go/src/runtime/os_plan9.go
David du Colombier 9f55e7bc21 runtime: don't read /dev/random on Plan 9
In CL 656755, the readRandom function was modified
to read an integer from /dev/random.

However, on Plan 9, /dev/random can only return
a few hundred bits a second.

The issue is that readRandom is called by randinit,
which is called at the creation of Go processes.

Consequently, it lead the Go programs to be very
slow on Plan 9.

This change reverts the change done in CL 656755
to make the readRandom function always returning 0
on Plan 9.

Change-Id: Ibe1bf7e4c8cbc82998e4f5e1331f5e29a047c4fc
Cq-Include-Trybots: luci.golang.try:gotip-plan9-arm

Reviewed-on: https://go-review.googlesource.com/c/go/+/663195
Reviewed-by: Michael Pratt <mpratt@google.com>
Reviewed-by: Dmitri Shuralyov <dmitshur@golang.org>
Reviewed-by: Richard Miller <millerresearch@gmail.com>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Dmitri Shuralyov <dmitshur@google.com>
2025-04-25 14:43:43 -07:00

596 lines
12 KiB
Go

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/abi"
"internal/byteorder"
"internal/runtime/atomic"
"internal/stringslite"
"unsafe"
)
type mOS struct {
waitsemacount uint32
notesig *int8
errstr *byte
ignoreHangup bool
}
func dupfd(old, new int32) int32
func closefd(fd int32) int32
//go:noescape
func open(name *byte, mode, perm int32) int32
//go:noescape
func pread(fd int32, buf unsafe.Pointer, nbytes int32, offset int64) int32
//go:noescape
func pwrite(fd int32, buf unsafe.Pointer, nbytes int32, offset int64) int32
func seek(fd int32, offset int64, whence int32) int64
//go:noescape
func exits(msg *byte)
//go:noescape
func brk_(addr unsafe.Pointer) int32
func sleep(ms int32) int32
func rfork(flags int32) int32
//go:noescape
func plan9_semacquire(addr *uint32, block int32) int32
//go:noescape
func plan9_tsemacquire(addr *uint32, ms int32) int32
//go:noescape
func plan9_semrelease(addr *uint32, count int32) int32
//go:noescape
func notify(fn unsafe.Pointer) int32
func noted(mode int32) int32
//go:noescape
func nsec(*int64) int64
//go:noescape
func sigtramp(ureg, note unsafe.Pointer)
func setfpmasks()
//go:noescape
func tstart_plan9(newm *m)
func errstr() string
type _Plink uintptr
func sigpanic() {
gp := getg()
if !canpanic() {
throw("unexpected signal during runtime execution")
}
note := gostringnocopy((*byte)(unsafe.Pointer(gp.m.notesig)))
switch gp.sig {
case _SIGRFAULT, _SIGWFAULT:
i := indexNoFloat(note, "addr=")
if i >= 0 {
i += 5
} else if i = indexNoFloat(note, "va="); i >= 0 {
i += 3
} else {
panicmem()
}
addr := note[i:]
gp.sigcode1 = uintptr(atolwhex(addr))
if gp.sigcode1 < 0x1000 {
panicmem()
}
if gp.paniconfault {
panicmemAddr(gp.sigcode1)
}
if inUserArenaChunk(gp.sigcode1) {
// We could check that the arena chunk is explicitly set to fault,
// but the fact that we faulted on accessing it is enough to prove
// that it is.
print("accessed data from freed user arena ", hex(gp.sigcode1), "\n")
} else {
print("unexpected fault address ", hex(gp.sigcode1), "\n")
}
throw("fault")
case _SIGTRAP:
if gp.paniconfault {
panicmem()
}
throw(note)
case _SIGINTDIV:
panicdivide()
case _SIGFLOAT:
panicfloat()
default:
panic(errorString(note))
}
}
// indexNoFloat is bytealg.IndexString but safe to use in a note
// handler.
func indexNoFloat(s, t string) int {
if len(t) == 0 {
return 0
}
for i := 0; i < len(s); i++ {
if s[i] == t[0] && stringslite.HasPrefix(s[i:], t) {
return i
}
}
return -1
}
func atolwhex(p string) int64 {
for stringslite.HasPrefix(p, " ") || stringslite.HasPrefix(p, "\t") {
p = p[1:]
}
neg := false
if stringslite.HasPrefix(p, "-") || stringslite.HasPrefix(p, "+") {
neg = p[0] == '-'
p = p[1:]
for stringslite.HasPrefix(p, " ") || stringslite.HasPrefix(p, "\t") {
p = p[1:]
}
}
var n int64
switch {
case stringslite.HasPrefix(p, "0x"), stringslite.HasPrefix(p, "0X"):
p = p[2:]
for ; len(p) > 0; p = p[1:] {
if '0' <= p[0] && p[0] <= '9' {
n = n*16 + int64(p[0]-'0')
} else if 'a' <= p[0] && p[0] <= 'f' {
n = n*16 + int64(p[0]-'a'+10)
} else if 'A' <= p[0] && p[0] <= 'F' {
n = n*16 + int64(p[0]-'A'+10)
} else {
break
}
}
case stringslite.HasPrefix(p, "0"):
for ; len(p) > 0 && '0' <= p[0] && p[0] <= '7'; p = p[1:] {
n = n*8 + int64(p[0]-'0')
}
default:
for ; len(p) > 0 && '0' <= p[0] && p[0] <= '9'; p = p[1:] {
n = n*10 + int64(p[0]-'0')
}
}
if neg {
n = -n
}
return n
}
type sigset struct{}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
func mpreinit(mp *m) {
// Initialize stack and goroutine for note handling.
mp.gsignal = malg(32 * 1024)
mp.gsignal.m = mp
mp.notesig = (*int8)(mallocgc(_ERRMAX, nil, true))
// Initialize stack for handling strings from the
// errstr system call, as used in package syscall.
mp.errstr = (*byte)(mallocgc(_ERRMAX, nil, true))
}
func sigsave(p *sigset) {
}
func msigrestore(sigmask sigset) {
}
//go:nosplit
//go:nowritebarrierrec
func clearSignalHandlers() {
}
func sigblock(exiting bool) {
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, cannot allocate memory.
func minit() {
if atomic.Load(&exiting) != 0 {
exits(&emptystatus[0])
}
// Mask all SSE floating-point exceptions
// when running on the 64-bit kernel.
setfpmasks()
}
// Called from dropm to undo the effect of an minit.
func unminit() {
}
// Called from mexit, but not from dropm, to undo the effect of thread-owned
// resources in minit, semacreate, or elsewhere. Do not take locks after calling this.
//
// This always runs without a P, so //go:nowritebarrierrec is required.
//
//go:nowritebarrierrec
func mdestroy(mp *m) {
}
var sysstat = []byte("/dev/sysstat\x00")
func getproccount() int32 {
var buf [2048]byte
fd := open(&sysstat[0], _OREAD|_OCEXEC, 0)
if fd < 0 {
return 1
}
ncpu := int32(0)
for {
n := read(fd, unsafe.Pointer(&buf), int32(len(buf)))
if n <= 0 {
break
}
for i := int32(0); i < n; i++ {
if buf[i] == '\n' {
ncpu++
}
}
}
closefd(fd)
if ncpu == 0 {
ncpu = 1
}
return ncpu
}
var devswap = []byte("/dev/swap\x00")
var pagesize = []byte(" pagesize\n")
func getPageSize() uintptr {
var buf [2048]byte
var pos int
fd := open(&devswap[0], _OREAD|_OCEXEC, 0)
if fd < 0 {
// There's not much we can do if /dev/swap doesn't
// exist. However, nothing in the memory manager uses
// this on Plan 9, so it also doesn't really matter.
return minPhysPageSize
}
for pos < len(buf) {
n := read(fd, unsafe.Pointer(&buf[pos]), int32(len(buf)-pos))
if n <= 0 {
break
}
pos += int(n)
}
closefd(fd)
text := buf[:pos]
// Find "<n> pagesize" line.
bol := 0
for i, c := range text {
if c == '\n' {
bol = i + 1
}
if bytesHasPrefix(text[i:], pagesize) {
// Parse number at the beginning of this line.
return uintptr(_atoi(text[bol:]))
}
}
// Again, the page size doesn't really matter, so use a fallback.
return minPhysPageSize
}
func bytesHasPrefix(s, prefix []byte) bool {
if len(s) < len(prefix) {
return false
}
for i, p := range prefix {
if s[i] != p {
return false
}
}
return true
}
var pid = []byte("#c/pid\x00")
func getpid() uint64 {
var b [20]byte
fd := open(&pid[0], 0, 0)
if fd >= 0 {
read(fd, unsafe.Pointer(&b), int32(len(b)))
closefd(fd)
}
c := b[:]
for c[0] == ' ' || c[0] == '\t' {
c = c[1:]
}
return uint64(_atoi(c))
}
var (
bintimeFD int32 = -1
bintimeDev = []byte("/dev/bintime\x00")
randomDev = []byte("/dev/random\x00")
)
func osinit() {
physPageSize = getPageSize()
initBloc()
ncpu = getproccount()
getg().m.procid = getpid()
fd := open(&bintimeDev[0], _OREAD|_OCEXEC, 0)
if fd < 0 {
fatal("cannot open /dev/bintime")
}
bintimeFD = fd
// Move fd high up, to avoid conflicts with smaller ones
// that programs might hard code, and to make exec's job easier.
// Plan 9 allocates chunks of DELTAFD=20 fds in a row,
// so 18 is near the top of what's possible.
if bintimeFD < 18 {
if dupfd(bintimeFD, 18) < 0 {
fatal("cannot dup /dev/bintime onto 18")
}
closefd(bintimeFD)
bintimeFD = 18
}
}
//go:nosplit
func crash() {
notify(nil)
*(*int)(nil) = 0
}
// Don't read from /dev/random, since this device can only
// return a few hundred bits a second and would slow creation
// of Go processes down significantly.
//
//go:nosplit
func readRandom(r []byte) int {
return 0
}
func initsig(preinit bool) {
if !preinit {
notify(unsafe.Pointer(abi.FuncPCABI0(sigtramp)))
}
}
//go:nosplit
func osyield() {
sleep(0)
}
//go:nosplit
func osyield_no_g() {
osyield()
}
//go:nosplit
func usleep(µs uint32) {
ms := int32(µs / 1000)
if ms == 0 {
ms = 1
}
sleep(ms)
}
//go:nosplit
func usleep_no_g(usec uint32) {
usleep(usec)
}
var goexits = []byte("go: exit ")
var emptystatus = []byte("\x00")
var exiting uint32
func goexitsall(status *byte) {
var buf [_ERRMAX]byte
if !atomic.Cas(&exiting, 0, 1) {
return
}
getg().m.locks++
n := copy(buf[:], goexits)
n = copy(buf[n:], gostringnocopy(status))
pid := getpid()
for mp := (*m)(atomic.Loadp(unsafe.Pointer(&allm))); mp != nil; mp = mp.alllink {
if mp.procid != 0 && mp.procid != pid {
postnote(mp.procid, buf[:])
}
}
getg().m.locks--
}
var procdir = []byte("/proc/")
var notefile = []byte("/note\x00")
func postnote(pid uint64, msg []byte) int {
var buf [128]byte
var tmp [32]byte
n := copy(buf[:], procdir)
n += copy(buf[n:], itoa(tmp[:], pid))
copy(buf[n:], notefile)
fd := open(&buf[0], _OWRITE, 0)
if fd < 0 {
return -1
}
len := findnull(&msg[0])
if write1(uintptr(fd), unsafe.Pointer(&msg[0]), int32(len)) != int32(len) {
closefd(fd)
return -1
}
closefd(fd)
return 0
}
//go:nosplit
func exit(e int32) {
var status []byte
if e == 0 {
status = emptystatus
} else {
// build error string
var tmp [32]byte
sl := itoa(tmp[:len(tmp)-1], uint64(e))
// Don't append, rely on the existing data being zero.
status = sl[:len(sl)+1]
}
goexitsall(&status[0])
exits(&status[0])
}
// May run with m.p==nil, so write barriers are not allowed.
//
//go:nowritebarrier
func newosproc(mp *m) {
if false {
print("newosproc mp=", mp, " ostk=", &mp, "\n")
}
pid := rfork(_RFPROC | _RFMEM | _RFNOWAIT)
if pid < 0 {
throw("newosproc: rfork failed")
}
if pid == 0 {
tstart_plan9(mp)
}
}
func exitThread(wait *atomic.Uint32) {
// We should never reach exitThread on Plan 9 because we let
// the OS clean up threads.
throw("exitThread")
}
//go:nosplit
func semacreate(mp *m) {
}
//go:nosplit
func semasleep(ns int64) int {
gp := getg()
if ns >= 0 {
ms := timediv(ns, 1000000, nil)
if ms == 0 {
ms = 1
}
ret := plan9_tsemacquire(&gp.m.waitsemacount, ms)
if ret == 1 {
return 0 // success
}
return -1 // timeout or interrupted
}
for plan9_semacquire(&gp.m.waitsemacount, 1) < 0 {
// interrupted; try again (c.f. lock_sema.go)
}
return 0 // success
}
//go:nosplit
func semawakeup(mp *m) {
plan9_semrelease(&mp.waitsemacount, 1)
}
//go:nosplit
func read(fd int32, buf unsafe.Pointer, n int32) int32 {
return pread(fd, buf, n, -1)
}
//go:nosplit
func write1(fd uintptr, buf unsafe.Pointer, n int32) int32 {
return pwrite(int32(fd), buf, n, -1)
}
var _badsignal = []byte("runtime: signal received on thread not created by Go.\n")
// This runs on a foreign stack, without an m or a g. No stack split.
//
//go:nosplit
func badsignal2() {
pwrite(2, unsafe.Pointer(&_badsignal[0]), int32(len(_badsignal)), -1)
exits(&_badsignal[0])
}
func raisebadsignal(sig uint32) {
badsignal2()
}
func _atoi(b []byte) int {
n := 0
for len(b) > 0 && '0' <= b[0] && b[0] <= '9' {
n = n*10 + int(b[0]) - '0'
b = b[1:]
}
return n
}
func signame(sig uint32) string {
if sig >= uint32(len(sigtable)) {
return ""
}
return sigtable[sig].name
}
const preemptMSupported = false
func preemptM(mp *m) {
// Not currently supported.
//
// TODO: Use a note like we use signals on POSIX OSes
}
//go:nosplit
func readtime(t *uint64, min, n int) int {
if bintimeFD < 0 {
fatal("/dev/bintime not opened")
}
const uint64size = 8
r := pread(bintimeFD, unsafe.Pointer(t), int32(n*uint64size), 0)
if int(r) < min*uint64size {
fatal("cannot read /dev/bintime")
}
return int(r) / uint64size
}
// timesplit returns u/1e9, u%1e9
func timesplit(u uint64) (sec int64, nsec int32)
func frombe(u uint64) uint64 {
b := (*[8]byte)(unsafe.Pointer(&u))
return byteorder.BEUint64(b[:])
}
//go:nosplit
func nanotime1() int64 {
var t [4]uint64
if readtime(&t[0], 1, 4) == 4 {
// long read indicates new kernel sending monotonic time
// (https://github.com/rsc/plan9/commit/baf076425).
return int64(frombe(t[3]))
}
// fall back to unix time
return int64(frombe(t[0]))
}
//go:nosplit
func walltime() (sec int64, nsec int32) {
var t [1]uint64
readtime(&t[0], 1, 1)
return timesplit(frombe(t[0]))
}