"
	import "cmd/compile/internal/ir"
	import "cmd/compile/internal/types"

	var op ir.Op
	var l, r ir.Node
	ir.Nod(op, l, r) -> ir.NodAt(base.Pos, op, l, r)

	var sym *types.Sym
	nodSym(op, l, sym) -> nodlSym(base.Pos, op, l, sym)
}
ex . ../ir {
	import "cmd/compile/internal/ir"
	import "cmd/internal/src"

	# rf overlapping match handling is not quite good enough
	# for certain nested rewrites, so handle these two - which often contain other ir.NodAt calls - early.
	var l, r ir.Node
	var xpos src.XPos
	ir.NodAt(xpos, ir.OAS, l, r)              -> ir.NewAssignStmt(xpos, l, r)
	ir.NodAt(xpos, ir.OIF, l, nil)            -> ir.NewIfStmt(xpos, l, nil, nil)
}
ex . ../ir {
	import "cmd/compile/internal/ir"
	import "cmd/compile/internal/types"
	import "cmd/internal/src"

	var l, r ir.Node
	var sym *types.Sym
	var xpos src.XPos

	nodlSym(xpos, ir.ODOT, l, sym)                   -> ir.NewSelectorExpr(xpos, ir.ODOT, l, sym)
	nodlSym(xpos, ir.OXDOT, l, sym)                  -> ir.NewSelectorExpr(xpos, ir.OXDOT, l, sym)
	nodlSym(xpos, ir.ODOTPTR, l, sym)                -> ir.NewSelectorExpr(xpos, ir.ODOTPTR, l, sym)
	nodlSym(xpos, ir.OGOTO, nil, sym)                -> ir.NewBranchStmt(xpos, ir.OGOTO, sym)
	nodlSym(xpos, ir.ORETJMP, nil, sym)              -> ir.NewBranchStmt(xpos, ir.ORETJMP, sym)
	nodlSym(xpos, ir.OLABEL, nil, sym)               -> ir.NewLabelStmt(xpos, sym)
	nodlSym(xpos, ir.OSTRUCTKEY, l, sym)             -> ir.NewStructKeyExpr(xpos, sym, l)

	ir.NodAt(xpos, ir.OADD, l, r)             -> ir.NewBinaryExpr(xpos, ir.OADD, l, r)
	ir.NodAt(xpos, ir.OAND, l, r)             -> ir.NewBinaryExpr(xpos, ir.OAND, l, r)
	ir.NodAt(xpos, ir.OANDNOT, l, r)          -> ir.NewBinaryExpr(xpos, ir.OANDNOT, l, r)
	ir.NodAt(xpos, ir.ODIV, l, r)             -> ir.NewBinaryExpr(xpos, ir.ODIV, l, r)
	ir.NodAt(xpos, ir.OEQ, l, r)              -> ir.NewBinaryExpr(xpos, ir.OEQ, l, r)
	ir.NodAt(xpos, ir.OGE, l, r)              -> ir.NewBinaryExpr(xpos, ir.OGE, l, r)
	ir.NodAt(xpos, ir.OGT, l, r)              -> ir.NewBinaryExpr(xpos, ir.OGT, l, r)
	ir.NodAt(xpos, ir.OLE, l, r)              -> ir.NewBinaryExpr(xpos, ir.OLE, l, r)
	ir.NodAt(xpos, ir.OLSH, l, r)             -> ir.NewBinaryExpr(xpos, ir.OLSH, l, r)
	ir.NodAt(xpos, ir.OLT, l, r)              -> ir.NewBinaryExpr(xpos, ir.OLT, l, r)
	ir.NodAt(xpos, ir.OMOD, l, r)             -> ir.NewBinaryExpr(xpos, ir.OMOD, l, r)
	ir.NodAt(xpos, ir.OMUL, l, r)             -> ir.NewBinaryExpr(xpos, ir.OMUL, l, r)
	ir.NodAt(xpos, ir.ONE, l, r)              -> ir.NewBinaryExpr(xpos, ir.ONE, l, r)
	ir.NodAt(xpos, ir.OOR, l, r)              -> ir.NewBinaryExpr(xpos, ir.OOR, l, r)
	ir.NodAt(xpos, ir.ORSH, l, r)             -> ir.NewBinaryExpr(xpos, ir.ORSH, l, r)
	ir.NodAt(xpos, ir.OSUB, l, r)             -> ir.NewBinaryExpr(xpos, ir.OSUB, l, r)
	ir.NodAt(xpos, ir.OXOR, l, r)             -> ir.NewBinaryExpr(xpos, ir.OXOR, l, r)
	ir.NodAt(xpos, ir.OCOPY, l, r)            -> ir.NewBinaryExpr(xpos, ir.OCOPY, l, r)
	ir.NodAt(xpos, ir.OCOMPLEX, l, r)         -> ir.NewBinaryExpr(xpos, ir.OCOMPLEX, l, r)
	ir.NodAt(xpos, ir.OEFACE, l, r)           -> ir.NewBinaryExpr(xpos, ir.OEFACE, l, r)
	ir.NodAt(xpos, ir.OADDR, l, nil)          -> ir.NewAddrExpr(xpos, l)
	ir.NodAt(xpos, ir.OADDSTR, nil, nil)      -> ir.NewAddStringExpr(xpos, nil)
	ir.NodAt(xpos, ir.OANDAND, l, r)          -> ir.NewLogicalExpr(xpos, ir.OANDAND, l, r)
	ir.NodAt(xpos, ir.OOROR, l, r)            -> ir.NewLogicalExpr(xpos, ir.OOROR, l, r)
	ir.NodAt(xpos, ir.OARRAYLIT, nil, nil)    -> ir.NewCompLitExpr(xpos, ir.OARRAYLIT, nil, nil)
	ir.NodAt(xpos, ir.OCOMPLIT, nil, nil)     -> ir.NewCompLitExpr(xpos, ir.OCOMPLIT, nil, nil)
	ir.NodAt(xpos, ir.OMAPLIT, nil, nil)      -> ir.NewCompLitExpr(xpos, ir.OMAPLIT, nil, nil)
	ir.NodAt(xpos, ir.OSTRUCTLIT, nil, nil)   -> ir.NewCompLitExpr(xpos, ir.OSTRUCTLIT, nil, nil)
	ir.NodAt(xpos, ir.OSLICELIT, nil, nil)    -> ir.NewCompLitExpr(xpos, ir.OSLICELIT, nil, nil)
	ir.NodAt(xpos, ir.OARRAYLIT, nil, r)      -> ir.NewCompLitExpr(xpos, ir.OARRAYLIT, r.(ir.Ntype), nil)
	ir.NodAt(xpos, ir.OCOMPLIT, nil, r)       -> ir.NewCompLitExpr(xpos, ir.OCOMPLIT, r.(ir.Ntype), nil)
	ir.NodAt(xpos, ir.OMAPLIT, nil, r)        -> ir.NewCompLitExpr(xpos, ir.OMAPLIT, r.(ir.Ntype), nil)
	ir.NodAt(xpos, ir.OSTRUCTLIT, nil, r)     -> ir.NewCompLitExpr(xpos, ir.OSTRUCTLIT, r.(ir.Ntype), nil)
	ir.NodAt(xpos, ir.OSLICELIT, nil, r)      -> ir.NewCompLitExpr(xpos, ir.OSLICELIT, r.(ir.Ntype), nil)
	ir.NodAt(xpos, ir.OAS2, nil, nil)         -> ir.NewAssignListStmt(xpos, ir.OAS2, nil, nil)
	ir.NodAt(xpos, ir.OAS2DOTTYPE, nil, nil)  -> ir.NewAssignListStmt(xpos, ir.OAS2DOTTYPE, nil, nil)
	ir.NodAt(xpos, ir.OAS2FUNC, nil, nil)     -> ir.NewAssignListStmt(xpos, ir.OAS2FUNC, nil, nil)
	ir.NodAt(xpos, ir.OAS2MAPR, nil, nil)     -> ir.NewAssignListStmt(xpos, ir.OAS2MAPR, nil, nil)
	ir.NodAt(xpos, ir.OAS2RECV, nil, nil)     -> ir.NewAssignListStmt(xpos, ir.OAS2RECV, nil, nil)
	ir.NodAt(xpos, ir.OSELRECV2, nil, nil)    -> ir.NewAssignListStmt(xpos, ir.OSELRECV2, nil, nil)
	ir.NodAt(xpos, ir.OASOP, l, r)            -> ir.NewAssignOpStmt(xpos, ir.OXXX, l, r)
	ir.NodAt(xpos, ir.OBITNOT, l, nil)        -> ir.NewUnaryExpr(xpos, ir.OBITNOT, l)
	ir.NodAt(xpos, ir.ONEG, l, nil)           -> ir.NewUnaryExpr(xpos, ir.ONEG, l)
	ir.NodAt(xpos, ir.ONOT, l, nil)           -> ir.NewUnaryExpr(xpos, ir.ONOT, l)
	ir.NodAt(xpos, ir.OPLUS, l, nil)          -> ir.NewUnaryExpr(xpos, ir.OPLUS, l)
	ir.NodAt(xpos, ir.ORECV, l, nil)          -> ir.NewUnaryExpr(xpos, ir.ORECV, l)
	ir.NodAt(xpos, ir.OALIGNOF, l, nil)       -> ir.NewUnaryExpr(xpos, ir.OALIGNOF, l)
	ir.NodAt(xpos, ir.OCAP, l, nil)           -> ir.NewUnaryExpr(xpos, ir.OCAP, l)
	ir.NodAt(xpos, ir.OCLOSE, l, nil)         -> ir.NewUnaryExpr(xpos, ir.OCLOSE, l)
	ir.NodAt(xpos, ir.OIMAG, l, nil)          -> ir.NewUnaryExpr(xpos, ir.OIMAG, l)
	ir.NodAt(xpos, ir.OLEN, l, nil)           -> ir.NewUnaryExpr(xpos, ir.OLEN, l)
	ir.NodAt(xpos, ir.ONEW, l, nil)           -> ir.NewUnaryExpr(xpos, ir.ONEW, l)
	ir.NodAt(xpos, ir.ONEWOBJ, l, nil)        -> ir.NewUnaryExpr(xpos, ir.ONEWOBJ, l)
	ir.NodAt(xpos, ir.OOFFSETOF, l, nil)      -> ir.NewUnaryExpr(xpos, ir.OOFFSETOF, l)
	ir.NodAt(xpos, ir.OPANIC, l, nil)         -> ir.NewUnaryExpr(xpos, ir.OPANIC, l)
	ir.NodAt(xpos, ir.OREAL, l, nil)          -> ir.NewUnaryExpr(xpos, ir.OREAL, l)
	ir.NodAt(xpos, ir.OSIZEOF, l, nil)        -> ir.NewUnaryExpr(xpos, ir.OSIZEOF, l)
	ir.NodAt(xpos, ir.OCHECKNIL, l, nil)      -> ir.NewUnaryExpr(xpos, ir.OCHECKNIL, l)
	ir.NodAt(xpos, ir.OCFUNC, l, nil)         -> ir.NewUnaryExpr(xpos, ir.OCFUNC, l)
	ir.NodAt(xpos, ir.OIDATA, l, nil)         -> ir.NewUnaryExpr(xpos, ir.OIDATA, l)
	ir.NodAt(xpos, ir.OITAB, l, nil)          -> ir.NewUnaryExpr(xpos, ir.OITAB, l)
	ir.NodAt(xpos, ir.OSPTR, l, nil)          -> ir.NewUnaryExpr(xpos, ir.OSPTR, l)
	ir.NodAt(xpos, ir.OVARDEF, l, nil)        -> ir.NewUnaryExpr(xpos, ir.OVARDEF, l)
	ir.NodAt(xpos, ir.OVARKILL, l, nil)       -> ir.NewUnaryExpr(xpos, ir.OVARKILL, l)
	ir.NodAt(xpos, ir.OVARLIVE, l, nil)       -> ir.NewUnaryExpr(xpos, ir.OVARLIVE, l)
	ir.NodAt(xpos, ir.OBLOCK, nil, nil)       -> ir.NewBlockStmt(xpos, nil)
	ir.NodAt(xpos, ir.OBREAK, nil, nil)       -> ir.NewBranchStmt(xpos, ir.OBREAK, nil)
	ir.NodAt(xpos, ir.OCONTINUE, nil, nil)    -> ir.NewBranchStmt(xpos, ir.OCONTINUE, nil)
	ir.NodAt(xpos, ir.OFALL, nil, nil)        -> ir.NewBranchStmt(xpos, ir.OFALL, nil)
	ir.NodAt(xpos, ir.OGOTO, nil, nil)        -> ir.NewBranchStmt(xpos, ir.OGOTO, nil)
	ir.NodAt(xpos, ir.ORETJMP, nil, nil)      -> ir.NewBranchStmt(xpos, ir.ORETJMP, nil)
	ir.NodAt(xpos, ir.OCALL, l, nil)          -> ir.NewCallExpr(xpos, ir.OCALL, l, nil)
	ir.NodAt(xpos, ir.OCALLFUNC, l, nil)      -> ir.NewCallExpr(xpos, ir.OCALLFUNC, l, nil)
	ir.NodAt(xpos, ir.OCALLINTER, l, nil)     -> ir.NewCallExpr(xpos, ir.OCALLINTER, l, nil)
	ir.NodAt(xpos, ir.OCALLMETH, l, nil)      -> ir.NewCallExpr(xpos, ir.OCALLMETH, l, nil)
	ir.NodAt(xpos, ir.OAPPEND, l, nil)        -> ir.NewCallExpr(xpos, ir.OAPPEND, l, nil)
	ir.NodAt(xpos, ir.ODELETE, l, nil)        -> ir.NewCallExpr(xpos, ir.ODELETE, l, nil)
	ir.NodAt(xpos, ir.OGETG, l, nil)          -> ir.NewCallExpr(xpos, ir.OGETG, l, nil)
	ir.NodAt(xpos, ir.OMAKE, l, nil)          -> ir.NewCallExpr(xpos, ir.OMAKE, l, nil)
	ir.NodAt(xpos, ir.OPRINT, l, nil)         -> ir.NewCallExpr(xpos, ir.OPRINT, l, nil)
	ir.NodAt(xpos, ir.OPRINTN, l, nil)        -> ir.NewCallExpr(xpos, ir.OPRINTN, l, nil)
	ir.NodAt(xpos, ir.ORECOVER, l, nil)       -> ir.NewCallExpr(xpos, ir.ORECOVER, l, nil)
	ir.NodAt(xpos, ir.OCASE, nil, nil)        -> ir.NewCaseStmt(xpos, nil, nil)
	ir.NodAt(xpos, ir.OCONV, l, nil)          -> ir.NewConvExpr(xpos, ir.OCONV, nil, l)
	ir.NodAt(xpos, ir.OCONVIFACE, l, nil)     -> ir.NewConvExpr(xpos, ir.OCONVIFACE, nil, l)
	ir.NodAt(xpos, ir.OCONVNOP, l, nil)       -> ir.NewConvExpr(xpos, ir.OCONVNOP, nil, l)
	ir.NodAt(xpos, ir.ORUNESTR, l, nil)       -> ir.NewConvExpr(xpos, ir.ORUNESTR, nil, l)
	ir.NodAt(xpos, ir.ODCL, l, nil)           -> ir.NewDecl(xpos, ir.ODCL, l)
	ir.NodAt(xpos, ir.ODCLCONST, l, nil)      -> ir.NewDecl(xpos, ir.ODCLCONST, l)
	ir.NodAt(xpos, ir.ODCLTYPE, l, nil)       -> ir.NewDecl(xpos, ir.ODCLTYPE, l)
	ir.NodAt(xpos, ir.ODCLFUNC, nil, nil)     -> ir.NewFunc(xpos)
	ir.NodAt(xpos, ir.ODEFER, l, nil)         -> ir.NewGoDeferStmt(xpos, ir.ODEFER, l)
	ir.NodAt(xpos, ir.OGO, l, nil)            -> ir.NewGoDeferStmt(xpos, ir.OGO, l)
	ir.NodAt(xpos, ir.ODEREF, l, nil)         -> ir.NewStarExpr(xpos, l)
	ir.NodAt(xpos, ir.ODOT, l, nil)           -> ir.NewSelectorExpr(xpos, ir.ODOT, l, nil)
	ir.NodAt(xpos, ir.ODOTPTR, l, nil)        -> ir.NewSelectorExpr(xpos, ir.ODOTPTR, l, nil)
	ir.NodAt(xpos, ir.ODOTMETH, l, nil)       -> ir.NewSelectorExpr(xpos, ir.ODOTMETH, l, nil)
	ir.NodAt(xpos, ir.ODOTINTER, l, nil)      -> ir.NewSelectorExpr(xpos, ir.ODOTINTER, l, nil)
	ir.NodAt(xpos, ir.OXDOT, l, nil)          -> ir.NewSelectorExpr(xpos, ir.OXDOT, l, nil)
	ir.NodAt(xpos, ir.ODOTTYPE, l, nil)       -> ir.NewTypeAssertExpr(xpos, l, nil)
	ir.NodAt(xpos, ir.ODOTTYPE, l, r)         -> ir.NewTypeAssertExpr(xpos, l, r.(ir.Ntype))
	ir.NodAt(xpos, ir.OFOR, l, r)             -> ir.NewForStmt(xpos, nil, l, r, nil)
	ir.NodAt(xpos, ir.OINDEX, l, r)           -> ir.NewIndexExpr(xpos, l, r)
	ir.NodAt(xpos, ir.OINLMARK, nil, nil)     -> ir.NewInlineMarkStmt(xpos, types.BADWIDTH)
	ir.NodAt(xpos, ir.OKEY, l, r)             -> ir.NewKeyExpr(xpos, l, r)
	ir.NodAt(xpos, ir.OLABEL, nil, nil)       -> ir.NewLabelStmt(xpos, nil)
	ir.NodAt(xpos, ir.OMAKECHAN, l, r)        -> ir.NewMakeExpr(xpos, ir.OMAKECHAN, l, r)
	ir.NodAt(xpos, ir.OMAKEMAP, l, r)         -> ir.NewMakeExpr(xpos, ir.OMAKEMAP, l, r)
	ir.NodAt(xpos, ir.OMAKESLICE, l, r)       -> ir.NewMakeExpr(xpos, ir.OMAKESLICE, l, r)
	ir.NodAt(xpos, ir.OMAKESLICECOPY, l, r)   -> ir.NewMakeExpr(xpos, ir.OMAKESLICECOPY, l, r)
	ir.NodAt(xpos, ir.ONIL, nil, nil)         -> ir.NewNilExpr(xpos)
	ir.NodAt(xpos, ir.OPACK, nil, nil)        -> ir.NewPkgName(xpos, nil, nil)
	ir.NodAt(xpos, ir.OPAREN, l, nil)         -> ir.NewParenExpr(xpos, l)
	ir.NodAt(xpos, ir.ORANGE, nil, r)         -> ir.NewRangeStmt(xpos, nil, r, nil)
	ir.NodAt(xpos, ir.ORESULT, nil, nil)      -> ir.NewResultExpr(xpos, nil, types.BADWIDTH)
	ir.NodAt(xpos, ir.ORETURN, nil, nil)      -> ir.NewReturnStmt(xpos, nil)
	ir.NodAt(xpos, ir.OSELECT, nil, nil)      -> ir.NewSelectStmt(xpos, nil)
	ir.NodAt(xpos, ir.OSEND, l, r)            -> ir.NewSendStmt(xpos, l, r)
	ir.NodAt(xpos, ir.OSLICE, l, nil)         -> ir.NewSliceExpr(xpos, ir.OSLICE, l)
	ir.NodAt(xpos, ir.OSLICEARR, l, nil)      -> ir.NewSliceExpr(xpos, ir.OSLICEARR, l)
	ir.NodAt(xpos, ir.OSLICESTR, l, nil)      -> ir.NewSliceExpr(xpos, ir.OSLICESTR, l)
	ir.NodAt(xpos, ir.OSLICE3, l, nil)        -> ir.NewSliceExpr(xpos, ir.OSLICE3, l)
	ir.NodAt(xpos, ir.OSLICE3ARR, l, nil)     -> ir.NewSliceExpr(xpos, ir.OSLICE3ARR, l)
	ir.NodAt(xpos, ir.OSLICEHEADER, l, nil)   -> ir.NewSliceHeaderExpr(xpos, nil, l, nil, nil)
	ir.NodAt(xpos, ir.OSWITCH, l, nil)        -> ir.NewSwitchStmt(xpos, l, nil)
	ir.NodAt(xpos, ir.OINLCALL, nil, nil)     -> ir.NewInlinedCallExpr(xpos, nil, nil)
}

rm noder.nod noder.nodSym nodSym nodlSym ir.NodAt ir.Nod
'

Change-Id: Ibf1eb708de8463ae74ccc47d7966cc263a18295e
Reviewed-on: https://go-review.googlesource.com/c/go/+/277933
Trust: Russ Cox <rsc@golang.org>
Run-TryBot: Russ Cox <rsc@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 06:37:28 +00:00

762 lines
20 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/types"
"cmd/internal/src"
"go/constant"
"go/token"
"sort"
)
// typecheckswitch typechecks a switch statement.
func typecheckswitch(n *ir.SwitchStmt) {
typecheckslice(n.Init().Slice(), ctxStmt)
if n.Left() != nil && n.Left().Op() == ir.OTYPESW {
typecheckTypeSwitch(n)
} else {
typecheckExprSwitch(n)
}
}
func typecheckTypeSwitch(n *ir.SwitchStmt) {
guard := n.Left().(*ir.TypeSwitchGuard)
guard.SetRight(typecheck(guard.Right(), ctxExpr))
t := guard.Right().Type()
if t != nil && !t.IsInterface() {
base.ErrorfAt(n.Pos(), "cannot type switch on non-interface value %L", guard.Right())
t = nil
}
// We don't actually declare the type switch's guarded
// declaration itself. So if there are no cases, we won't
// notice that it went unused.
if v := guard.Left(); v != nil && !ir.IsBlank(v) && n.List().Len() == 0 {
base.ErrorfAt(v.Pos(), "%v declared but not used", v.Sym())
}
var defCase, nilCase ir.Node
var ts typeSet
for _, ncase := range n.List().Slice() {
ncase := ncase.(*ir.CaseStmt)
ls := ncase.List().Slice()
if len(ls) == 0 { // default:
if defCase != nil {
base.ErrorfAt(ncase.Pos(), "multiple defaults in switch (first at %v)", ir.Line(defCase))
} else {
defCase = ncase
}
}
for i := range ls {
ls[i] = typecheck(ls[i], ctxExpr|ctxType)
n1 := ls[i]
if t == nil || n1.Type() == nil {
continue
}
var missing, have *types.Field
var ptr int
if ir.IsNil(n1) { // case nil:
if nilCase != nil {
base.ErrorfAt(ncase.Pos(), "multiple nil cases in type switch (first at %v)", ir.Line(nilCase))
} else {
nilCase = ncase
}
continue
}
if n1.Op() != ir.OTYPE {
base.ErrorfAt(ncase.Pos(), "%L is not a type", n1)
continue
}
if !n1.Type().IsInterface() && !implements(n1.Type(), t, &missing, &have, &ptr) && !missing.Broke() {
if have != nil && !have.Broke() {
base.ErrorfAt(ncase.Pos(), "impossible type switch case: %L cannot have dynamic type %v"+
" (wrong type for %v method)\n\thave %v%S\n\twant %v%S", guard.Right(), n1.Type(), missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
} else if ptr != 0 {
base.ErrorfAt(ncase.Pos(), "impossible type switch case: %L cannot have dynamic type %v"+
" (%v method has pointer receiver)", guard.Right(), n1.Type(), missing.Sym)
} else {
base.ErrorfAt(ncase.Pos(), "impossible type switch case: %L cannot have dynamic type %v"+
" (missing %v method)", guard.Right(), n1.Type(), missing.Sym)
}
continue
}
ts.add(ncase.Pos(), n1.Type())
}
if ncase.Rlist().Len() != 0 {
// Assign the clause variable's type.
vt := t
if len(ls) == 1 {
if ls[0].Op() == ir.OTYPE {
vt = ls[0].Type()
} else if !ir.IsNil(ls[0]) {
// Invalid single-type case;
// mark variable as broken.
vt = nil
}
}
nvar := ncase.Rlist().First()
nvar.SetType(vt)
if vt != nil {
nvar = typecheck(nvar, ctxExpr|ctxAssign)
} else {
// Clause variable is broken; prevent typechecking.
nvar.SetTypecheck(1)
nvar.SetWalkdef(1)
}
ncase.Rlist().SetFirst(nvar)
}
typecheckslice(ncase.Body().Slice(), ctxStmt)
}
}
type typeSet struct {
m map[string][]typeSetEntry
}
type typeSetEntry struct {
pos src.XPos
typ *types.Type
}
func (s *typeSet) add(pos src.XPos, typ *types.Type) {
if s.m == nil {
s.m = make(map[string][]typeSetEntry)
}
// LongString does not uniquely identify types, so we need to
// disambiguate collisions with types.Identical.
// TODO(mdempsky): Add a method that *is* unique.
ls := typ.LongString()
prevs := s.m[ls]
for _, prev := range prevs {
if types.Identical(typ, prev.typ) {
base.ErrorfAt(pos, "duplicate case %v in type switch\n\tprevious case at %s", typ, base.FmtPos(prev.pos))
return
}
}
s.m[ls] = append(prevs, typeSetEntry{pos, typ})
}
func typecheckExprSwitch(n *ir.SwitchStmt) {
t := types.Types[types.TBOOL]
if n.Left() != nil {
n.SetLeft(typecheck(n.Left(), ctxExpr))
n.SetLeft(defaultlit(n.Left(), nil))
t = n.Left().Type()
}
var nilonly string
if t != nil {
switch {
case t.IsMap():
nilonly = "map"
case t.Kind() == types.TFUNC:
nilonly = "func"
case t.IsSlice():
nilonly = "slice"
case !IsComparable(t):
if t.IsStruct() {
base.ErrorfAt(n.Pos(), "cannot switch on %L (struct containing %v cannot be compared)", n.Left(), IncomparableField(t).Type)
} else {
base.ErrorfAt(n.Pos(), "cannot switch on %L", n.Left())
}
t = nil
}
}
var defCase ir.Node
var cs constSet
for _, ncase := range n.List().Slice() {
ncase := ncase.(*ir.CaseStmt)
ls := ncase.List().Slice()
if len(ls) == 0 { // default:
if defCase != nil {
base.ErrorfAt(ncase.Pos(), "multiple defaults in switch (first at %v)", ir.Line(defCase))
} else {
defCase = ncase
}
}
for i := range ls {
setlineno(ncase)
ls[i] = typecheck(ls[i], ctxExpr)
ls[i] = defaultlit(ls[i], t)
n1 := ls[i]
if t == nil || n1.Type() == nil {
continue
}
if nilonly != "" && !ir.IsNil(n1) {
base.ErrorfAt(ncase.Pos(), "invalid case %v in switch (can only compare %s %v to nil)", n1, nilonly, n.Left())
} else if t.IsInterface() && !n1.Type().IsInterface() && !IsComparable(n1.Type()) {
base.ErrorfAt(ncase.Pos(), "invalid case %L in switch (incomparable type)", n1)
} else {
op1, _ := assignop(n1.Type(), t)
op2, _ := assignop(t, n1.Type())
if op1 == ir.OXXX && op2 == ir.OXXX {
if n.Left() != nil {
base.ErrorfAt(ncase.Pos(), "invalid case %v in switch on %v (mismatched types %v and %v)", n1, n.Left(), n1.Type(), t)
} else {
base.ErrorfAt(ncase.Pos(), "invalid case %v in switch (mismatched types %v and bool)", n1, n1.Type())
}
}
}
// Don't check for duplicate bools. Although the spec allows it,
// (1) the compiler hasn't checked it in the past, so compatibility mandates it, and
// (2) it would disallow useful things like
// case GOARCH == "arm" && GOARM == "5":
// case GOARCH == "arm":
// which would both evaluate to false for non-ARM compiles.
if !n1.Type().IsBoolean() {
cs.add(ncase.Pos(), n1, "case", "switch")
}
}
typecheckslice(ncase.Body().Slice(), ctxStmt)
}
}
// walkswitch walks a switch statement.
func walkswitch(sw *ir.SwitchStmt) {
// Guard against double walk, see #25776.
if sw.List().Len() == 0 && sw.Body().Len() > 0 {
return // Was fatal, but eliminating every possible source of double-walking is hard
}
if sw.Left() != nil && sw.Left().Op() == ir.OTYPESW {
walkTypeSwitch(sw)
} else {
walkExprSwitch(sw)
}
}
// walkExprSwitch generates an AST implementing sw. sw is an
// expression switch.
func walkExprSwitch(sw *ir.SwitchStmt) {
lno := setlineno(sw)
cond := sw.Left()
sw.SetLeft(nil)
// convert switch {...} to switch true {...}
if cond == nil {
cond = nodbool(true)
cond = typecheck(cond, ctxExpr)
cond = defaultlit(cond, nil)
}
// Given "switch string(byteslice)",
// with all cases being side-effect free,
// use a zero-cost alias of the byte slice.
// Do this before calling walkexpr on cond,
// because walkexpr will lower the string
// conversion into a runtime call.
// See issue 24937 for more discussion.
if cond.Op() == ir.OBYTES2STR && allCaseExprsAreSideEffectFree(sw) {
cond.SetOp(ir.OBYTES2STRTMP)
}
cond = walkexpr(cond, sw.PtrInit())
if cond.Op() != ir.OLITERAL && cond.Op() != ir.ONIL {
cond = copyexpr(cond, cond.Type(), sw.PtrBody())
}
base.Pos = lno
s := exprSwitch{
exprname: cond,
}
var defaultGoto ir.Node
var body ir.Nodes
for _, ncase := range sw.List().Slice() {
ncase := ncase.(*ir.CaseStmt)
label := autolabel(".s")
jmp := ir.NewBranchStmt(ncase.Pos(), ir.OGOTO, label)
// Process case dispatch.
if ncase.List().Len() == 0 {
if defaultGoto != nil {
base.Fatalf("duplicate default case not detected during typechecking")
}
defaultGoto = jmp
}
for _, n1 := range ncase.List().Slice() {
s.Add(ncase.Pos(), n1, jmp)
}
// Process body.
body.Append(ir.NewLabelStmt(ncase.Pos(), label))
body.Append(ncase.Body().Slice()...)
if fall, pos := endsInFallthrough(ncase.Body().Slice()); !fall {
br := ir.NewBranchStmt(base.Pos, ir.OBREAK, nil)
br.SetPos(pos)
body.Append(br)
}
}
sw.PtrList().Set(nil)
if defaultGoto == nil {
br := ir.NewBranchStmt(base.Pos, ir.OBREAK, nil)
br.SetPos(br.Pos().WithNotStmt())
defaultGoto = br
}
s.Emit(sw.PtrBody())
sw.PtrBody().Append(defaultGoto)
sw.PtrBody().AppendNodes(&body)
walkstmtlist(sw.Body().Slice())
}
// An exprSwitch walks an expression switch.
type exprSwitch struct {
exprname ir.Node // value being switched on
done ir.Nodes
clauses []exprClause
}
type exprClause struct {
pos src.XPos
lo, hi ir.Node
jmp ir.Node
}
func (s *exprSwitch) Add(pos src.XPos, expr, jmp ir.Node) {
c := exprClause{pos: pos, lo: expr, hi: expr, jmp: jmp}
if okforcmp[s.exprname.Type().Kind()] && expr.Op() == ir.OLITERAL {
s.clauses = append(s.clauses, c)
return
}
s.flush()
s.clauses = append(s.clauses, c)
s.flush()
}
func (s *exprSwitch) Emit(out *ir.Nodes) {
s.flush()
out.AppendNodes(&s.done)
}
func (s *exprSwitch) flush() {
cc := s.clauses
s.clauses = nil
if len(cc) == 0 {
return
}
// Caution: If len(cc) == 1, then cc[0] might not an OLITERAL.
// The code below is structured to implicitly handle this case
// (e.g., sort.Slice doesn't need to invoke the less function
// when there's only a single slice element).
if s.exprname.Type().IsString() && len(cc) >= 2 {
// Sort strings by length and then by value. It is
// much cheaper to compare lengths than values, and
// all we need here is consistency. We respect this
// sorting below.
sort.Slice(cc, func(i, j int) bool {
si := ir.StringVal(cc[i].lo)
sj := ir.StringVal(cc[j].lo)
if len(si) != len(sj) {
return len(si) < len(sj)
}
return si < sj
})
// runLen returns the string length associated with a
// particular run of exprClauses.
runLen := func(run []exprClause) int64 { return int64(len(ir.StringVal(run[0].lo))) }
// Collapse runs of consecutive strings with the same length.
var runs [][]exprClause
start := 0
for i := 1; i < len(cc); i++ {
if runLen(cc[start:]) != runLen(cc[i:]) {
runs = append(runs, cc[start:i])
start = i
}
}
runs = append(runs, cc[start:])
// Perform two-level binary search.
binarySearch(len(runs), &s.done,
func(i int) ir.Node {
return ir.NewBinaryExpr(base.Pos, ir.OLE, ir.NewUnaryExpr(base.Pos, ir.OLEN, s.exprname), nodintconst(runLen(runs[i-1])))
},
func(i int, nif *ir.IfStmt) {
run := runs[i]
nif.SetLeft(ir.NewBinaryExpr(base.Pos, ir.OEQ, ir.NewUnaryExpr(base.Pos, ir.OLEN, s.exprname), nodintconst(runLen(run))))
s.search(run, nif.PtrBody())
},
)
return
}
sort.Slice(cc, func(i, j int) bool {
return constant.Compare(cc[i].lo.Val(), token.LSS, cc[j].lo.Val())
})
// Merge consecutive integer cases.
if s.exprname.Type().IsInteger() {
merged := cc[:1]
for _, c := range cc[1:] {
last := &merged[len(merged)-1]
if last.jmp == c.jmp && ir.Int64Val(last.hi)+1 == ir.Int64Val(c.lo) {
last.hi = c.lo
} else {
merged = append(merged, c)
}
}
cc = merged
}
s.search(cc, &s.done)
}
func (s *exprSwitch) search(cc []exprClause, out *ir.Nodes) {
binarySearch(len(cc), out,
func(i int) ir.Node {
return ir.NewBinaryExpr(base.Pos, ir.OLE, s.exprname, cc[i-1].hi)
},
func(i int, nif *ir.IfStmt) {
c := &cc[i]
nif.SetLeft(c.test(s.exprname))
nif.PtrBody().Set1(c.jmp)
},
)
}
func (c *exprClause) test(exprname ir.Node) ir.Node {
// Integer range.
if c.hi != c.lo {
low := ir.NewBinaryExpr(c.pos, ir.OGE, exprname, c.lo)
high := ir.NewBinaryExpr(c.pos, ir.OLE, exprname, c.hi)
return ir.NewLogicalExpr(c.pos, ir.OANDAND, low, high)
}
// Optimize "switch true { ...}" and "switch false { ... }".
if ir.IsConst(exprname, constant.Bool) && !c.lo.Type().IsInterface() {
if ir.BoolVal(exprname) {
return c.lo
} else {
return ir.NewUnaryExpr(c.pos, ir.ONOT, c.lo)
}
}
return ir.NewBinaryExpr(c.pos, ir.OEQ, exprname, c.lo)
}
func allCaseExprsAreSideEffectFree(sw *ir.SwitchStmt) bool {
// In theory, we could be more aggressive, allowing any
// side-effect-free expressions in cases, but it's a bit
// tricky because some of that information is unavailable due
// to the introduction of temporaries during order.
// Restricting to constants is simple and probably powerful
// enough.
for _, ncase := range sw.List().Slice() {
ncase := ncase.(*ir.CaseStmt)
for _, v := range ncase.List().Slice() {
if v.Op() != ir.OLITERAL {
return false
}
}
}
return true
}
// endsInFallthrough reports whether stmts ends with a "fallthrough" statement.
func endsInFallthrough(stmts []ir.Node) (bool, src.XPos) {
// Search backwards for the index of the fallthrough
// statement. Do not assume it'll be in the last
// position, since in some cases (e.g. when the statement
// list contains autotmp_ variables), one or more OVARKILL
// nodes will be at the end of the list.
i := len(stmts) - 1
for i >= 0 && stmts[i].Op() == ir.OVARKILL {
i--
}
if i < 0 {
return false, src.NoXPos
}
return stmts[i].Op() == ir.OFALL, stmts[i].Pos()
}
// walkTypeSwitch generates an AST that implements sw, where sw is a
// type switch.
func walkTypeSwitch(sw *ir.SwitchStmt) {
var s typeSwitch
s.facename = sw.Left().(*ir.TypeSwitchGuard).Right()
sw.SetLeft(nil)
s.facename = walkexpr(s.facename, sw.PtrInit())
s.facename = copyexpr(s.facename, s.facename.Type(), sw.PtrBody())
s.okname = temp(types.Types[types.TBOOL])
// Get interface descriptor word.
// For empty interfaces this will be the type.
// For non-empty interfaces this will be the itab.
itab := ir.NewUnaryExpr(base.Pos, ir.OITAB, s.facename)
// For empty interfaces, do:
// if e._type == nil {
// do nil case if it exists, otherwise default
// }
// h := e._type.hash
// Use a similar strategy for non-empty interfaces.
ifNil := ir.NewIfStmt(base.Pos, nil, nil, nil)
ifNil.SetLeft(ir.NewBinaryExpr(base.Pos, ir.OEQ, itab, nodnil()))
base.Pos = base.Pos.WithNotStmt() // disable statement marks after the first check.
ifNil.SetLeft(typecheck(ifNil.Left(), ctxExpr))
ifNil.SetLeft(defaultlit(ifNil.Left(), nil))
// ifNil.Nbody assigned at end.
sw.PtrBody().Append(ifNil)
// Load hash from type or itab.
dotHash := ir.NewSelectorExpr(base.Pos, ir.ODOTPTR, itab, nil)
dotHash.SetType(types.Types[types.TUINT32])
dotHash.SetTypecheck(1)
if s.facename.Type().IsEmptyInterface() {
dotHash.SetOffset(int64(2 * Widthptr)) // offset of hash in runtime._type
} else {
dotHash.SetOffset(int64(2 * Widthptr)) // offset of hash in runtime.itab
}
dotHash.SetBounded(true) // guaranteed not to fault
s.hashname = copyexpr(dotHash, dotHash.Type(), sw.PtrBody())
br := ir.NewBranchStmt(base.Pos, ir.OBREAK, nil)
var defaultGoto, nilGoto ir.Node
var body ir.Nodes
for _, ncase := range sw.List().Slice() {
ncase := ncase.(*ir.CaseStmt)
var caseVar ir.Node
if ncase.Rlist().Len() != 0 {
caseVar = ncase.Rlist().First()
}
// For single-type cases with an interface type,
// we initialize the case variable as part of the type assertion.
// In other cases, we initialize it in the body.
var singleType *types.Type
if ncase.List().Len() == 1 && ncase.List().First().Op() == ir.OTYPE {
singleType = ncase.List().First().Type()
}
caseVarInitialized := false
label := autolabel(".s")
jmp := ir.NewBranchStmt(ncase.Pos(), ir.OGOTO, label)
if ncase.List().Len() == 0 { // default:
if defaultGoto != nil {
base.Fatalf("duplicate default case not detected during typechecking")
}
defaultGoto = jmp
}
for _, n1 := range ncase.List().Slice() {
if ir.IsNil(n1) { // case nil:
if nilGoto != nil {
base.Fatalf("duplicate nil case not detected during typechecking")
}
nilGoto = jmp
continue
}
if singleType != nil && singleType.IsInterface() {
s.Add(ncase.Pos(), n1.Type(), caseVar, jmp)
caseVarInitialized = true
} else {
s.Add(ncase.Pos(), n1.Type(), nil, jmp)
}
}
body.Append(ir.NewLabelStmt(ncase.Pos(), label))
if caseVar != nil && !caseVarInitialized {
val := s.facename
if singleType != nil {
// We have a single concrete type. Extract the data.
if singleType.IsInterface() {
base.Fatalf("singleType interface should have been handled in Add")
}
val = ifaceData(ncase.Pos(), s.facename, singleType)
}
l := []ir.Node{
ir.NewDecl(ncase.Pos(), ir.ODCL, caseVar),
ir.NewAssignStmt(ncase.Pos(), caseVar, val),
}
typecheckslice(l, ctxStmt)
body.Append(l...)
}
body.Append(ncase.Body().Slice()...)
body.Append(br)
}
sw.PtrList().Set(nil)
if defaultGoto == nil {
defaultGoto = br
}
if nilGoto == nil {
nilGoto = defaultGoto
}
ifNil.PtrBody().Set1(nilGoto)
s.Emit(sw.PtrBody())
sw.PtrBody().Append(defaultGoto)
sw.PtrBody().AppendNodes(&body)
walkstmtlist(sw.Body().Slice())
}
// A typeSwitch walks a type switch.
type typeSwitch struct {
// Temporary variables (i.e., ONAMEs) used by type switch dispatch logic:
facename ir.Node // value being type-switched on
hashname ir.Node // type hash of the value being type-switched on
okname ir.Node // boolean used for comma-ok type assertions
done ir.Nodes
clauses []typeClause
}
type typeClause struct {
hash uint32
body ir.Nodes
}
func (s *typeSwitch) Add(pos src.XPos, typ *types.Type, caseVar, jmp ir.Node) {
var body ir.Nodes
if caseVar != nil {
l := []ir.Node{
ir.NewDecl(pos, ir.ODCL, caseVar),
ir.NewAssignStmt(pos, caseVar, nil),
}
typecheckslice(l, ctxStmt)
body.Append(l...)
} else {
caseVar = ir.BlankNode
}
// cv, ok = iface.(type)
as := ir.NewAssignListStmt(pos, ir.OAS2, nil, nil)
as.PtrList().Set2(caseVar, s.okname) // cv, ok =
dot := ir.NewTypeAssertExpr(pos, s.facename, nil)
dot.SetType(typ) // iface.(type)
as.PtrRlist().Set1(dot)
appendWalkStmt(&body, as)
// if ok { goto label }
nif := ir.NewIfStmt(pos, nil, nil, nil)
nif.SetLeft(s.okname)
nif.PtrBody().Set1(jmp)
body.Append(nif)
if !typ.IsInterface() {
s.clauses = append(s.clauses, typeClause{
hash: typehash(typ),
body: body,
})
return
}
s.flush()
s.done.AppendNodes(&body)
}
func (s *typeSwitch) Emit(out *ir.Nodes) {
s.flush()
out.AppendNodes(&s.done)
}
func (s *typeSwitch) flush() {
cc := s.clauses
s.clauses = nil
if len(cc) == 0 {
return
}
sort.Slice(cc, func(i, j int) bool { return cc[i].hash < cc[j].hash })
// Combine adjacent cases with the same hash.
merged := cc[:1]
for _, c := range cc[1:] {
last := &merged[len(merged)-1]
if last.hash == c.hash {
last.body.AppendNodes(&c.body)
} else {
merged = append(merged, c)
}
}
cc = merged
binarySearch(len(cc), &s.done,
func(i int) ir.Node {
return ir.NewBinaryExpr(base.Pos, ir.OLE, s.hashname, nodintconst(int64(cc[i-1].hash)))
},
func(i int, nif *ir.IfStmt) {
// TODO(mdempsky): Omit hash equality check if
// there's only one type.
c := cc[i]
nif.SetLeft(ir.NewBinaryExpr(base.Pos, ir.OEQ, s.hashname, nodintconst(int64(c.hash))))
nif.PtrBody().AppendNodes(&c.body)
},
)
}
// binarySearch constructs a binary search tree for handling n cases,
// and appends it to out. It's used for efficiently implementing
// switch statements.
//
// less(i) should return a boolean expression. If it evaluates true,
// then cases before i will be tested; otherwise, cases i and later.
//
// leaf(i, nif) should setup nif (an OIF node) to test case i. In
// particular, it should set nif.Left and nif.Nbody.
func binarySearch(n int, out *ir.Nodes, less func(i int) ir.Node, leaf func(i int, nif *ir.IfStmt)) {
const binarySearchMin = 4 // minimum number of cases for binary search
var do func(lo, hi int, out *ir.Nodes)
do = func(lo, hi int, out *ir.Nodes) {
n := hi - lo
if n < binarySearchMin {
for i := lo; i < hi; i++ {
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
leaf(i, nif)
base.Pos = base.Pos.WithNotStmt()
nif.SetLeft(typecheck(nif.Left(), ctxExpr))
nif.SetLeft(defaultlit(nif.Left(), nil))
out.Append(nif)
out = nif.PtrRlist()
}
return
}
half := lo + n/2
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.SetLeft(less(half))
base.Pos = base.Pos.WithNotStmt()
nif.SetLeft(typecheck(nif.Left(), ctxExpr))
nif.SetLeft(defaultlit(nif.Left(), nil))
do(lo, half, nif.PtrBody())
do(half, hi, nif.PtrRlist())
out.Append(nif)
}
do(0, n, out)
}