go/src/cmd/compile/internal/gc/obj.go
Cuong Manh Le d20298e1c7 cmd/compile: make funccompile non-reentrant
Currently, there's awkward reentrancy issue with funccompile:

    funccompile -> compile -> dtypesym -> geneq/genhash/genwrapper -> funccompile

Though it's not a problem at this moment, some attempts by @mdempsky to
move order/walk/instrument into buildssa was failed, due to SSA cache
corruption.

This commit fixes that reentrancy issue, by making generated functions
to be pumped through the same compile workqueue that normal functions
are compiled. We do this by adding them to xtop, instead of calling
funccompile directly in geneq/genhash/genwrapper. In dumpdata, we look
for uncompiled functions in xtop instead of compilequeue, then finish
compiling them.

Updates #38463
Fixes #33485

Change-Id: Ic9f0ce45b56ae2ff3862f17fd979253ddc144bb5
Reviewed-on: https://go-review.googlesource.com/c/go/+/254617
Run-TryBot: Cuong Manh Le <cuong.manhle.vn@gmail.com>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Trust: Keith Randall <khr@golang.org>
Trust: Cuong Manh Le <cuong.manhle.vn@gmail.com>
2020-09-15 02:05:31 +00:00

535 lines
13 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/types"
"cmd/internal/bio"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
"crypto/sha256"
"encoding/json"
"fmt"
"io"
"sort"
"strconv"
)
// architecture-independent object file output
const ArhdrSize = 60
func formathdr(arhdr []byte, name string, size int64) {
copy(arhdr[:], fmt.Sprintf("%-16s%-12d%-6d%-6d%-8o%-10d`\n", name, 0, 0, 0, 0644, size))
}
// These modes say which kind of object file to generate.
// The default use of the toolchain is to set both bits,
// generating a combined compiler+linker object, one that
// serves to describe the package to both the compiler and the linker.
// In fact the compiler and linker read nearly disjoint sections of
// that file, though, so in a distributed build setting it can be more
// efficient to split the output into two files, supplying the compiler
// object only to future compilations and the linker object only to
// future links.
//
// By default a combined object is written, but if -linkobj is specified
// on the command line then the default -o output is a compiler object
// and the -linkobj output is a linker object.
const (
modeCompilerObj = 1 << iota
modeLinkerObj
)
func dumpobj() {
if linkobj == "" {
dumpobj1(outfile, modeCompilerObj|modeLinkerObj)
return
}
dumpobj1(outfile, modeCompilerObj)
dumpobj1(linkobj, modeLinkerObj)
}
func dumpobj1(outfile string, mode int) {
bout, err := bio.Create(outfile)
if err != nil {
flusherrors()
fmt.Printf("can't create %s: %v\n", outfile, err)
errorexit()
}
defer bout.Close()
bout.WriteString("!<arch>\n")
if mode&modeCompilerObj != 0 {
start := startArchiveEntry(bout)
dumpCompilerObj(bout)
finishArchiveEntry(bout, start, "__.PKGDEF")
}
if mode&modeLinkerObj != 0 {
start := startArchiveEntry(bout)
dumpLinkerObj(bout)
finishArchiveEntry(bout, start, "_go_.o")
}
}
func printObjHeader(bout *bio.Writer) {
fmt.Fprintf(bout, "go object %s %s %s %s\n", objabi.GOOS, objabi.GOARCH, objabi.Version, objabi.Expstring())
if buildid != "" {
fmt.Fprintf(bout, "build id %q\n", buildid)
}
if localpkg.Name == "main" {
fmt.Fprintf(bout, "main\n")
}
fmt.Fprintf(bout, "\n") // header ends with blank line
}
func startArchiveEntry(bout *bio.Writer) int64 {
var arhdr [ArhdrSize]byte
bout.Write(arhdr[:])
return bout.Offset()
}
func finishArchiveEntry(bout *bio.Writer, start int64, name string) {
bout.Flush()
size := bout.Offset() - start
if size&1 != 0 {
bout.WriteByte(0)
}
bout.MustSeek(start-ArhdrSize, 0)
var arhdr [ArhdrSize]byte
formathdr(arhdr[:], name, size)
bout.Write(arhdr[:])
bout.Flush()
bout.MustSeek(start+size+(size&1), 0)
}
func dumpCompilerObj(bout *bio.Writer) {
printObjHeader(bout)
dumpexport(bout)
}
func dumpdata() {
externs := len(externdcl)
xtops := len(xtop)
dumpglobls()
addptabs()
exportlistLen := len(exportlist)
addsignats(externdcl)
dumpsignats()
dumptabs()
ptabsLen := len(ptabs)
itabsLen := len(itabs)
dumpimportstrings()
dumpbasictypes()
// Calls to dumpsignats can generate functions,
// like method wrappers and hash and equality routines.
// Compile any generated functions, process any new resulting types, repeat.
// This can't loop forever, because there is no way to generate an infinite
// number of types in a finite amount of code.
// In the typical case, we loop 0 or 1 times.
// It was not until issue 24761 that we found any code that required a loop at all.
for {
for i := xtops; i < len(xtop); i++ {
n := xtop[i]
if n.Op == ODCLFUNC {
funccompile(n)
}
}
xtops = len(xtop)
compileFunctions()
dumpsignats()
if xtops == len(xtop) {
break
}
}
// Dump extra globals.
tmp := externdcl
if externdcl != nil {
externdcl = externdcl[externs:]
}
dumpglobls()
externdcl = tmp
if zerosize > 0 {
zero := mappkg.Lookup("zero")
ggloblsym(zero.Linksym(), int32(zerosize), obj.DUPOK|obj.RODATA)
}
addGCLocals()
if exportlistLen != len(exportlist) {
Fatalf("exportlist changed after compile functions loop")
}
if ptabsLen != len(ptabs) {
Fatalf("ptabs changed after compile functions loop")
}
if itabsLen != len(itabs) {
Fatalf("itabs changed after compile functions loop")
}
}
func dumpLinkerObj(bout *bio.Writer) {
printObjHeader(bout)
if len(pragcgobuf) != 0 {
// write empty export section; must be before cgo section
fmt.Fprintf(bout, "\n$$\n\n$$\n\n")
fmt.Fprintf(bout, "\n$$ // cgo\n")
if err := json.NewEncoder(bout).Encode(pragcgobuf); err != nil {
Fatalf("serializing pragcgobuf: %v", err)
}
fmt.Fprintf(bout, "\n$$\n\n")
}
fmt.Fprintf(bout, "\n!\n")
obj.WriteObjFile(Ctxt, bout)
}
func addptabs() {
if !Ctxt.Flag_dynlink || localpkg.Name != "main" {
return
}
for _, exportn := range exportlist {
s := exportn.Sym
n := asNode(s.Def)
if n == nil {
continue
}
if n.Op != ONAME {
continue
}
if !types.IsExported(s.Name) {
continue
}
if s.Pkg.Name != "main" {
continue
}
if n.Type.Etype == TFUNC && n.Class() == PFUNC {
// function
ptabs = append(ptabs, ptabEntry{s: s, t: asNode(s.Def).Type})
} else {
// variable
ptabs = append(ptabs, ptabEntry{s: s, t: types.NewPtr(asNode(s.Def).Type)})
}
}
}
func dumpGlobal(n *Node) {
if n.Type == nil {
Fatalf("external %v nil type\n", n)
}
if n.Class() == PFUNC {
return
}
if n.Sym.Pkg != localpkg {
return
}
dowidth(n.Type)
ggloblnod(n)
}
func dumpGlobalConst(n *Node) {
// only export typed constants
t := n.Type
if t == nil {
return
}
if n.Sym.Pkg != localpkg {
return
}
// only export integer constants for now
switch t.Etype {
case TINT8:
case TINT16:
case TINT32:
case TINT64:
case TINT:
case TUINT8:
case TUINT16:
case TUINT32:
case TUINT64:
case TUINT:
case TUINTPTR:
// ok
case TIDEAL:
if !Isconst(n, CTINT) {
return
}
x := n.Val().U.(*Mpint)
if x.Cmp(minintval[TINT]) < 0 || x.Cmp(maxintval[TINT]) > 0 {
return
}
// Ideal integers we export as int (if they fit).
t = types.Types[TINT]
default:
return
}
Ctxt.DwarfIntConst(myimportpath, n.Sym.Name, typesymname(t), n.Int64())
}
func dumpglobls() {
// add globals
for _, n := range externdcl {
switch n.Op {
case ONAME:
dumpGlobal(n)
case OLITERAL:
dumpGlobalConst(n)
}
}
sort.Slice(funcsyms, func(i, j int) bool {
return funcsyms[i].LinksymName() < funcsyms[j].LinksymName()
})
for _, s := range funcsyms {
sf := s.Pkg.Lookup(funcsymname(s)).Linksym()
dsymptr(sf, 0, s.Linksym(), 0)
ggloblsym(sf, int32(Widthptr), obj.DUPOK|obj.RODATA)
}
// Do not reprocess funcsyms on next dumpglobls call.
funcsyms = nil
}
// addGCLocals adds gcargs, gclocals, gcregs, and stack object symbols to Ctxt.Data.
//
// This is done during the sequential phase after compilation, since
// global symbols can't be declared during parallel compilation.
func addGCLocals() {
for _, s := range Ctxt.Text {
if s.Func == nil {
continue
}
for _, gcsym := range []*obj.LSym{s.Func.GCArgs, s.Func.GCLocals, s.Func.GCRegs} {
if gcsym != nil && !gcsym.OnList() {
ggloblsym(gcsym, int32(len(gcsym.P)), obj.RODATA|obj.DUPOK)
}
}
if x := s.Func.StackObjects; x != nil {
attr := int16(obj.RODATA)
ggloblsym(x, int32(len(x.P)), attr)
x.Set(obj.AttrStatic, true)
}
if x := s.Func.OpenCodedDeferInfo; x != nil {
ggloblsym(x, int32(len(x.P)), obj.RODATA|obj.DUPOK)
}
}
}
func duintxx(s *obj.LSym, off int, v uint64, wid int) int {
if off&(wid-1) != 0 {
Fatalf("duintxxLSym: misaligned: v=%d wid=%d off=%d", v, wid, off)
}
s.WriteInt(Ctxt, int64(off), wid, int64(v))
return off + wid
}
func duint8(s *obj.LSym, off int, v uint8) int {
return duintxx(s, off, uint64(v), 1)
}
func duint16(s *obj.LSym, off int, v uint16) int {
return duintxx(s, off, uint64(v), 2)
}
func duint32(s *obj.LSym, off int, v uint32) int {
return duintxx(s, off, uint64(v), 4)
}
func duintptr(s *obj.LSym, off int, v uint64) int {
return duintxx(s, off, v, Widthptr)
}
func dbvec(s *obj.LSym, off int, bv bvec) int {
// Runtime reads the bitmaps as byte arrays. Oblige.
for j := 0; int32(j) < bv.n; j += 8 {
word := bv.b[j/32]
off = duint8(s, off, uint8(word>>(uint(j)%32)))
}
return off
}
func stringsym(pos src.XPos, s string) (data *obj.LSym) {
var symname string
if len(s) > 100 {
// Huge strings are hashed to avoid long names in object files.
// Indulge in some paranoia by writing the length of s, too,
// as protection against length extension attacks.
h := sha256.New()
io.WriteString(h, s)
symname = fmt.Sprintf(".gostring.%d.%x", len(s), h.Sum(nil))
} else {
// Small strings get named directly by their contents.
symname = strconv.Quote(s)
}
const prefix = "go.string."
symdataname := prefix + symname
symdata := Ctxt.Lookup(symdataname)
if !symdata.OnList() {
// string data
off := dsname(symdata, 0, s, pos, "string")
ggloblsym(symdata, int32(off), obj.DUPOK|obj.RODATA|obj.LOCAL)
symdata.Set(obj.AttrContentAddressable, true)
}
return symdata
}
var slicebytes_gen int
func slicebytes(nam *Node, s string) {
slicebytes_gen++
symname := fmt.Sprintf(".gobytes.%d", slicebytes_gen)
sym := localpkg.Lookup(symname)
symnode := newname(sym)
sym.Def = asTypesNode(symnode)
lsym := sym.Linksym()
off := dsname(lsym, 0, s, nam.Pos, "slice")
ggloblsym(lsym, int32(off), obj.NOPTR|obj.LOCAL)
if nam.Op != ONAME {
Fatalf("slicebytes %v", nam)
}
slicesym(nam, symnode, int64(len(s)))
}
func dsname(s *obj.LSym, off int, t string, pos src.XPos, what string) int {
// Objects that are too large will cause the data section to overflow right away,
// causing a cryptic error message by the linker. Check for oversize objects here
// and provide a useful error message instead.
if int64(len(t)) > 2e9 {
yyerrorl(pos, "%v with length %v is too big", what, len(t))
return 0
}
s.WriteString(Ctxt, int64(off), len(t), t)
return off + len(t)
}
func dsymptr(s *obj.LSym, off int, x *obj.LSym, xoff int) int {
off = int(Rnd(int64(off), int64(Widthptr)))
s.WriteAddr(Ctxt, int64(off), Widthptr, x, int64(xoff))
off += Widthptr
return off
}
func dsymptrOff(s *obj.LSym, off int, x *obj.LSym) int {
s.WriteOff(Ctxt, int64(off), x, 0)
off += 4
return off
}
func dsymptrWeakOff(s *obj.LSym, off int, x *obj.LSym) int {
s.WriteWeakOff(Ctxt, int64(off), x, 0)
off += 4
return off
}
// slicesym writes a static slice symbol {&arr, lencap, lencap} to n.
// arr must be an ONAME. slicesym does not modify n.
func slicesym(n, arr *Node, lencap int64) {
s := n.Sym.Linksym()
base := n.Xoffset
if arr.Op != ONAME {
Fatalf("slicesym non-name arr %v", arr)
}
s.WriteAddr(Ctxt, base, Widthptr, arr.Sym.Linksym(), arr.Xoffset)
s.WriteInt(Ctxt, base+sliceLenOffset, Widthptr, lencap)
s.WriteInt(Ctxt, base+sliceCapOffset, Widthptr, lencap)
}
// addrsym writes the static address of a to n. a must be an ONAME.
// Neither n nor a is modified.
func addrsym(n, a *Node) {
if n.Op != ONAME {
Fatalf("addrsym n op %v", n.Op)
}
if n.Sym == nil {
Fatalf("addrsym nil n sym")
}
if a.Op != ONAME {
Fatalf("addrsym a op %v", a.Op)
}
s := n.Sym.Linksym()
s.WriteAddr(Ctxt, n.Xoffset, Widthptr, a.Sym.Linksym(), a.Xoffset)
}
// pfuncsym writes the static address of f to n. f must be a global function.
// Neither n nor f is modified.
func pfuncsym(n, f *Node) {
if n.Op != ONAME {
Fatalf("pfuncsym n op %v", n.Op)
}
if n.Sym == nil {
Fatalf("pfuncsym nil n sym")
}
if f.Class() != PFUNC {
Fatalf("pfuncsym class not PFUNC %d", f.Class())
}
s := n.Sym.Linksym()
s.WriteAddr(Ctxt, n.Xoffset, Widthptr, funcsym(f.Sym).Linksym(), f.Xoffset)
}
// litsym writes the static literal c to n.
// Neither n nor c is modified.
func litsym(n, c *Node, wid int) {
if n.Op != ONAME {
Fatalf("litsym n op %v", n.Op)
}
if c.Op != OLITERAL {
Fatalf("litsym c op %v", c.Op)
}
if n.Sym == nil {
Fatalf("litsym nil n sym")
}
s := n.Sym.Linksym()
switch u := c.Val().U.(type) {
case bool:
i := int64(obj.Bool2int(u))
s.WriteInt(Ctxt, n.Xoffset, wid, i)
case *Mpint:
s.WriteInt(Ctxt, n.Xoffset, wid, u.Int64())
case *Mpflt:
f := u.Float64()
switch n.Type.Etype {
case TFLOAT32:
s.WriteFloat32(Ctxt, n.Xoffset, float32(f))
case TFLOAT64:
s.WriteFloat64(Ctxt, n.Xoffset, f)
}
case *Mpcplx:
r := u.Real.Float64()
i := u.Imag.Float64()
switch n.Type.Etype {
case TCOMPLEX64:
s.WriteFloat32(Ctxt, n.Xoffset, float32(r))
s.WriteFloat32(Ctxt, n.Xoffset+4, float32(i))
case TCOMPLEX128:
s.WriteFloat64(Ctxt, n.Xoffset, r)
s.WriteFloat64(Ctxt, n.Xoffset+8, i)
}
case string:
symdata := stringsym(n.Pos, u)
s.WriteAddr(Ctxt, n.Xoffset, Widthptr, symdata, 0)
s.WriteInt(Ctxt, n.Xoffset+int64(Widthptr), Widthptr, int64(len(u)))
default:
Fatalf("litsym unhandled OLITERAL %v", c)
}
}