go/src/cmd/compile/internal/gc/reflect.go
Josh Bleecher Snyder 6f2ee0f3df cmd/compile: make builds reproducible in presence of **byte and **int8
CL 39915 introduced sorting of signats by ShortString
for reproducible builds. But ShortString treats types
byte and uint8 identically; same for rune and uint32.
CL 39915 attempted to compensate for this by only
adding the underlying type (uint8) to signats in addsignat.

This only works for byte and uint8. For e.g. *byte and *uint,
both get added, and their sort order is random,
leading to non-reproducible builds.

One fix would be to add yet another type printing mode
that doesn't eliminate byte and rune, and use it
for sorting signats. But the formatting routines
are complicated enough as it is.

Instead, just sort first by ShortString and then by String.
We can't just use String, because ShortString makes distinctions
that String doesn't. ShortString is really preferred here;
String is serving only as a backstop for handling of bytes and runes.

The long series of types in the test helps increase the odds of
failure, allowing a smaller number of iterations in the test.
On my machine, a full test takes 700ms.

Passes toolstash-check.

Updates #19961
Fixes #20272

name        old alloc/op      new alloc/op      delta
Template         37.9MB ± 0%       37.9MB ± 0%  +0.12%  (p=0.032 n=5+5)
Unicode          28.9MB ± 0%       28.9MB ± 0%    ~     (p=0.841 n=5+5)
GoTypes           110MB ± 0%        110MB ± 0%    ~     (p=0.841 n=5+5)
Compiler          463MB ± 0%        463MB ± 0%    ~     (p=0.056 n=5+5)
SSA              1.11GB ± 0%       1.11GB ± 0%  +0.02%  (p=0.016 n=5+5)
Flate            24.7MB ± 0%       24.8MB ± 0%  +0.14%  (p=0.032 n=5+5)
GoParser         31.1MB ± 0%       31.1MB ± 0%    ~     (p=0.421 n=5+5)
Reflect          73.9MB ± 0%       73.9MB ± 0%    ~     (p=1.000 n=5+5)
Tar              25.8MB ± 0%       25.8MB ± 0%  +0.15%  (p=0.016 n=5+5)
XML              41.2MB ± 0%       41.2MB ± 0%    ~     (p=0.310 n=5+5)
[Geo mean]       72.0MB            72.0MB       +0.07%

name        old allocs/op     new allocs/op     delta
Template           384k ± 0%         385k ± 1%    ~     (p=0.056 n=5+5)
Unicode            343k ± 0%         344k ± 0%    ~     (p=0.548 n=5+5)
GoTypes           1.16M ± 0%        1.16M ± 0%    ~     (p=0.421 n=5+5)
Compiler          4.43M ± 0%        4.44M ± 0%  +0.26%  (p=0.032 n=5+5)
SSA               9.86M ± 0%        9.87M ± 0%  +0.10%  (p=0.032 n=5+5)
Flate              237k ± 1%         238k ± 0%  +0.49%  (p=0.032 n=5+5)
GoParser           319k ± 1%         320k ± 1%    ~     (p=0.151 n=5+5)
Reflect            957k ± 0%         957k ± 0%    ~     (p=1.000 n=5+5)
Tar                251k ± 0%         252k ± 1%  +0.49%  (p=0.016 n=5+5)
XML                399k ± 0%         401k ± 1%    ~     (p=0.310 n=5+5)
[Geo mean]         739k              741k       +0.26%

Change-Id: Ic27995a8d374d012b8aca14546b1df9d28d30df7
Reviewed-on: https://go-review.googlesource.com/42955
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
2017-05-09 21:15:12 +00:00

1856 lines
47 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/types"
"cmd/internal/gcprog"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
"fmt"
"os"
"sort"
"strings"
"sync"
)
type itabEntry struct {
t, itype *types.Type
lsym *obj.LSym // symbol of the itab itself
// symbols of each method in
// the itab, sorted by byte offset;
// filled in by peekitabs
entries []*obj.LSym
}
type ptabEntry struct {
s *types.Sym
t *types.Type
}
// runtime interface and reflection data structures
var (
signatlistmu sync.Mutex // protects signatlist
signatlist = make(map[*types.Type]bool)
itabs []itabEntry
ptabs []ptabEntry
)
type Sig struct {
name string
pkg *types.Pkg
isym *types.Sym
tsym *types.Sym
type_ *types.Type
mtype *types.Type
offset int32
}
// siglt sorts method signatures by name, then package path.
func siglt(a, b *Sig) bool {
if a.name != b.name {
return a.name < b.name
}
if a.pkg == b.pkg {
return false
}
if a.pkg == nil {
return true
}
if b.pkg == nil {
return false
}
return a.pkg.Path < b.pkg.Path
}
// Builds a type representing a Bucket structure for
// the given map type. This type is not visible to users -
// we include only enough information to generate a correct GC
// program for it.
// Make sure this stays in sync with ../../../../runtime/hashmap.go!
const (
BUCKETSIZE = 8
MAXKEYSIZE = 128
MAXVALSIZE = 128
)
func structfieldSize() int { return 3 * Widthptr } // Sizeof(runtime.structfield{})
func imethodSize() int { return 4 + 4 } // Sizeof(runtime.imethod{})
func uncommonSize(t *types.Type) int { // Sizeof(runtime.uncommontype{})
if t.Sym == nil && len(methods(t)) == 0 {
return 0
}
return 4 + 2 + 2 + 4 + 4
}
func makefield(name string, t *types.Type) *types.Field {
f := types.NewField()
f.Type = t
f.Sym = (*types.Pkg)(nil).Lookup(name)
return f
}
func mapbucket(t *types.Type) *types.Type {
if t.MapType().Bucket != nil {
return t.MapType().Bucket
}
bucket := types.New(TSTRUCT)
keytype := t.Key()
valtype := t.Val()
dowidth(keytype)
dowidth(valtype)
if keytype.Width > MAXKEYSIZE {
keytype = types.NewPtr(keytype)
}
if valtype.Width > MAXVALSIZE {
valtype = types.NewPtr(valtype)
}
field := make([]*types.Field, 0, 5)
// The first field is: uint8 topbits[BUCKETSIZE].
arr := types.NewArray(types.Types[TUINT8], BUCKETSIZE)
field = append(field, makefield("topbits", arr))
arr = types.NewArray(keytype, BUCKETSIZE)
arr.SetNoalg(true)
field = append(field, makefield("keys", arr))
arr = types.NewArray(valtype, BUCKETSIZE)
arr.SetNoalg(true)
field = append(field, makefield("values", arr))
// Make sure the overflow pointer is the last memory in the struct,
// because the runtime assumes it can use size-ptrSize as the
// offset of the overflow pointer. We double-check that property
// below once the offsets and size are computed.
//
// BUCKETSIZE is 8, so the struct is aligned to 64 bits to this point.
// On 32-bit systems, the max alignment is 32-bit, and the
// overflow pointer will add another 32-bit field, and the struct
// will end with no padding.
// On 64-bit systems, the max alignment is 64-bit, and the
// overflow pointer will add another 64-bit field, and the struct
// will end with no padding.
// On nacl/amd64p32, however, the max alignment is 64-bit,
// but the overflow pointer will add only a 32-bit field,
// so if the struct needs 64-bit padding (because a key or value does)
// then it would end with an extra 32-bit padding field.
// Preempt that by emitting the padding here.
if int(t.Val().Align) > Widthptr || int(t.Key().Align) > Widthptr {
field = append(field, makefield("pad", types.Types[TUINTPTR]))
}
// If keys and values have no pointers, the map implementation
// can keep a list of overflow pointers on the side so that
// buckets can be marked as having no pointers.
// Arrange for the bucket to have no pointers by changing
// the type of the overflow field to uintptr in this case.
// See comment on hmap.overflow in ../../../../runtime/hashmap.go.
otyp := types.NewPtr(bucket)
if !types.Haspointers(t.Val()) && !types.Haspointers(t.Key()) && t.Val().Width <= MAXVALSIZE && t.Key().Width <= MAXKEYSIZE {
otyp = types.Types[TUINTPTR]
}
ovf := makefield("overflow", otyp)
field = append(field, ovf)
// link up fields
bucket.SetNoalg(true)
bucket.SetLocal(t.Local())
bucket.SetFields(field[:])
dowidth(bucket)
// Double-check that overflow field is final memory in struct,
// with no padding at end. See comment above.
if ovf.Offset != bucket.Width-int64(Widthptr) {
Fatalf("bad math in mapbucket for %v", t)
}
t.MapType().Bucket = bucket
bucket.StructType().Map = t
return bucket
}
// Builds a type representing a Hmap structure for the given map type.
// Make sure this stays in sync with ../../../../runtime/hashmap.go!
func hmap(t *types.Type) *types.Type {
if t.MapType().Hmap != nil {
return t.MapType().Hmap
}
bucket := mapbucket(t)
fields := []*types.Field{
makefield("count", types.Types[TINT]),
makefield("flags", types.Types[TUINT8]),
makefield("B", types.Types[TUINT8]),
makefield("noverflow", types.Types[TUINT16]),
makefield("hash0", types.Types[TUINT32]),
makefield("buckets", types.NewPtr(bucket)),
makefield("oldbuckets", types.NewPtr(bucket)),
makefield("nevacuate", types.Types[TUINTPTR]),
makefield("overflow", types.Types[TUNSAFEPTR]),
}
h := types.New(TSTRUCT)
h.SetNoalg(true)
h.SetLocal(t.Local())
h.SetFields(fields)
dowidth(h)
t.MapType().Hmap = h
h.StructType().Map = t
return h
}
func hiter(t *types.Type) *types.Type {
if t.MapType().Hiter != nil {
return t.MapType().Hiter
}
// build a struct:
// hiter {
// key *Key
// val *Value
// t *MapType
// h *Hmap
// buckets *Bucket
// bptr *Bucket
// overflow0 unsafe.Pointer
// overflow1 unsafe.Pointer
// startBucket uintptr
// stuff uintptr
// bucket uintptr
// checkBucket uintptr
// }
// must match ../../../../runtime/hashmap.go:hiter.
var field [12]*types.Field
field[0] = makefield("key", types.NewPtr(t.Key()))
field[1] = makefield("val", types.NewPtr(t.Val()))
field[2] = makefield("t", types.NewPtr(types.Types[TUINT8]))
field[3] = makefield("h", types.NewPtr(hmap(t)))
field[4] = makefield("buckets", types.NewPtr(mapbucket(t)))
field[5] = makefield("bptr", types.NewPtr(mapbucket(t)))
field[6] = makefield("overflow0", types.Types[TUNSAFEPTR])
field[7] = makefield("overflow1", types.Types[TUNSAFEPTR])
field[8] = makefield("startBucket", types.Types[TUINTPTR])
field[9] = makefield("stuff", types.Types[TUINTPTR]) // offset+wrapped+B+I
field[10] = makefield("bucket", types.Types[TUINTPTR])
field[11] = makefield("checkBucket", types.Types[TUINTPTR])
// build iterator struct holding the above fields
i := types.New(TSTRUCT)
i.SetNoalg(true)
i.SetFields(field[:])
dowidth(i)
if i.Width != int64(12*Widthptr) {
Fatalf("hash_iter size not correct %d %d", i.Width, 12*Widthptr)
}
t.MapType().Hiter = i
i.StructType().Map = t
return i
}
// f is method type, with receiver.
// return function type, receiver as first argument (or not).
func methodfunc(f *types.Type, receiver *types.Type) *types.Type {
var in []*Node
if receiver != nil {
d := nod(ODCLFIELD, nil, nil)
d.Type = receiver
in = append(in, d)
}
var d *Node
for _, t := range f.Params().Fields().Slice() {
d = nod(ODCLFIELD, nil, nil)
d.Type = t.Type
d.SetIsddd(t.Isddd())
in = append(in, d)
}
var out []*Node
for _, t := range f.Results().Fields().Slice() {
d = nod(ODCLFIELD, nil, nil)
d.Type = t.Type
out = append(out, d)
}
t := functype(nil, in, out)
if f.Nname() != nil {
// Link to name of original method function.
t.SetNname(f.Nname())
}
return t
}
// methods returns the methods of the non-interface type t, sorted by name.
// Generates stub functions as needed.
func methods(t *types.Type) []*Sig {
// method type
mt := methtype(t)
if mt == nil {
return nil
}
expandmeth(mt)
// type stored in interface word
it := t
if !isdirectiface(it) {
it = types.NewPtr(t)
}
// make list of methods for t,
// generating code if necessary.
var ms []*Sig
for _, f := range mt.AllMethods().Slice() {
if f.Type.Etype != TFUNC || f.Type.Recv() == nil {
Fatalf("non-method on %v method %v %v\n", mt, f.Sym, f)
}
if f.Type.Recv() == nil {
Fatalf("receiver with no type on %v method %v %v\n", mt, f.Sym, f)
}
if f.Nointerface() {
continue
}
method := f.Sym
if method == nil {
continue
}
// get receiver type for this particular method.
// if pointer receiver but non-pointer t and
// this is not an embedded pointer inside a struct,
// method does not apply.
this := f.Type.Recv().Type
if this.IsPtr() && this.Elem() == t {
continue
}
if this.IsPtr() && !t.IsPtr() && f.Embedded != 2 && !isifacemethod(f.Type) {
continue
}
var sig Sig
ms = append(ms, &sig)
sig.name = method.Name
if !exportname(method.Name) {
if method.Pkg == nil {
Fatalf("methods: missing package")
}
sig.pkg = method.Pkg
}
sig.isym = methodsym(method, it, true)
sig.tsym = methodsym(method, t, false)
sig.type_ = methodfunc(f.Type, t)
sig.mtype = methodfunc(f.Type, nil)
if !sig.isym.Siggen() {
sig.isym.SetSiggen(true)
if !eqtype(this, it) || this.Width < int64(Widthptr) {
compiling_wrappers = 1
genwrapper(it, f, sig.isym, 1)
compiling_wrappers = 0
}
}
if !sig.tsym.Siggen() {
sig.tsym.SetSiggen(true)
if !eqtype(this, t) {
compiling_wrappers = 1
genwrapper(t, f, sig.tsym, 0)
compiling_wrappers = 0
}
}
}
obj.SortSlice(ms, func(i, j int) bool { return siglt(ms[i], ms[j]) })
return ms
}
// imethods returns the methods of the interface type t, sorted by name.
func imethods(t *types.Type) []*Sig {
var methods []*Sig
for _, f := range t.Fields().Slice() {
if f.Type.Etype != TFUNC || f.Sym == nil {
continue
}
method := f.Sym
var sig = Sig{
name: method.Name,
}
if !exportname(method.Name) {
if method.Pkg == nil {
Fatalf("imethods: missing package")
}
sig.pkg = method.Pkg
}
sig.mtype = f.Type
sig.offset = 0
sig.type_ = methodfunc(f.Type, nil)
if n := len(methods); n > 0 {
last := methods[n-1]
if !(siglt(last, &sig)) {
Fatalf("sigcmp vs sortinter %s %s", last.name, sig.name)
}
}
methods = append(methods, &sig)
// Compiler can only refer to wrappers for non-blank methods.
if method.IsBlank() {
continue
}
// NOTE(rsc): Perhaps an oversight that
// IfaceType.Method is not in the reflect data.
// Generate the method body, so that compiled
// code can refer to it.
isym := methodsym(method, t, false)
if !isym.Siggen() {
isym.SetSiggen(true)
genwrapper(t, f, isym, 0)
}
}
return methods
}
func dimportpath(p *types.Pkg) {
if p.Pathsym != nil {
return
}
// If we are compiling the runtime package, there are two runtime packages around
// -- localpkg and Runtimepkg. We don't want to produce import path symbols for
// both of them, so just produce one for localpkg.
if myimportpath == "runtime" && p == Runtimepkg {
return
}
var str string
if p == localpkg {
// Note: myimportpath != "", or else dgopkgpath won't call dimportpath.
str = myimportpath
} else {
str = p.Path
}
s := Ctxt.Lookup("type..importpath." + p.Prefix + ".")
ot := dnameData(s, 0, str, "", nil, false)
ggloblsym(s, int32(ot), obj.DUPOK|obj.RODATA)
p.Pathsym = s
}
func dgopkgpath(s *obj.LSym, ot int, pkg *types.Pkg) int {
if pkg == nil {
return duintptr(s, ot, 0)
}
if pkg == localpkg && myimportpath == "" {
// If we don't know the full import path of the package being compiled
// (i.e. -p was not passed on the compiler command line), emit a reference to
// type..importpath.""., which the linker will rewrite using the correct import path.
// Every package that imports this one directly defines the symbol.
// See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ.
ns := Ctxt.Lookup(`type..importpath."".`)
return dsymptr(s, ot, ns, 0)
}
dimportpath(pkg)
return dsymptr(s, ot, pkg.Pathsym, 0)
}
// dgopkgpathOff writes an offset relocation in s at offset ot to the pkg path symbol.
func dgopkgpathOff(s *obj.LSym, ot int, pkg *types.Pkg) int {
if pkg == nil {
return duint32(s, ot, 0)
}
if pkg == localpkg && myimportpath == "" {
// If we don't know the full import path of the package being compiled
// (i.e. -p was not passed on the compiler command line), emit a reference to
// type..importpath.""., which the linker will rewrite using the correct import path.
// Every package that imports this one directly defines the symbol.
// See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ.
ns := Ctxt.Lookup(`type..importpath."".`)
return dsymptrOff(s, ot, ns, 0)
}
dimportpath(pkg)
return dsymptrOff(s, ot, pkg.Pathsym, 0)
}
// isExportedField reports whether a struct field is exported.
// It also returns the package to use for PkgPath for an unexported field.
func isExportedField(ft *types.Field) (bool, *types.Pkg) {
if ft.Sym != nil && ft.Embedded == 0 {
return exportname(ft.Sym.Name), ft.Sym.Pkg
} else {
if ft.Type.Sym != nil &&
(ft.Type.Sym.Pkg == builtinpkg || !exportname(ft.Type.Sym.Name)) {
return false, ft.Type.Sym.Pkg
} else {
return true, nil
}
}
}
// dnameField dumps a reflect.name for a struct field.
func dnameField(lsym *obj.LSym, ot int, spkg *types.Pkg, ft *types.Field) int {
var name string
if ft.Sym != nil {
name = ft.Sym.Name
}
isExported, fpkg := isExportedField(ft)
if isExported || fpkg == spkg {
fpkg = nil
}
nsym := dname(name, ft.Note, fpkg, isExported)
return dsymptr(lsym, ot, nsym, 0)
}
// dnameData writes the contents of a reflect.name into s at offset ot.
func dnameData(s *obj.LSym, ot int, name, tag string, pkg *types.Pkg, exported bool) int {
if len(name) > 1<<16-1 {
Fatalf("name too long: %s", name)
}
if len(tag) > 1<<16-1 {
Fatalf("tag too long: %s", tag)
}
// Encode name and tag. See reflect/type.go for details.
var bits byte
l := 1 + 2 + len(name)
if exported {
bits |= 1 << 0
}
if len(tag) > 0 {
l += 2 + len(tag)
bits |= 1 << 1
}
if pkg != nil {
bits |= 1 << 2
}
b := make([]byte, l)
b[0] = bits
b[1] = uint8(len(name) >> 8)
b[2] = uint8(len(name))
copy(b[3:], name)
if len(tag) > 0 {
tb := b[3+len(name):]
tb[0] = uint8(len(tag) >> 8)
tb[1] = uint8(len(tag))
copy(tb[2:], tag)
}
ot = int(s.WriteBytes(Ctxt, int64(ot), b))
if pkg != nil {
ot = dgopkgpathOff(s, ot, pkg)
}
return ot
}
var dnameCount int
// dname creates a reflect.name for a struct field or method.
func dname(name, tag string, pkg *types.Pkg, exported bool) *obj.LSym {
// Write out data as "type.." to signal two things to the
// linker, first that when dynamically linking, the symbol
// should be moved to a relro section, and second that the
// contents should not be decoded as a type.
sname := "type..namedata."
if pkg == nil {
// In the common case, share data with other packages.
if name == "" {
if exported {
sname += "-noname-exported." + tag
} else {
sname += "-noname-unexported." + tag
}
} else {
sname += name + "." + tag
}
} else {
sname = fmt.Sprintf(`%s"".%d`, sname, dnameCount)
dnameCount++
}
s := Ctxt.Lookup(sname)
if len(s.P) > 0 {
return s
}
ot := dnameData(s, 0, name, tag, pkg, exported)
ggloblsym(s, int32(ot), obj.DUPOK|obj.RODATA)
return s
}
// dextratype dumps the fields of a runtime.uncommontype.
// dataAdd is the offset in bytes after the header where the
// backing array of the []method field is written (by dextratypeData).
func dextratype(lsym *obj.LSym, ot int, t *types.Type, dataAdd int) int {
m := methods(t)
if t.Sym == nil && len(m) == 0 {
return ot
}
noff := int(Rnd(int64(ot), int64(Widthptr)))
if noff != ot {
Fatalf("unexpected alignment in dextratype for %v", t)
}
for _, a := range m {
dtypesym(a.type_)
}
ot = dgopkgpathOff(lsym, ot, typePkg(t))
dataAdd += uncommonSize(t)
mcount := len(m)
if mcount != int(uint16(mcount)) {
Fatalf("too many methods on %v: %d", t, mcount)
}
if dataAdd != int(uint32(dataAdd)) {
Fatalf("methods are too far away on %v: %d", t, dataAdd)
}
ot = duint16(lsym, ot, uint16(mcount))
ot = duint16(lsym, ot, 0)
ot = duint32(lsym, ot, uint32(dataAdd))
ot = duint32(lsym, ot, 0)
return ot
}
func typePkg(t *types.Type) *types.Pkg {
tsym := t.Sym
if tsym == nil {
switch t.Etype {
case TARRAY, TSLICE, TPTR32, TPTR64, TCHAN:
if t.Elem() != nil {
tsym = t.Elem().Sym
}
}
}
if tsym != nil && t != types.Types[t.Etype] && t != types.Errortype {
return tsym.Pkg
}
return nil
}
// dextratypeData dumps the backing array for the []method field of
// runtime.uncommontype.
func dextratypeData(lsym *obj.LSym, ot int, t *types.Type) int {
for _, a := range methods(t) {
// ../../../../runtime/type.go:/method
exported := exportname(a.name)
var pkg *types.Pkg
if !exported && a.pkg != typePkg(t) {
pkg = a.pkg
}
nsym := dname(a.name, "", pkg, exported)
ot = dsymptrOff(lsym, ot, nsym, 0)
ot = dmethodptrOff(lsym, ot, dtypesym(a.mtype).Linksym())
ot = dmethodptrOff(lsym, ot, a.isym.Linksym())
ot = dmethodptrOff(lsym, ot, a.tsym.Linksym())
}
return ot
}
func dmethodptrOff(s *obj.LSym, ot int, x *obj.LSym) int {
duint32(s, ot, 0)
r := obj.Addrel(s)
r.Off = int32(ot)
r.Siz = 4
r.Sym = x
r.Type = objabi.R_METHODOFF
return ot + 4
}
var kinds = []int{
TINT: objabi.KindInt,
TUINT: objabi.KindUint,
TINT8: objabi.KindInt8,
TUINT8: objabi.KindUint8,
TINT16: objabi.KindInt16,
TUINT16: objabi.KindUint16,
TINT32: objabi.KindInt32,
TUINT32: objabi.KindUint32,
TINT64: objabi.KindInt64,
TUINT64: objabi.KindUint64,
TUINTPTR: objabi.KindUintptr,
TFLOAT32: objabi.KindFloat32,
TFLOAT64: objabi.KindFloat64,
TBOOL: objabi.KindBool,
TSTRING: objabi.KindString,
TPTR32: objabi.KindPtr,
TPTR64: objabi.KindPtr,
TSTRUCT: objabi.KindStruct,
TINTER: objabi.KindInterface,
TCHAN: objabi.KindChan,
TMAP: objabi.KindMap,
TARRAY: objabi.KindArray,
TSLICE: objabi.KindSlice,
TFUNC: objabi.KindFunc,
TCOMPLEX64: objabi.KindComplex64,
TCOMPLEX128: objabi.KindComplex128,
TUNSAFEPTR: objabi.KindUnsafePointer,
}
// typeptrdata returns the length in bytes of the prefix of t
// containing pointer data. Anything after this offset is scalar data.
func typeptrdata(t *types.Type) int64 {
if !types.Haspointers(t) {
return 0
}
switch t.Etype {
case TPTR32,
TPTR64,
TUNSAFEPTR,
TFUNC,
TCHAN,
TMAP:
return int64(Widthptr)
case TSTRING:
// struct { byte *str; intgo len; }
return int64(Widthptr)
case TINTER:
// struct { Itab *tab; void *data; } or
// struct { Type *type; void *data; }
return 2 * int64(Widthptr)
case TSLICE:
// struct { byte *array; uintgo len; uintgo cap; }
return int64(Widthptr)
case TARRAY:
// haspointers already eliminated t.NumElem() == 0.
return (t.NumElem()-1)*t.Elem().Width + typeptrdata(t.Elem())
case TSTRUCT:
// Find the last field that has pointers.
var lastPtrField *types.Field
for _, t1 := range t.Fields().Slice() {
if types.Haspointers(t1.Type) {
lastPtrField = t1
}
}
return lastPtrField.Offset + typeptrdata(lastPtrField.Type)
default:
Fatalf("typeptrdata: unexpected type, %v", t)
return 0
}
}
// tflag is documented in reflect/type.go.
//
// tflag values must be kept in sync with copies in:
// cmd/compile/internal/gc/reflect.go
// cmd/link/internal/ld/decodesym.go
// reflect/type.go
// runtime/type.go
const (
tflagUncommon = 1 << 0
tflagExtraStar = 1 << 1
tflagNamed = 1 << 2
)
var (
algarray *obj.LSym
memhashvarlen *obj.LSym
memequalvarlen *obj.LSym
)
// dcommontype dumps the contents of a reflect.rtype (runtime._type).
func dcommontype(lsym *obj.LSym, ot int, t *types.Type) int {
if ot != 0 {
Fatalf("dcommontype %d", ot)
}
sizeofAlg := 2 * Widthptr
if algarray == nil {
algarray = Sysfunc("algarray")
}
dowidth(t)
alg := algtype(t)
var algsym *obj.LSym
if alg == ASPECIAL || alg == AMEM {
algsym = dalgsym(t)
}
sptrWeak := true
var sptr *obj.LSym
if !t.IsPtr() || t.PtrBase != nil {
tptr := types.NewPtr(t)
if t.Sym != nil || methods(tptr) != nil {
sptrWeak = false
}
sptr = dtypesym(tptr).Linksym()
}
gcsym, useGCProg, ptrdata := dgcsym(t)
// ../../../../reflect/type.go:/^type.rtype
// actual type structure
// type rtype struct {
// size uintptr
// ptrdata uintptr
// hash uint32
// tflag tflag
// align uint8
// fieldAlign uint8
// kind uint8
// alg *typeAlg
// gcdata *byte
// str nameOff
// ptrToThis typeOff
// }
ot = duintptr(lsym, ot, uint64(t.Width))
ot = duintptr(lsym, ot, uint64(ptrdata))
ot = duint32(lsym, ot, typehash(t))
var tflag uint8
if uncommonSize(t) != 0 {
tflag |= tflagUncommon
}
if t.Sym != nil && t.Sym.Name != "" {
tflag |= tflagNamed
}
exported := false
p := t.LongString()
// If we're writing out type T,
// we are very likely to write out type *T as well.
// Use the string "*T"[1:] for "T", so that the two
// share storage. This is a cheap way to reduce the
// amount of space taken up by reflect strings.
if !strings.HasPrefix(p, "*") {
p = "*" + p
tflag |= tflagExtraStar
if t.Sym != nil {
exported = exportname(t.Sym.Name)
}
} else {
if t.Elem() != nil && t.Elem().Sym != nil {
exported = exportname(t.Elem().Sym.Name)
}
}
ot = duint8(lsym, ot, tflag)
// runtime (and common sense) expects alignment to be a power of two.
i := int(t.Align)
if i == 0 {
i = 1
}
if i&(i-1) != 0 {
Fatalf("invalid alignment %d for %v", t.Align, t)
}
ot = duint8(lsym, ot, t.Align) // align
ot = duint8(lsym, ot, t.Align) // fieldAlign
i = kinds[t.Etype]
if !types.Haspointers(t) {
i |= objabi.KindNoPointers
}
if isdirectiface(t) {
i |= objabi.KindDirectIface
}
if useGCProg {
i |= objabi.KindGCProg
}
ot = duint8(lsym, ot, uint8(i)) // kind
if algsym == nil {
ot = dsymptr(lsym, ot, algarray, int(alg)*sizeofAlg)
} else {
ot = dsymptr(lsym, ot, algsym, 0)
}
ot = dsymptr(lsym, ot, gcsym, 0) // gcdata
nsym := dname(p, "", nil, exported)
ot = dsymptrOff(lsym, ot, nsym, 0) // str
// ptrToThis
if sptr == nil {
ot = duint32(lsym, ot, 0)
} else if sptrWeak {
ot = dsymptrWeakOff(lsym, ot, sptr)
} else {
ot = dsymptrOff(lsym, ot, sptr, 0)
}
return ot
}
func typesymname(t *types.Type) string {
name := t.ShortString()
// Use a separate symbol name for Noalg types for #17752.
if a, bad := algtype1(t); a == ANOEQ && bad.Noalg() {
name = "noalg." + name
}
return name
}
// Fake package for runtime type info (headers)
// Don't access directly, use typeLookup below.
var (
typepkgmu sync.Mutex // protects typepkg lookups
typepkg = types.NewPkg("type", "type")
)
func typeLookup(name string) *types.Sym {
typepkgmu.Lock()
s := typepkg.Lookup(name)
typepkgmu.Unlock()
return s
}
func typesym(t *types.Type) *types.Sym {
return typeLookup(typesymname(t))
}
// tracksym returns the symbol for tracking use of field/method f, assumed
// to be a member of struct/interface type t.
func tracksym(t *types.Type, f *types.Field) *types.Sym {
return trackpkg.Lookup(t.ShortString() + "." + f.Sym.Name)
}
func typesymprefix(prefix string, t *types.Type) *types.Sym {
p := prefix + "." + t.ShortString()
s := typeLookup(p)
//print("algsym: %s -> %+S\n", p, s);
return s
}
func typenamesym(t *types.Type) *types.Sym {
if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() {
Fatalf("typenamesym %v", t)
}
s := typesym(t)
signatlistmu.Lock()
addsignat(t)
signatlistmu.Unlock()
return s
}
func typename(t *types.Type) *Node {
s := typenamesym(t)
if s.Def == nil {
n := newnamel(src.NoXPos, s)
n.Type = types.Types[TUINT8]
n.SetClass(PEXTERN)
n.SetTypecheck(1)
s.Def = asTypesNode(n)
}
n := nod(OADDR, asNode(s.Def), nil)
n.Type = types.NewPtr(asNode(s.Def).Type)
n.SetAddable(true)
n.SetTypecheck(1)
return n
}
func itabname(t, itype *types.Type) *Node {
if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() || !itype.IsInterface() || itype.IsEmptyInterface() {
Fatalf("itabname(%v, %v)", t, itype)
}
s := itabpkg.Lookup(t.ShortString() + "," + itype.ShortString())
if s.Def == nil {
n := newname(s)
n.Type = types.Types[TUINT8]
n.SetClass(PEXTERN)
n.SetTypecheck(1)
s.Def = asTypesNode(n)
itabs = append(itabs, itabEntry{t: t, itype: itype, lsym: s.Linksym()})
}
n := nod(OADDR, asNode(s.Def), nil)
n.Type = types.NewPtr(asNode(s.Def).Type)
n.SetAddable(true)
n.SetTypecheck(1)
return n
}
// isreflexive reports whether t has a reflexive equality operator.
// That is, if x==x for all x of type t.
func isreflexive(t *types.Type) bool {
switch t.Etype {
case TBOOL,
TINT,
TUINT,
TINT8,
TUINT8,
TINT16,
TUINT16,
TINT32,
TUINT32,
TINT64,
TUINT64,
TUINTPTR,
TPTR32,
TPTR64,
TUNSAFEPTR,
TSTRING,
TCHAN:
return true
case TFLOAT32,
TFLOAT64,
TCOMPLEX64,
TCOMPLEX128,
TINTER:
return false
case TARRAY:
return isreflexive(t.Elem())
case TSTRUCT:
for _, t1 := range t.Fields().Slice() {
if !isreflexive(t1.Type) {
return false
}
}
return true
default:
Fatalf("bad type for map key: %v", t)
return false
}
}
// needkeyupdate reports whether map updates with t as a key
// need the key to be updated.
func needkeyupdate(t *types.Type) bool {
switch t.Etype {
case TBOOL, TINT, TUINT, TINT8, TUINT8, TINT16, TUINT16, TINT32, TUINT32,
TINT64, TUINT64, TUINTPTR, TPTR32, TPTR64, TUNSAFEPTR, TCHAN:
return false
case TFLOAT32, TFLOAT64, TCOMPLEX64, TCOMPLEX128, // floats and complex can be +0/-0
TINTER,
TSTRING: // strings might have smaller backing stores
return true
case TARRAY:
return needkeyupdate(t.Elem())
case TSTRUCT:
for _, t1 := range t.Fields().Slice() {
if needkeyupdate(t1.Type) {
return true
}
}
return false
default:
Fatalf("bad type for map key: %v", t)
return true
}
}
// formalType replaces byte and rune aliases with real types.
// They've been separate internally to make error messages
// better, but we have to merge them in the reflect tables.
func formalType(t *types.Type) *types.Type {
if t == types.Bytetype || t == types.Runetype {
return types.Types[t.Etype]
}
return t
}
func dtypesym(t *types.Type) *types.Sym {
t = formalType(t)
if t.IsUntyped() {
Fatalf("dtypesym %v", t)
}
s := typesym(t)
if s.Siggen() {
return s
}
s.SetSiggen(true)
// special case (look for runtime below):
// when compiling package runtime,
// emit the type structures for int, float, etc.
tbase := t
if t.IsPtr() && t.Sym == nil && t.Elem().Sym != nil {
tbase = t.Elem()
}
dupok := 0
if tbase.Sym == nil {
dupok = obj.DUPOK
}
if myimportpath == "runtime" && (tbase == types.Types[tbase.Etype] || tbase == types.Bytetype || tbase == types.Runetype || tbase == types.Errortype) { // int, float, etc
goto ok
}
// named types from other files are defined only by those files
if tbase.Sym != nil && !tbase.Local() {
return s
}
if isforw[tbase.Etype] {
return s
}
ok:
ot := 0
lsym := s.Linksym()
switch t.Etype {
default:
ot = dcommontype(lsym, ot, t)
ot = dextratype(lsym, ot, t, 0)
case TARRAY:
// ../../../../runtime/type.go:/arrayType
s1 := dtypesym(t.Elem())
t2 := types.NewSlice(t.Elem())
s2 := dtypesym(t2)
ot = dcommontype(lsym, ot, t)
ot = dsymptr(lsym, ot, s1.Linksym(), 0)
ot = dsymptr(lsym, ot, s2.Linksym(), 0)
ot = duintptr(lsym, ot, uint64(t.NumElem()))
ot = dextratype(lsym, ot, t, 0)
case TSLICE:
// ../../../../runtime/type.go:/sliceType
s1 := dtypesym(t.Elem())
ot = dcommontype(lsym, ot, t)
ot = dsymptr(lsym, ot, s1.Linksym(), 0)
ot = dextratype(lsym, ot, t, 0)
case TCHAN:
// ../../../../runtime/type.go:/chanType
s1 := dtypesym(t.Elem())
ot = dcommontype(lsym, ot, t)
ot = dsymptr(lsym, ot, s1.Linksym(), 0)
ot = duintptr(lsym, ot, uint64(t.ChanDir()))
ot = dextratype(lsym, ot, t, 0)
case TFUNC:
for _, t1 := range t.Recvs().Fields().Slice() {
dtypesym(t1.Type)
}
isddd := false
for _, t1 := range t.Params().Fields().Slice() {
isddd = t1.Isddd()
dtypesym(t1.Type)
}
for _, t1 := range t.Results().Fields().Slice() {
dtypesym(t1.Type)
}
ot = dcommontype(lsym, ot, t)
inCount := t.Recvs().NumFields() + t.Params().NumFields()
outCount := t.Results().NumFields()
if isddd {
outCount |= 1 << 15
}
ot = duint16(lsym, ot, uint16(inCount))
ot = duint16(lsym, ot, uint16(outCount))
if Widthptr == 8 {
ot += 4 // align for *rtype
}
dataAdd := (inCount + t.Results().NumFields()) * Widthptr
ot = dextratype(lsym, ot, t, dataAdd)
// Array of rtype pointers follows funcType.
for _, t1 := range t.Recvs().Fields().Slice() {
ot = dsymptr(lsym, ot, dtypesym(t1.Type).Linksym(), 0)
}
for _, t1 := range t.Params().Fields().Slice() {
ot = dsymptr(lsym, ot, dtypesym(t1.Type).Linksym(), 0)
}
for _, t1 := range t.Results().Fields().Slice() {
ot = dsymptr(lsym, ot, dtypesym(t1.Type).Linksym(), 0)
}
case TINTER:
m := imethods(t)
n := len(m)
for _, a := range m {
dtypesym(a.type_)
}
// ../../../../runtime/type.go:/interfaceType
ot = dcommontype(lsym, ot, t)
var tpkg *types.Pkg
if t.Sym != nil && t != types.Types[t.Etype] && t != types.Errortype {
tpkg = t.Sym.Pkg
}
ot = dgopkgpath(lsym, ot, tpkg)
ot = dsymptr(lsym, ot, lsym, ot+3*Widthptr+uncommonSize(t))
ot = duintptr(lsym, ot, uint64(n))
ot = duintptr(lsym, ot, uint64(n))
dataAdd := imethodSize() * n
ot = dextratype(lsym, ot, t, dataAdd)
for _, a := range m {
// ../../../../runtime/type.go:/imethod
exported := exportname(a.name)
var pkg *types.Pkg
if !exported && a.pkg != tpkg {
pkg = a.pkg
}
nsym := dname(a.name, "", pkg, exported)
ot = dsymptrOff(lsym, ot, nsym, 0)
ot = dsymptrOff(lsym, ot, dtypesym(a.type_).Linksym(), 0)
}
// ../../../../runtime/type.go:/mapType
case TMAP:
s1 := dtypesym(t.Key())
s2 := dtypesym(t.Val())
s3 := dtypesym(mapbucket(t))
s4 := dtypesym(hmap(t))
ot = dcommontype(lsym, ot, t)
ot = dsymptr(lsym, ot, s1.Linksym(), 0)
ot = dsymptr(lsym, ot, s2.Linksym(), 0)
ot = dsymptr(lsym, ot, s3.Linksym(), 0)
ot = dsymptr(lsym, ot, s4.Linksym(), 0)
if t.Key().Width > MAXKEYSIZE {
ot = duint8(lsym, ot, uint8(Widthptr))
ot = duint8(lsym, ot, 1) // indirect
} else {
ot = duint8(lsym, ot, uint8(t.Key().Width))
ot = duint8(lsym, ot, 0) // not indirect
}
if t.Val().Width > MAXVALSIZE {
ot = duint8(lsym, ot, uint8(Widthptr))
ot = duint8(lsym, ot, 1) // indirect
} else {
ot = duint8(lsym, ot, uint8(t.Val().Width))
ot = duint8(lsym, ot, 0) // not indirect
}
ot = duint16(lsym, ot, uint16(mapbucket(t).Width))
ot = duint8(lsym, ot, uint8(obj.Bool2int(isreflexive(t.Key()))))
ot = duint8(lsym, ot, uint8(obj.Bool2int(needkeyupdate(t.Key()))))
ot = dextratype(lsym, ot, t, 0)
case TPTR32, TPTR64:
if t.Elem().Etype == TANY {
// ../../../../runtime/type.go:/UnsafePointerType
ot = dcommontype(lsym, ot, t)
ot = dextratype(lsym, ot, t, 0)
break
}
// ../../../../runtime/type.go:/ptrType
s1 := dtypesym(t.Elem())
ot = dcommontype(lsym, ot, t)
ot = dsymptr(lsym, ot, s1.Linksym(), 0)
ot = dextratype(lsym, ot, t, 0)
// ../../../../runtime/type.go:/structType
// for security, only the exported fields.
case TSTRUCT:
n := 0
for _, t1 := range t.Fields().Slice() {
dtypesym(t1.Type)
n++
}
ot = dcommontype(lsym, ot, t)
pkg := localpkg
if t.Sym != nil {
pkg = t.Sym.Pkg
} else {
// Unnamed type. Grab the package from the first field, if any.
for _, f := range t.Fields().Slice() {
if f.Embedded != 0 {
continue
}
pkg = f.Sym.Pkg
break
}
}
ot = dgopkgpath(lsym, ot, pkg)
ot = dsymptr(lsym, ot, lsym, ot+3*Widthptr+uncommonSize(t))
ot = duintptr(lsym, ot, uint64(n))
ot = duintptr(lsym, ot, uint64(n))
dataAdd := n * structfieldSize()
ot = dextratype(lsym, ot, t, dataAdd)
for _, f := range t.Fields().Slice() {
// ../../../../runtime/type.go:/structField
ot = dnameField(lsym, ot, pkg, f)
ot = dsymptr(lsym, ot, dtypesym(f.Type).Linksym(), 0)
offsetAnon := uint64(f.Offset) << 1
if offsetAnon>>1 != uint64(f.Offset) {
Fatalf("%v: bad field offset for %s", t, f.Sym.Name)
}
if f.Embedded != 0 {
offsetAnon |= 1
}
ot = duintptr(lsym, ot, offsetAnon)
}
}
ot = dextratypeData(lsym, ot, t)
ggloblsym(lsym, int32(ot), int16(dupok|obj.RODATA))
// The linker will leave a table of all the typelinks for
// types in the binary, so the runtime can find them.
//
// When buildmode=shared, all types are in typelinks so the
// runtime can deduplicate type pointers.
keep := Ctxt.Flag_dynlink
if !keep && t.Sym == nil {
// For an unnamed type, we only need the link if the type can
// be created at run time by reflect.PtrTo and similar
// functions. If the type exists in the program, those
// functions must return the existing type structure rather
// than creating a new one.
switch t.Etype {
case TPTR32, TPTR64, TARRAY, TCHAN, TFUNC, TMAP, TSLICE, TSTRUCT:
keep = true
}
}
lsym.Set(obj.AttrMakeTypelink, keep)
return s
}
// for each itabEntry, gather the methods on
// the concrete type that implement the interface
func peekitabs() {
for i := range itabs {
tab := &itabs[i]
methods := genfun(tab.t, tab.itype)
if len(methods) == 0 {
continue
}
tab.entries = methods
}
}
// for the given concrete type and interface
// type, return the (sorted) set of methods
// on the concrete type that implement the interface
func genfun(t, it *types.Type) []*obj.LSym {
if t == nil || it == nil {
return nil
}
sigs := imethods(it)
methods := methods(t)
out := make([]*obj.LSym, 0, len(sigs))
if len(sigs) == 0 {
return nil
}
// both sigs and methods are sorted by name,
// so we can find the intersect in a single pass
for _, m := range methods {
if m.name == sigs[0].name {
out = append(out, m.isym.Linksym())
sigs = sigs[1:]
if len(sigs) == 0 {
break
}
}
}
return out
}
// itabsym uses the information gathered in
// peekitabs to de-virtualize interface methods.
// Since this is called by the SSA backend, it shouldn't
// generate additional Nodes, Syms, etc.
func itabsym(it *obj.LSym, offset int64) *obj.LSym {
var syms []*obj.LSym
if it == nil {
return nil
}
for i := range itabs {
e := &itabs[i]
if e.lsym == it {
syms = e.entries
break
}
}
if syms == nil {
return nil
}
// keep this arithmetic in sync with *itab layout
methodnum := int((offset - 3*int64(Widthptr) - 8) / int64(Widthptr))
if methodnum >= len(syms) {
return nil
}
return syms[methodnum]
}
func addsignat(t *types.Type) {
signatlist[t] = true
}
func addsignats(dcls []*Node) {
// copy types from dcl list to signatlist
for _, n := range dcls {
if n.Op == OTYPE {
addsignat(n.Type)
}
}
}
func dumpsignats() {
// Process signatlist. Use a loop, as dtypesym adds
// entries to signatlist while it is being processed.
signats := make([]typeAndStr, len(signatlist))
for len(signatlist) > 0 {
signats = signats[:0]
// Transfer entries to a slice and sort, for reproducible builds.
for t := range signatlist {
signats = append(signats, typeAndStr{t: t, short: typesymname(t), regular: t.String()})
delete(signatlist, t)
}
sort.Sort(typesByString(signats))
for _, ts := range signats {
t := ts.t
dtypesym(t)
if t.Sym != nil {
dtypesym(types.NewPtr(t))
}
}
}
}
func dumptabs() {
// process itabs
for _, i := range itabs {
// dump empty itab symbol into i.sym
// type itab struct {
// inter *interfacetype
// _type *_type
// link *itab
// hash uint32
// bad bool
// inhash bool
// unused [2]byte
// fun [1]uintptr // variable sized
// }
o := dsymptr(i.lsym, 0, dtypesym(i.itype).Linksym(), 0)
o = dsymptr(i.lsym, o, dtypesym(i.t).Linksym(), 0)
o += Widthptr // skip link field
o = duint32(i.lsym, o, typehash(i.t)) // copy of type hash
o += 4 // skip bad/inhash/unused fields
o += len(imethods(i.itype)) * Widthptr // skip fun method pointers
// at runtime the itab will contain pointers to types, other itabs and
// method functions. None are allocated on heap, so we can use obj.NOPTR.
ggloblsym(i.lsym, int32(o), int16(obj.DUPOK|obj.NOPTR))
ilink := itablinkpkg.Lookup(i.t.ShortString() + "," + i.itype.ShortString()).Linksym()
dsymptr(ilink, 0, i.lsym, 0)
ggloblsym(ilink, int32(Widthptr), int16(obj.DUPOK|obj.RODATA))
}
// process ptabs
if localpkg.Name == "main" && len(ptabs) > 0 {
ot := 0
s := Ctxt.Lookup("go.plugin.tabs")
for _, p := range ptabs {
// Dump ptab symbol into go.pluginsym package.
//
// type ptab struct {
// name nameOff
// typ typeOff // pointer to symbol
// }
nsym := dname(p.s.Name, "", nil, true)
ot = dsymptrOff(s, ot, nsym, 0)
ot = dsymptrOff(s, ot, dtypesym(p.t).Linksym(), 0)
}
ggloblsym(s, int32(ot), int16(obj.RODATA))
ot = 0
s = Ctxt.Lookup("go.plugin.exports")
for _, p := range ptabs {
ot = dsymptr(s, ot, p.s.Linksym(), 0)
}
ggloblsym(s, int32(ot), int16(obj.RODATA))
}
}
func dumpimportstrings() {
// generate import strings for imported packages
for _, p := range types.ImportedPkgList() {
dimportpath(p)
}
}
func dumpbasictypes() {
// do basic types if compiling package runtime.
// they have to be in at least one package,
// and runtime is always loaded implicitly,
// so this is as good as any.
// another possible choice would be package main,
// but using runtime means fewer copies in object files.
if myimportpath == "runtime" {
for i := types.EType(1); i <= TBOOL; i++ {
dtypesym(types.NewPtr(types.Types[i]))
}
dtypesym(types.NewPtr(types.Types[TSTRING]))
dtypesym(types.NewPtr(types.Types[TUNSAFEPTR]))
// emit type structs for error and func(error) string.
// The latter is the type of an auto-generated wrapper.
dtypesym(types.NewPtr(types.Errortype))
dtypesym(functype(nil, []*Node{anonfield(types.Errortype)}, []*Node{anonfield(types.Types[TSTRING])}))
// add paths for runtime and main, which 6l imports implicitly.
dimportpath(Runtimepkg)
if flag_race {
dimportpath(racepkg)
}
if flag_msan {
dimportpath(msanpkg)
}
dimportpath(types.NewPkg("main", ""))
}
}
type typeAndStr struct {
t *types.Type
short string
regular string
}
type typesByString []typeAndStr
func (a typesByString) Len() int { return len(a) }
func (a typesByString) Less(i, j int) bool {
if a[i].short != a[j].short {
return a[i].short < a[j].short
}
// When the only difference between the types is whether
// they refer to byte or uint8, such as **byte vs **uint8,
// the types' ShortStrings can be identical.
// To preserve deterministic sort ordering, sort these by String().
return a[i].regular < a[j].regular
}
func (a typesByString) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func dalgsym(t *types.Type) *obj.LSym {
var lsym *obj.LSym
var hashfunc *obj.LSym
var eqfunc *obj.LSym
// dalgsym is only called for a type that needs an algorithm table,
// which implies that the type is comparable (or else it would use ANOEQ).
if algtype(t) == AMEM {
// we use one algorithm table for all AMEM types of a given size
p := fmt.Sprintf(".alg%d", t.Width)
s := typeLookup(p)
lsym = s.Linksym()
if s.AlgGen() {
return lsym
}
s.SetAlgGen(true)
if memhashvarlen == nil {
memhashvarlen = Sysfunc("memhash_varlen")
memequalvarlen = Sysfunc("memequal_varlen")
}
// make hash closure
p = fmt.Sprintf(".hashfunc%d", t.Width)
hashfunc = typeLookup(p).Linksym()
ot := 0
ot = dsymptr(hashfunc, ot, memhashvarlen, 0)
ot = duintptr(hashfunc, ot, uint64(t.Width)) // size encoded in closure
ggloblsym(hashfunc, int32(ot), obj.DUPOK|obj.RODATA)
// make equality closure
p = fmt.Sprintf(".eqfunc%d", t.Width)
eqfunc = typeLookup(p).Linksym()
ot = 0
ot = dsymptr(eqfunc, ot, memequalvarlen, 0)
ot = duintptr(eqfunc, ot, uint64(t.Width))
ggloblsym(eqfunc, int32(ot), obj.DUPOK|obj.RODATA)
} else {
// generate an alg table specific to this type
s := typesymprefix(".alg", t)
lsym = s.Linksym()
hash := typesymprefix(".hash", t)
eq := typesymprefix(".eq", t)
hashfunc = typesymprefix(".hashfunc", t).Linksym()
eqfunc = typesymprefix(".eqfunc", t).Linksym()
genhash(hash, t)
geneq(eq, t)
// make Go funcs (closures) for calling hash and equal from Go
dsymptr(hashfunc, 0, hash.Linksym(), 0)
ggloblsym(hashfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
dsymptr(eqfunc, 0, eq.Linksym(), 0)
ggloblsym(eqfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
}
// ../../../../runtime/alg.go:/typeAlg
ot := 0
ot = dsymptr(lsym, ot, hashfunc, 0)
ot = dsymptr(lsym, ot, eqfunc, 0)
ggloblsym(lsym, int32(ot), obj.DUPOK|obj.RODATA)
return lsym
}
// maxPtrmaskBytes is the maximum length of a GC ptrmask bitmap,
// which holds 1-bit entries describing where pointers are in a given type.
// Above this length, the GC information is recorded as a GC program,
// which can express repetition compactly. In either form, the
// information is used by the runtime to initialize the heap bitmap,
// and for large types (like 128 or more words), they are roughly the
// same speed. GC programs are never much larger and often more
// compact. (If large arrays are involved, they can be arbitrarily
// more compact.)
//
// The cutoff must be large enough that any allocation large enough to
// use a GC program is large enough that it does not share heap bitmap
// bytes with any other objects, allowing the GC program execution to
// assume an aligned start and not use atomic operations. In the current
// runtime, this means all malloc size classes larger than the cutoff must
// be multiples of four words. On 32-bit systems that's 16 bytes, and
// all size classes >= 16 bytes are 16-byte aligned, so no real constraint.
// On 64-bit systems, that's 32 bytes, and 32-byte alignment is guaranteed
// for size classes >= 256 bytes. On a 64-bit system, 256 bytes allocated
// is 32 pointers, the bits for which fit in 4 bytes. So maxPtrmaskBytes
// must be >= 4.
//
// We used to use 16 because the GC programs do have some constant overhead
// to get started, and processing 128 pointers seems to be enough to
// amortize that overhead well.
//
// To make sure that the runtime's chansend can call typeBitsBulkBarrier,
// we raised the limit to 2048, so that even 32-bit systems are guaranteed to
// use bitmaps for objects up to 64 kB in size.
//
// Also known to reflect/type.go.
//
const maxPtrmaskBytes = 2048
// dgcsym emits and returns a data symbol containing GC information for type t,
// along with a boolean reporting whether the UseGCProg bit should be set in
// the type kind, and the ptrdata field to record in the reflect type information.
func dgcsym(t *types.Type) (lsym *obj.LSym, useGCProg bool, ptrdata int64) {
ptrdata = typeptrdata(t)
if ptrdata/int64(Widthptr) <= maxPtrmaskBytes*8 {
lsym = dgcptrmask(t)
return
}
useGCProg = true
lsym, ptrdata = dgcprog(t)
return
}
// dgcptrmask emits and returns the symbol containing a pointer mask for type t.
func dgcptrmask(t *types.Type) *obj.LSym {
ptrmask := make([]byte, (typeptrdata(t)/int64(Widthptr)+7)/8)
fillptrmask(t, ptrmask)
p := fmt.Sprintf("gcbits.%x", ptrmask)
sym := Runtimepkg.Lookup(p)
lsym := sym.Linksym()
if !sym.Uniq() {
sym.SetUniq(true)
for i, x := range ptrmask {
duint8(lsym, i, x)
}
ggloblsym(lsym, int32(len(ptrmask)), obj.DUPOK|obj.RODATA|obj.LOCAL)
}
return lsym
}
// fillptrmask fills in ptrmask with 1s corresponding to the
// word offsets in t that hold pointers.
// ptrmask is assumed to fit at least typeptrdata(t)/Widthptr bits.
func fillptrmask(t *types.Type, ptrmask []byte) {
for i := range ptrmask {
ptrmask[i] = 0
}
if !types.Haspointers(t) {
return
}
vec := bvalloc(8 * int32(len(ptrmask)))
xoffset := int64(0)
onebitwalktype1(t, &xoffset, vec)
nptr := typeptrdata(t) / int64(Widthptr)
for i := int64(0); i < nptr; i++ {
if vec.Get(int32(i)) {
ptrmask[i/8] |= 1 << (uint(i) % 8)
}
}
}
// dgcprog emits and returns the symbol containing a GC program for type t
// along with the size of the data described by the program (in the range [typeptrdata(t), t.Width]).
// In practice, the size is typeptrdata(t) except for non-trivial arrays.
// For non-trivial arrays, the program describes the full t.Width size.
func dgcprog(t *types.Type) (*obj.LSym, int64) {
dowidth(t)
if t.Width == BADWIDTH {
Fatalf("dgcprog: %v badwidth", t)
}
lsym := typesymprefix(".gcprog", t).Linksym()
var p GCProg
p.init(lsym)
p.emit(t, 0)
offset := p.w.BitIndex() * int64(Widthptr)
p.end()
if ptrdata := typeptrdata(t); offset < ptrdata || offset > t.Width {
Fatalf("dgcprog: %v: offset=%d but ptrdata=%d size=%d", t, offset, ptrdata, t.Width)
}
return lsym, offset
}
type GCProg struct {
lsym *obj.LSym
symoff int
w gcprog.Writer
}
var Debug_gcprog int // set by -d gcprog
func (p *GCProg) init(lsym *obj.LSym) {
p.lsym = lsym
p.symoff = 4 // first 4 bytes hold program length
p.w.Init(p.writeByte)
if Debug_gcprog > 0 {
fmt.Fprintf(os.Stderr, "compile: start GCProg for %v\n", lsym)
p.w.Debug(os.Stderr)
}
}
func (p *GCProg) writeByte(x byte) {
p.symoff = duint8(p.lsym, p.symoff, x)
}
func (p *GCProg) end() {
p.w.End()
duint32(p.lsym, 0, uint32(p.symoff-4))
ggloblsym(p.lsym, int32(p.symoff), obj.DUPOK|obj.RODATA|obj.LOCAL)
if Debug_gcprog > 0 {
fmt.Fprintf(os.Stderr, "compile: end GCProg for %v\n", p.lsym)
}
}
func (p *GCProg) emit(t *types.Type, offset int64) {
dowidth(t)
if !types.Haspointers(t) {
return
}
if t.Width == int64(Widthptr) {
p.w.Ptr(offset / int64(Widthptr))
return
}
switch t.Etype {
default:
Fatalf("GCProg.emit: unexpected type %v", t)
case TSTRING:
p.w.Ptr(offset / int64(Widthptr))
case TINTER:
p.w.Ptr(offset / int64(Widthptr))
p.w.Ptr(offset/int64(Widthptr) + 1)
case TSLICE:
p.w.Ptr(offset / int64(Widthptr))
case TARRAY:
if t.NumElem() == 0 {
// should have been handled by haspointers check above
Fatalf("GCProg.emit: empty array")
}
// Flatten array-of-array-of-array to just a big array by multiplying counts.
count := t.NumElem()
elem := t.Elem()
for elem.IsArray() {
count *= elem.NumElem()
elem = elem.Elem()
}
if !p.w.ShouldRepeat(elem.Width/int64(Widthptr), count) {
// Cheaper to just emit the bits.
for i := int64(0); i < count; i++ {
p.emit(elem, offset+i*elem.Width)
}
return
}
p.emit(elem, offset)
p.w.ZeroUntil((offset + elem.Width) / int64(Widthptr))
p.w.Repeat(elem.Width/int64(Widthptr), count-1)
case TSTRUCT:
for _, t1 := range t.Fields().Slice() {
p.emit(t1.Type, offset+t1.Offset)
}
}
}
// zeroaddr returns the address of a symbol with at least
// size bytes of zeros.
func zeroaddr(size int64) *Node {
if size >= 1<<31 {
Fatalf("map value too big %d", size)
}
if zerosize < size {
zerosize = size
}
s := mappkg.Lookup("zero")
if s.Def == nil {
x := newname(s)
x.Type = types.Types[TUINT8]
x.SetClass(PEXTERN)
x.SetTypecheck(1)
s.Def = asTypesNode(x)
}
z := nod(OADDR, asNode(s.Def), nil)
z.Type = types.NewPtr(types.Types[TUINT8])
z.SetAddable(true)
z.SetTypecheck(1)
return z
}