mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
Receiver parameters generally aren't relevant to the function
signature type. In particular:
1. When checking whether a type's method implements an interface's
method, we specifically want to ignore the receiver parameters,
because they'll be different.
2. When checking interface type equality, interface methods always
use the same "fakethis" *struct{} type as their receiver.
3. Finally, method expressions and method values degenerate into
receiver-less function types.
The only case where we care about receiver types matching is in
addmethod, which is easily handled by adding an extra Eqtype check of
the receiver parameters. Also, added a test for this, since
(surprisingly) there weren't any.
As precedence, go/types.Identical ignores receiver parameters when
comparing go/types.Signature values.
Notably, this allows us to slightly simplify the "implements"
function, which is used for checking whether type/interface t
implements interface iface. Currently, cmd/compile actually works
around Eqtype's receiver parameter checking by creating new throwaway
TFUNC Types without the receiver parameter.
(Worse, the compiler currently only provides APIs to build TFUNC Types
from Nod syntax trees, so building those throwaway types also involves
first building throwaway syntax trees.)
Passes toolstash -cmp.
Change-Id: Ib07289c66feacee284e016bc312e8c5ff674714f
Reviewed-on: https://go-review.googlesource.com/20602
Reviewed-by: Robert Griesemer <gri@golang.org>
2436 lines
50 KiB
Go
2436 lines
50 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"bytes"
|
|
"cmd/internal/obj"
|
|
"crypto/md5"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"os"
|
|
"sort"
|
|
"strings"
|
|
"unicode"
|
|
"unicode/utf8"
|
|
)
|
|
|
|
type Error struct {
|
|
lineno int32
|
|
msg string
|
|
}
|
|
|
|
var errors []Error
|
|
|
|
func errorexit() {
|
|
Flusherrors()
|
|
if outfile != "" {
|
|
os.Remove(outfile)
|
|
}
|
|
os.Exit(2)
|
|
}
|
|
|
|
func adderrorname(n *Node) {
|
|
if n.Op != ODOT {
|
|
return
|
|
}
|
|
old := fmt.Sprintf("%v: undefined: %v\n", n.Line(), n.Left)
|
|
if len(errors) > 0 && errors[len(errors)-1].lineno == n.Lineno && errors[len(errors)-1].msg == old {
|
|
errors[len(errors)-1].msg = fmt.Sprintf("%v: undefined: %v in %v\n", n.Line(), n.Left, n)
|
|
}
|
|
}
|
|
|
|
func adderr(line int32, format string, args ...interface{}) {
|
|
errors = append(errors, Error{
|
|
lineno: line,
|
|
msg: fmt.Sprintf("%v: %s\n", linestr(line), fmt.Sprintf(format, args...)),
|
|
})
|
|
}
|
|
|
|
// byLineno sorts errors by lineno.
|
|
type byLineno []Error
|
|
|
|
func (x byLineno) Len() int { return len(x) }
|
|
func (x byLineno) Less(i, j int) bool { return x[i].lineno < x[j].lineno }
|
|
func (x byLineno) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
|
|
func Flusherrors() {
|
|
bstdout.Flush()
|
|
if len(errors) == 0 {
|
|
return
|
|
}
|
|
sort.Stable(byLineno(errors))
|
|
for i := 0; i < len(errors); i++ {
|
|
if i == 0 || errors[i].msg != errors[i-1].msg {
|
|
fmt.Printf("%s", errors[i].msg)
|
|
}
|
|
}
|
|
errors = errors[:0]
|
|
}
|
|
|
|
func hcrash() {
|
|
if Debug['h'] != 0 {
|
|
Flusherrors()
|
|
if outfile != "" {
|
|
os.Remove(outfile)
|
|
}
|
|
var x *int
|
|
*x = 0
|
|
}
|
|
}
|
|
|
|
func linestr(line int32) string {
|
|
return Ctxt.Line(int(line))
|
|
}
|
|
|
|
func yyerrorl(line int32, format string, args ...interface{}) {
|
|
adderr(line, format, args...)
|
|
|
|
hcrash()
|
|
nerrors++
|
|
if nsavederrors+nerrors >= 10 && Debug['e'] == 0 {
|
|
Flusherrors()
|
|
fmt.Printf("%v: too many errors\n", linestr(line))
|
|
errorexit()
|
|
}
|
|
}
|
|
|
|
var yyerror_lastsyntax int32
|
|
|
|
func Yyerror(format string, args ...interface{}) {
|
|
msg := fmt.Sprintf(format, args...)
|
|
if strings.HasPrefix(msg, "syntax error") {
|
|
nsyntaxerrors++
|
|
|
|
// only one syntax error per line
|
|
if yyerror_lastsyntax == lineno {
|
|
return
|
|
}
|
|
yyerror_lastsyntax = lineno
|
|
|
|
yyerrorl(lineno, "%s", msg)
|
|
return
|
|
}
|
|
|
|
adderr(lineno, "%s", msg)
|
|
|
|
hcrash()
|
|
nerrors++
|
|
if nsavederrors+nerrors >= 10 && Debug['e'] == 0 {
|
|
Flusherrors()
|
|
fmt.Printf("%v: too many errors\n", linestr(lineno))
|
|
errorexit()
|
|
}
|
|
}
|
|
|
|
func Warn(fmt_ string, args ...interface{}) {
|
|
adderr(lineno, fmt_, args...)
|
|
|
|
hcrash()
|
|
}
|
|
|
|
func Warnl(line int32, fmt_ string, args ...interface{}) {
|
|
adderr(line, fmt_, args...)
|
|
if Debug['m'] != 0 {
|
|
Flusherrors()
|
|
}
|
|
}
|
|
|
|
func Fatalf(fmt_ string, args ...interface{}) {
|
|
Flusherrors()
|
|
|
|
fmt.Printf("%v: internal compiler error: ", linestr(lineno))
|
|
fmt.Printf(fmt_, args...)
|
|
fmt.Printf("\n")
|
|
|
|
// If this is a released compiler version, ask for a bug report.
|
|
if strings.HasPrefix(obj.Getgoversion(), "release") {
|
|
fmt.Printf("\n")
|
|
fmt.Printf("Please file a bug report including a short program that triggers the error.\n")
|
|
fmt.Printf("https://golang.org/issue/new\n")
|
|
}
|
|
|
|
hcrash()
|
|
errorexit()
|
|
}
|
|
|
|
func linehistpragma(file string) {
|
|
if Debug['i'] != 0 {
|
|
fmt.Printf("pragma %s at line %v\n", file, linestr(lexlineno))
|
|
}
|
|
Ctxt.AddImport(file)
|
|
}
|
|
|
|
func linehistpush(file string) {
|
|
if Debug['i'] != 0 {
|
|
fmt.Printf("import %s at line %v\n", file, linestr(lexlineno))
|
|
}
|
|
Ctxt.LineHist.Push(int(lexlineno), file)
|
|
}
|
|
|
|
func linehistpop() {
|
|
if Debug['i'] != 0 {
|
|
fmt.Printf("end of import at line %v\n", linestr(lexlineno))
|
|
}
|
|
Ctxt.LineHist.Pop(int(lexlineno))
|
|
}
|
|
|
|
func linehistupdate(file string, off int) {
|
|
if Debug['i'] != 0 {
|
|
fmt.Printf("line %s at line %v\n", file, linestr(lexlineno))
|
|
}
|
|
Ctxt.LineHist.Update(int(lexlineno), file, off)
|
|
}
|
|
|
|
func setlineno(n *Node) int32 {
|
|
lno := lineno
|
|
if n != nil {
|
|
switch n.Op {
|
|
case ONAME, OTYPE, OPACK:
|
|
break
|
|
|
|
case OLITERAL:
|
|
if n.Sym != nil {
|
|
break
|
|
}
|
|
fallthrough
|
|
|
|
default:
|
|
lineno = n.Lineno
|
|
if lineno == 0 {
|
|
if Debug['K'] != 0 {
|
|
Warn("setlineno: line 0")
|
|
}
|
|
lineno = lno
|
|
}
|
|
}
|
|
}
|
|
|
|
return lno
|
|
}
|
|
|
|
func Lookup(name string) *Sym {
|
|
return localpkg.Lookup(name)
|
|
}
|
|
|
|
func Lookupf(format string, a ...interface{}) *Sym {
|
|
return Lookup(fmt.Sprintf(format, a...))
|
|
}
|
|
|
|
func LookupBytes(name []byte) *Sym {
|
|
return localpkg.LookupBytes(name)
|
|
}
|
|
|
|
var initSyms []*Sym
|
|
|
|
var nopkg = &Pkg{
|
|
Syms: make(map[string]*Sym),
|
|
}
|
|
|
|
func (pkg *Pkg) Lookup(name string) *Sym {
|
|
if pkg == nil {
|
|
pkg = nopkg
|
|
}
|
|
if s := pkg.Syms[name]; s != nil {
|
|
return s
|
|
}
|
|
|
|
s := &Sym{
|
|
Name: name,
|
|
Pkg: pkg,
|
|
}
|
|
if name == "init" {
|
|
initSyms = append(initSyms, s)
|
|
}
|
|
pkg.Syms[name] = s
|
|
return s
|
|
}
|
|
|
|
func (pkg *Pkg) LookupBytes(name []byte) *Sym {
|
|
if pkg == nil {
|
|
pkg = nopkg
|
|
}
|
|
if s := pkg.Syms[string(name)]; s != nil {
|
|
return s
|
|
}
|
|
str := internString(name)
|
|
return pkg.Lookup(str)
|
|
}
|
|
|
|
func Pkglookup(name string, pkg *Pkg) *Sym {
|
|
return pkg.Lookup(name)
|
|
}
|
|
|
|
func restrictlookup(name string, pkg *Pkg) *Sym {
|
|
if !exportname(name) && pkg != localpkg {
|
|
Yyerror("cannot refer to unexported name %s.%s", pkg.Name, name)
|
|
}
|
|
return Pkglookup(name, pkg)
|
|
}
|
|
|
|
// find all the exported symbols in package opkg
|
|
// and make them available in the current package
|
|
func importdot(opkg *Pkg, pack *Node) {
|
|
var s1 *Sym
|
|
var pkgerror string
|
|
|
|
n := 0
|
|
for _, s := range opkg.Syms {
|
|
if s.Def == nil {
|
|
continue
|
|
}
|
|
if !exportname(s.Name) || strings.ContainsRune(s.Name, 0xb7) { // 0xb7 = center dot
|
|
continue
|
|
}
|
|
s1 = Lookup(s.Name)
|
|
if s1.Def != nil {
|
|
pkgerror = fmt.Sprintf("during import %q", opkg.Path)
|
|
redeclare(s1, pkgerror)
|
|
continue
|
|
}
|
|
|
|
s1.Def = s.Def
|
|
s1.Block = s.Block
|
|
if s1.Def.Name == nil {
|
|
Dump("s1def", s1.Def)
|
|
Fatalf("missing Name")
|
|
}
|
|
s1.Def.Name.Pack = pack
|
|
s1.Origpkg = opkg
|
|
n++
|
|
}
|
|
|
|
if n == 0 {
|
|
// can't possibly be used - there were no symbols
|
|
yyerrorl(pack.Lineno, "imported and not used: %q", opkg.Path)
|
|
}
|
|
}
|
|
|
|
func Nod(op Op, nleft *Node, nright *Node) *Node {
|
|
n := new(Node)
|
|
n.Op = op
|
|
n.Left = nleft
|
|
n.Right = nright
|
|
n.Lineno = lineno
|
|
n.Xoffset = BADWIDTH
|
|
n.Orig = n
|
|
switch op {
|
|
case OCLOSURE, ODCLFUNC:
|
|
n.Func = new(Func)
|
|
n.Func.FCurfn = Curfn
|
|
case ONAME:
|
|
n.Name = new(Name)
|
|
n.Name.Param = new(Param)
|
|
case OLABEL, OPACK:
|
|
n.Name = new(Name)
|
|
case ODCLFIELD:
|
|
if nleft != nil {
|
|
n.Name = nleft.Name
|
|
} else {
|
|
n.Name = new(Name)
|
|
n.Name.Param = new(Param)
|
|
}
|
|
}
|
|
if n.Name != nil {
|
|
n.Name.Curfn = Curfn
|
|
}
|
|
return n
|
|
}
|
|
|
|
func saveorignode(n *Node) {
|
|
if n.Orig != nil {
|
|
return
|
|
}
|
|
norig := Nod(n.Op, nil, nil)
|
|
*norig = *n
|
|
n.Orig = norig
|
|
}
|
|
|
|
func maptype(key *Type, val *Type) *Type {
|
|
if key != nil {
|
|
var bad *Type
|
|
atype := algtype1(key, &bad)
|
|
var mtype EType
|
|
if bad == nil {
|
|
mtype = key.Etype
|
|
} else {
|
|
mtype = bad.Etype
|
|
}
|
|
switch mtype {
|
|
default:
|
|
if atype == ANOEQ {
|
|
Yyerror("invalid map key type %v", key)
|
|
}
|
|
|
|
// will be resolved later.
|
|
case TANY:
|
|
break
|
|
|
|
// map[key] used during definition of key.
|
|
// postpone check until key is fully defined.
|
|
// if there are multiple uses of map[key]
|
|
// before key is fully defined, the error
|
|
// will only be printed for the first one.
|
|
// good enough.
|
|
case TFORW:
|
|
if key.Maplineno == 0 {
|
|
key.Maplineno = lineno
|
|
}
|
|
}
|
|
}
|
|
|
|
t := typ(TMAP)
|
|
t.Down = key
|
|
t.Type = val
|
|
return t
|
|
}
|
|
|
|
// methcmp sorts by symbol, then by package path for unexported symbols.
|
|
type methcmp []*Field
|
|
|
|
func (x methcmp) Len() int { return len(x) }
|
|
func (x methcmp) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
func (x methcmp) Less(i, j int) bool {
|
|
a := x[i]
|
|
b := x[j]
|
|
if a.Sym == nil && b.Sym == nil {
|
|
return false
|
|
}
|
|
if a.Sym == nil {
|
|
return true
|
|
}
|
|
if b.Sym == nil {
|
|
return false
|
|
}
|
|
if a.Sym.Name != b.Sym.Name {
|
|
return a.Sym.Name < b.Sym.Name
|
|
}
|
|
if !exportname(a.Sym.Name) {
|
|
if a.Sym.Pkg.Path != b.Sym.Pkg.Path {
|
|
return a.Sym.Pkg.Path < b.Sym.Pkg.Path
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
func Nodintconst(v int64) *Node {
|
|
c := Nod(OLITERAL, nil, nil)
|
|
c.Addable = true
|
|
c.SetVal(Val{new(Mpint)})
|
|
Mpmovecfix(c.Val().U.(*Mpint), v)
|
|
c.Type = Types[TIDEAL]
|
|
ullmancalc(c)
|
|
return c
|
|
}
|
|
|
|
func nodfltconst(v *Mpflt) *Node {
|
|
c := Nod(OLITERAL, nil, nil)
|
|
c.Addable = true
|
|
c.SetVal(Val{newMpflt()})
|
|
mpmovefltflt(c.Val().U.(*Mpflt), v)
|
|
c.Type = Types[TIDEAL]
|
|
ullmancalc(c)
|
|
return c
|
|
}
|
|
|
|
func Nodconst(n *Node, t *Type, v int64) {
|
|
*n = Node{}
|
|
n.Op = OLITERAL
|
|
n.Addable = true
|
|
ullmancalc(n)
|
|
n.SetVal(Val{new(Mpint)})
|
|
Mpmovecfix(n.Val().U.(*Mpint), v)
|
|
n.Type = t
|
|
|
|
if Isfloat[t.Etype] {
|
|
Fatalf("nodconst: bad type %v", t)
|
|
}
|
|
}
|
|
|
|
func nodnil() *Node {
|
|
c := Nodintconst(0)
|
|
c.SetVal(Val{new(NilVal)})
|
|
c.Type = Types[TNIL]
|
|
return c
|
|
}
|
|
|
|
func Nodbool(b bool) *Node {
|
|
c := Nodintconst(0)
|
|
c.SetVal(Val{b})
|
|
c.Type = idealbool
|
|
return c
|
|
}
|
|
|
|
func aindex(b *Node, t *Type) *Type {
|
|
bound := int64(-1) // open bound
|
|
typecheck(&b, Erv)
|
|
if b != nil {
|
|
switch consttype(b) {
|
|
default:
|
|
Yyerror("array bound must be an integer expression")
|
|
|
|
case CTINT, CTRUNE:
|
|
bound = Mpgetfix(b.Val().U.(*Mpint))
|
|
if bound < 0 {
|
|
Yyerror("array bound must be non negative")
|
|
}
|
|
}
|
|
}
|
|
|
|
// fixed array
|
|
r := typ(TARRAY)
|
|
|
|
r.Type = t
|
|
r.Bound = bound
|
|
return r
|
|
}
|
|
|
|
// treecopy recursively copies n, with the exception of
|
|
// ONAME, OLITERAL, OTYPE, and non-iota ONONAME leaves.
|
|
// Copies of iota ONONAME nodes are assigned the current
|
|
// value of iota_. If lineno != 0, it sets the line number
|
|
// of newly allocated nodes to lineno.
|
|
func treecopy(n *Node, lineno int32) *Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
var m *Node
|
|
switch n.Op {
|
|
default:
|
|
m = Nod(OXXX, nil, nil)
|
|
*m = *n
|
|
m.Orig = m
|
|
m.Left = treecopy(n.Left, lineno)
|
|
m.Right = treecopy(n.Right, lineno)
|
|
m.List.Set(listtreecopy(n.List.Slice(), lineno))
|
|
if lineno != 0 {
|
|
m.Lineno = lineno
|
|
}
|
|
if m.Name != nil && n.Op != ODCLFIELD {
|
|
Dump("treecopy", n)
|
|
Fatalf("treecopy Name")
|
|
}
|
|
|
|
case ONONAME:
|
|
if n.Sym == Lookup("iota") {
|
|
// Not sure yet whether this is the real iota,
|
|
// but make a copy of the Node* just in case,
|
|
// so that all the copies of this const definition
|
|
// don't have the same iota value.
|
|
m = Nod(OXXX, nil, nil)
|
|
*m = *n
|
|
if lineno != 0 {
|
|
m.Lineno = lineno
|
|
}
|
|
m.Name = new(Name)
|
|
*m.Name = *n.Name
|
|
m.Name.Iota = iota_
|
|
break
|
|
}
|
|
fallthrough
|
|
|
|
case ONAME, OLITERAL, OTYPE:
|
|
m = n
|
|
}
|
|
|
|
return m
|
|
}
|
|
|
|
// isnil reports whether n represents the universal untyped zero value "nil".
|
|
func isnil(n *Node) bool {
|
|
// Check n.Orig because constant propagation may produce typed nil constants,
|
|
// which don't exist in the Go spec.
|
|
return Isconst(n.Orig, CTNIL)
|
|
}
|
|
|
|
func isptrto(t *Type, et EType) bool {
|
|
if t == nil {
|
|
return false
|
|
}
|
|
if !Isptr[t.Etype] {
|
|
return false
|
|
}
|
|
t = t.Type
|
|
if t == nil {
|
|
return false
|
|
}
|
|
if t.Etype != et {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
func Istype(t *Type, et EType) bool {
|
|
return t != nil && t.Etype == et
|
|
}
|
|
|
|
func Isfixedarray(t *Type) bool {
|
|
return t != nil && t.Etype == TARRAY && t.Bound >= 0
|
|
}
|
|
|
|
func Isslice(t *Type) bool {
|
|
return t != nil && t.Etype == TARRAY && t.Bound < 0
|
|
}
|
|
|
|
func isblank(n *Node) bool {
|
|
if n == nil {
|
|
return false
|
|
}
|
|
return isblanksym(n.Sym)
|
|
}
|
|
|
|
func isblanksym(s *Sym) bool {
|
|
return s != nil && s.Name == "_"
|
|
}
|
|
|
|
func Isinter(t *Type) bool {
|
|
return t != nil && t.Etype == TINTER
|
|
}
|
|
|
|
func isnilinter(t *Type) bool {
|
|
return Isinter(t) && countfield(t) == 0
|
|
}
|
|
|
|
func isideal(t *Type) bool {
|
|
if t == nil {
|
|
return false
|
|
}
|
|
if t == idealstring || t == idealbool {
|
|
return true
|
|
}
|
|
switch t.Etype {
|
|
case TNIL, TIDEAL:
|
|
return true
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// given receiver of type t (t == r or t == *r)
|
|
// return type to hang methods off (r).
|
|
func methtype(t *Type, mustname int) *Type {
|
|
if t == nil {
|
|
return nil
|
|
}
|
|
|
|
// strip away pointer if it's there
|
|
if Isptr[t.Etype] {
|
|
if t.Sym != nil {
|
|
return nil
|
|
}
|
|
t = t.Type
|
|
if t == nil {
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// need a type name
|
|
if t.Sym == nil && (mustname != 0 || t.Etype != TSTRUCT) {
|
|
return nil
|
|
}
|
|
|
|
// check types
|
|
if !issimple[t.Etype] {
|
|
switch t.Etype {
|
|
default:
|
|
return nil
|
|
|
|
case TSTRUCT,
|
|
TARRAY,
|
|
TMAP,
|
|
TCHAN,
|
|
TSTRING,
|
|
TFUNC:
|
|
break
|
|
}
|
|
}
|
|
|
|
return t
|
|
}
|
|
|
|
func cplxsubtype(et EType) EType {
|
|
switch et {
|
|
case TCOMPLEX64:
|
|
return TFLOAT32
|
|
|
|
case TCOMPLEX128:
|
|
return TFLOAT64
|
|
}
|
|
|
|
Fatalf("cplxsubtype: %v\n", Econv(et))
|
|
return 0
|
|
}
|
|
|
|
func eqnote(a, b *string) bool {
|
|
return a == b || a != nil && b != nil && *a == *b
|
|
}
|
|
|
|
// Eqtype reports whether t1 and t2 are identical, following the spec rules.
|
|
//
|
|
// Any cyclic type must go through a named type, and if one is
|
|
// named, it is only identical to the other if they are the same
|
|
// pointer (t1 == t2), so there's no chance of chasing cycles
|
|
// ad infinitum, so no need for a depth counter.
|
|
func Eqtype(t1, t2 *Type) bool {
|
|
return eqtype1(t1, t2, nil)
|
|
}
|
|
|
|
type typePair struct {
|
|
t1 *Type
|
|
t2 *Type
|
|
}
|
|
|
|
func eqtype1(t1, t2 *Type, assumedEqual map[typePair]struct{}) bool {
|
|
if t1 == t2 {
|
|
return true
|
|
}
|
|
if t1 == nil || t2 == nil || t1.Etype != t2.Etype {
|
|
return false
|
|
}
|
|
if t1.Sym != nil || t2.Sym != nil {
|
|
// Special case: we keep byte/uint8 and rune/int32
|
|
// separate for error messages. Treat them as equal.
|
|
switch t1.Etype {
|
|
case TUINT8:
|
|
return (t1 == Types[TUINT8] || t1 == bytetype) && (t2 == Types[TUINT8] || t2 == bytetype)
|
|
case TINT32:
|
|
return (t1 == Types[TINT32] || t1 == runetype) && (t2 == Types[TINT32] || t2 == runetype)
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
if assumedEqual == nil {
|
|
assumedEqual = make(map[typePair]struct{})
|
|
} else if _, ok := assumedEqual[typePair{t1, t2}]; ok {
|
|
return true
|
|
}
|
|
assumedEqual[typePair{t1, t2}] = struct{}{}
|
|
|
|
switch t1.Etype {
|
|
case TINTER, TSTRUCT:
|
|
t1, i1 := IterFields(t1)
|
|
t2, i2 := IterFields(t2)
|
|
for ; t1 != nil && t2 != nil; t1, t2 = i1.Next(), i2.Next() {
|
|
if t1.Sym != t2.Sym || t1.Embedded != t2.Embedded || !eqtype1(t1.Type, t2.Type, assumedEqual) || !eqnote(t1.Note, t2.Note) {
|
|
return false
|
|
}
|
|
}
|
|
|
|
if t1 == nil && t2 == nil {
|
|
return true
|
|
}
|
|
return false
|
|
|
|
case TFUNC:
|
|
// Check parameters and result parameters for type equality.
|
|
// We intentionally ignore receiver parameters for type
|
|
// equality, because they're never relevant.
|
|
for _, f := range paramsResults {
|
|
// Loop over fields in structs, ignoring argument names.
|
|
ta, ia := IterFields(f(t1))
|
|
tb, ib := IterFields(f(t2))
|
|
for ; ta != nil && tb != nil; ta, tb = ia.Next(), ib.Next() {
|
|
if ta.Isddd != tb.Isddd || !eqtype1(ta.Type, tb.Type, assumedEqual) {
|
|
return false
|
|
}
|
|
}
|
|
if ta != nil || tb != nil {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
|
|
case TARRAY:
|
|
if t1.Bound != t2.Bound {
|
|
return false
|
|
}
|
|
|
|
case TCHAN:
|
|
if t1.Chan != t2.Chan {
|
|
return false
|
|
}
|
|
|
|
case TMAP:
|
|
if !eqtype1(t1.Key(), t2.Key(), assumedEqual) {
|
|
return false
|
|
}
|
|
}
|
|
|
|
return eqtype1(t1.Type, t2.Type, assumedEqual)
|
|
}
|
|
|
|
// Are t1 and t2 equal struct types when field names are ignored?
|
|
// For deciding whether the result struct from g can be copied
|
|
// directly when compiling f(g()).
|
|
func eqtypenoname(t1 *Type, t2 *Type) bool {
|
|
if t1 == nil || t2 == nil || t1.Etype != TSTRUCT || t2.Etype != TSTRUCT {
|
|
return false
|
|
}
|
|
|
|
f1, i1 := IterFields(t1)
|
|
f2, i2 := IterFields(t2)
|
|
for {
|
|
if !Eqtype(f1.Type, f2.Type) {
|
|
return false
|
|
}
|
|
if f1 == nil {
|
|
return true
|
|
}
|
|
f1 = i1.Next()
|
|
f2 = i2.Next()
|
|
}
|
|
}
|
|
|
|
// Is type src assignment compatible to type dst?
|
|
// If so, return op code to use in conversion.
|
|
// If not, return 0.
|
|
func assignop(src *Type, dst *Type, why *string) Op {
|
|
if why != nil {
|
|
*why = ""
|
|
}
|
|
|
|
// TODO(rsc,lvd): This behaves poorly in the presence of inlining.
|
|
// https://golang.org/issue/2795
|
|
if safemode != 0 && importpkg == nil && src != nil && src.Etype == TUNSAFEPTR {
|
|
Yyerror("cannot use unsafe.Pointer")
|
|
errorexit()
|
|
}
|
|
|
|
if src == dst {
|
|
return OCONVNOP
|
|
}
|
|
if src == nil || dst == nil || src.Etype == TFORW || dst.Etype == TFORW || src.Orig == nil || dst.Orig == nil {
|
|
return 0
|
|
}
|
|
|
|
// 1. src type is identical to dst.
|
|
if Eqtype(src, dst) {
|
|
return OCONVNOP
|
|
}
|
|
|
|
// 2. src and dst have identical underlying types
|
|
// and either src or dst is not a named type or
|
|
// both are empty interface types.
|
|
// For assignable but different non-empty interface types,
|
|
// we want to recompute the itab.
|
|
if Eqtype(src.Orig, dst.Orig) && (src.Sym == nil || dst.Sym == nil || isnilinter(src)) {
|
|
return OCONVNOP
|
|
}
|
|
|
|
// 3. dst is an interface type and src implements dst.
|
|
if dst.Etype == TINTER && src.Etype != TNIL {
|
|
var missing, have *Field
|
|
var ptr int
|
|
if implements(src, dst, &missing, &have, &ptr) {
|
|
return OCONVIFACE
|
|
}
|
|
|
|
// we'll have complained about this method anyway, suppress spurious messages.
|
|
if have != nil && have.Sym == missing.Sym && (have.Type.Broke || missing.Type.Broke) {
|
|
return OCONVIFACE
|
|
}
|
|
|
|
if why != nil {
|
|
if isptrto(src, TINTER) {
|
|
*why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", src)
|
|
} else if have != nil && have.Sym == missing.Sym && have.Nointerface {
|
|
*why = fmt.Sprintf(":\n\t%v does not implement %v (%v method is marked 'nointerface')", src, dst, missing.Sym)
|
|
} else if have != nil && have.Sym == missing.Sym {
|
|
*why = fmt.Sprintf(":\n\t%v does not implement %v (wrong type for %v method)\n"+"\t\thave %v%v\n\t\twant %v%v", src, dst, missing.Sym, have.Sym, Tconv(have.Type, FmtShort|FmtByte), missing.Sym, Tconv(missing.Type, FmtShort|FmtByte))
|
|
} else if ptr != 0 {
|
|
*why = fmt.Sprintf(":\n\t%v does not implement %v (%v method has pointer receiver)", src, dst, missing.Sym)
|
|
} else if have != nil {
|
|
*why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)\n"+"\t\thave %v%v\n\t\twant %v%v", src, dst, missing.Sym, have.Sym, Tconv(have.Type, FmtShort|FmtByte), missing.Sym, Tconv(missing.Type, FmtShort|FmtByte))
|
|
} else {
|
|
*why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)", src, dst, missing.Sym)
|
|
}
|
|
}
|
|
|
|
return 0
|
|
}
|
|
|
|
if isptrto(dst, TINTER) {
|
|
if why != nil {
|
|
*why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", dst)
|
|
}
|
|
return 0
|
|
}
|
|
|
|
if src.Etype == TINTER && dst.Etype != TBLANK {
|
|
var missing, have *Field
|
|
var ptr int
|
|
if why != nil && implements(dst, src, &missing, &have, &ptr) {
|
|
*why = ": need type assertion"
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// 4. src is a bidirectional channel value, dst is a channel type,
|
|
// src and dst have identical element types, and
|
|
// either src or dst is not a named type.
|
|
if src.Etype == TCHAN && src.Chan == Cboth && dst.Etype == TCHAN {
|
|
if Eqtype(src.Type, dst.Type) && (src.Sym == nil || dst.Sym == nil) {
|
|
return OCONVNOP
|
|
}
|
|
}
|
|
|
|
// 5. src is the predeclared identifier nil and dst is a nillable type.
|
|
if src.Etype == TNIL {
|
|
switch dst.Etype {
|
|
case TARRAY:
|
|
if dst.Bound != -100 { // not slice
|
|
break
|
|
}
|
|
fallthrough
|
|
|
|
case TPTR32,
|
|
TPTR64,
|
|
TFUNC,
|
|
TMAP,
|
|
TCHAN,
|
|
TINTER:
|
|
return OCONVNOP
|
|
}
|
|
}
|
|
|
|
// 6. rule about untyped constants - already converted by defaultlit.
|
|
|
|
// 7. Any typed value can be assigned to the blank identifier.
|
|
if dst.Etype == TBLANK {
|
|
return OCONVNOP
|
|
}
|
|
|
|
return 0
|
|
}
|
|
|
|
// Can we convert a value of type src to a value of type dst?
|
|
// If so, return op code to use in conversion (maybe OCONVNOP).
|
|
// If not, return 0.
|
|
func convertop(src *Type, dst *Type, why *string) Op {
|
|
if why != nil {
|
|
*why = ""
|
|
}
|
|
|
|
if src == dst {
|
|
return OCONVNOP
|
|
}
|
|
if src == nil || dst == nil {
|
|
return 0
|
|
}
|
|
|
|
// 1. src can be assigned to dst.
|
|
op := assignop(src, dst, why)
|
|
if op != 0 {
|
|
return op
|
|
}
|
|
|
|
// The rules for interfaces are no different in conversions
|
|
// than assignments. If interfaces are involved, stop now
|
|
// with the good message from assignop.
|
|
// Otherwise clear the error.
|
|
if src.Etype == TINTER || dst.Etype == TINTER {
|
|
return 0
|
|
}
|
|
if why != nil {
|
|
*why = ""
|
|
}
|
|
|
|
// 2. src and dst have identical underlying types.
|
|
if Eqtype(src.Orig, dst.Orig) {
|
|
return OCONVNOP
|
|
}
|
|
|
|
// 3. src and dst are unnamed pointer types
|
|
// and their base types have identical underlying types.
|
|
if Isptr[src.Etype] && Isptr[dst.Etype] && src.Sym == nil && dst.Sym == nil {
|
|
if Eqtype(src.Type.Orig, dst.Type.Orig) {
|
|
return OCONVNOP
|
|
}
|
|
}
|
|
|
|
// 4. src and dst are both integer or floating point types.
|
|
if (Isint[src.Etype] || Isfloat[src.Etype]) && (Isint[dst.Etype] || Isfloat[dst.Etype]) {
|
|
if Simtype[src.Etype] == Simtype[dst.Etype] {
|
|
return OCONVNOP
|
|
}
|
|
return OCONV
|
|
}
|
|
|
|
// 5. src and dst are both complex types.
|
|
if Iscomplex[src.Etype] && Iscomplex[dst.Etype] {
|
|
if Simtype[src.Etype] == Simtype[dst.Etype] {
|
|
return OCONVNOP
|
|
}
|
|
return OCONV
|
|
}
|
|
|
|
// 6. src is an integer or has type []byte or []rune
|
|
// and dst is a string type.
|
|
if Isint[src.Etype] && dst.Etype == TSTRING {
|
|
return ORUNESTR
|
|
}
|
|
|
|
if Isslice(src) && dst.Etype == TSTRING {
|
|
if src.Type.Etype == bytetype.Etype {
|
|
return OARRAYBYTESTR
|
|
}
|
|
if src.Type.Etype == runetype.Etype {
|
|
return OARRAYRUNESTR
|
|
}
|
|
}
|
|
|
|
// 7. src is a string and dst is []byte or []rune.
|
|
// String to slice.
|
|
if src.Etype == TSTRING && Isslice(dst) {
|
|
if dst.Type.Etype == bytetype.Etype {
|
|
return OSTRARRAYBYTE
|
|
}
|
|
if dst.Type.Etype == runetype.Etype {
|
|
return OSTRARRAYRUNE
|
|
}
|
|
}
|
|
|
|
// 8. src is a pointer or uintptr and dst is unsafe.Pointer.
|
|
if (Isptr[src.Etype] || src.Etype == TUINTPTR) && dst.Etype == TUNSAFEPTR {
|
|
return OCONVNOP
|
|
}
|
|
|
|
// 9. src is unsafe.Pointer and dst is a pointer or uintptr.
|
|
if src.Etype == TUNSAFEPTR && (Isptr[dst.Etype] || dst.Etype == TUINTPTR) {
|
|
return OCONVNOP
|
|
}
|
|
|
|
return 0
|
|
}
|
|
|
|
func assignconv(n *Node, t *Type, context string) *Node {
|
|
return assignconvfn(n, t, func() string { return context })
|
|
}
|
|
|
|
// Convert node n for assignment to type t.
|
|
func assignconvfn(n *Node, t *Type, context func() string) *Node {
|
|
if n == nil || n.Type == nil || n.Type.Broke {
|
|
return n
|
|
}
|
|
|
|
if t.Etype == TBLANK && n.Type.Etype == TNIL {
|
|
Yyerror("use of untyped nil")
|
|
}
|
|
|
|
old := n
|
|
old.Diag++ // silence errors about n; we'll issue one below
|
|
defaultlit(&n, t)
|
|
old.Diag--
|
|
if t.Etype == TBLANK {
|
|
return n
|
|
}
|
|
|
|
// Convert ideal bool from comparison to plain bool
|
|
// if the next step is non-bool (like interface{}).
|
|
if n.Type == idealbool && t.Etype != TBOOL {
|
|
if n.Op == ONAME || n.Op == OLITERAL {
|
|
r := Nod(OCONVNOP, n, nil)
|
|
r.Type = Types[TBOOL]
|
|
r.Typecheck = 1
|
|
r.Implicit = true
|
|
n = r
|
|
}
|
|
}
|
|
|
|
if Eqtype(n.Type, t) {
|
|
return n
|
|
}
|
|
|
|
var why string
|
|
op := assignop(n.Type, t, &why)
|
|
if op == 0 {
|
|
Yyerror("cannot use %v as type %v in %s%s", Nconv(n, FmtLong), t, context(), why)
|
|
op = OCONV
|
|
}
|
|
|
|
r := Nod(op, n, nil)
|
|
r.Type = t
|
|
r.Typecheck = 1
|
|
r.Implicit = true
|
|
r.Orig = n.Orig
|
|
return r
|
|
}
|
|
|
|
// substArgTypes substitutes the given list of types for
|
|
// successive occurrences of the "any" placeholder in the
|
|
// type syntax expression n.Type.
|
|
func substArgTypes(np **Node, types ...*Type) {
|
|
n := Nod(0, nil, nil)
|
|
*n = **np
|
|
*np = n
|
|
|
|
for _, t := range types {
|
|
dowidth(t)
|
|
}
|
|
n.Type = substAny(n.Type, &types)
|
|
if len(types) > 0 {
|
|
Fatalf("substArgTypes: too many argument types")
|
|
}
|
|
}
|
|
|
|
// substAny walks t, replacing instances of "any" with successive
|
|
// elements removed from types. It returns the substituted type.
|
|
func substAny(t *Type, types *[]*Type) *Type {
|
|
if t == nil {
|
|
return nil
|
|
}
|
|
|
|
switch t.Etype {
|
|
default:
|
|
// Leave the type unchanged.
|
|
|
|
case TANY:
|
|
if len(*types) == 0 {
|
|
Fatalf("substArgTypes: not enough argument types")
|
|
}
|
|
t = (*types)[0]
|
|
*types = (*types)[1:]
|
|
|
|
case TPTR32, TPTR64, TCHAN, TARRAY:
|
|
elem := substAny(t.Type, types)
|
|
if elem != t.Type {
|
|
t = t.Copy()
|
|
t.Type = elem
|
|
}
|
|
|
|
case TMAP:
|
|
key := substAny(t.Down, types)
|
|
val := substAny(t.Type, types)
|
|
if key != t.Down || val != t.Type {
|
|
t = t.Copy()
|
|
t.Down = key
|
|
t.Type = val
|
|
}
|
|
|
|
case TFUNC:
|
|
recvs := substAny(t.Recvs(), types)
|
|
params := substAny(t.Params(), types)
|
|
results := substAny(t.Results(), types)
|
|
if recvs != t.Recvs() || params != t.Params() || results != t.Results() {
|
|
// Note that this code has to be aware of the
|
|
// representation underlying Recvs/Results/Params.
|
|
if recvs == t.Recvs() {
|
|
recvs = recvs.Copy()
|
|
}
|
|
if results == t.Results() {
|
|
results = results.Copy()
|
|
}
|
|
t = t.Copy()
|
|
*t.RecvsP() = recvs
|
|
*t.ResultsP() = results
|
|
*t.ParamsP() = params
|
|
}
|
|
|
|
case TSTRUCT:
|
|
// nfs only has to be big enough for the builtin functions.
|
|
var nfs [8]*Field
|
|
fields := t.FieldSlice()
|
|
changed := false
|
|
for i, f := range fields {
|
|
nft := substAny(f.Type, types)
|
|
if nft != f.Type {
|
|
nfs[i] = f.Copy()
|
|
nfs[i].Type = nft
|
|
changed = true
|
|
}
|
|
}
|
|
|
|
if changed {
|
|
// Above we've initialized nfs with copied fields
|
|
// whenever the field type changed. However, because
|
|
// we keep fields in a linked list, we can only safely
|
|
// share the unmodified tail of the list. We need to
|
|
// copy the rest.
|
|
tail := true
|
|
for i := len(fields) - 1; i >= 0; i-- {
|
|
if nfs[i] != nil {
|
|
tail = false
|
|
} else if tail {
|
|
nfs[i] = fields[i]
|
|
} else {
|
|
nfs[i] = fields[i].Copy()
|
|
}
|
|
}
|
|
|
|
t = t.Copy()
|
|
t.SetFields(nfs[:len(fields)])
|
|
}
|
|
}
|
|
|
|
return t
|
|
}
|
|
|
|
// Is this a 64-bit type?
|
|
func Is64(t *Type) bool {
|
|
if t == nil {
|
|
return false
|
|
}
|
|
switch Simtype[t.Etype] {
|
|
case TINT64, TUINT64, TPTR64:
|
|
return true
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// Is a conversion between t1 and t2 a no-op?
|
|
func Noconv(t1 *Type, t2 *Type) bool {
|
|
e1 := Simtype[t1.Etype]
|
|
e2 := Simtype[t2.Etype]
|
|
|
|
switch e1 {
|
|
case TINT8, TUINT8:
|
|
return e2 == TINT8 || e2 == TUINT8
|
|
|
|
case TINT16, TUINT16:
|
|
return e2 == TINT16 || e2 == TUINT16
|
|
|
|
case TINT32, TUINT32, TPTR32:
|
|
return e2 == TINT32 || e2 == TUINT32 || e2 == TPTR32
|
|
|
|
case TINT64, TUINT64, TPTR64:
|
|
return e2 == TINT64 || e2 == TUINT64 || e2 == TPTR64
|
|
|
|
case TFLOAT32:
|
|
return e2 == TFLOAT32
|
|
|
|
case TFLOAT64:
|
|
return e2 == TFLOAT64
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
func syslook(name string) *Node {
|
|
s := Pkglookup(name, Runtimepkg)
|
|
if s == nil || s.Def == nil {
|
|
Fatalf("syslook: can't find runtime.%s", name)
|
|
}
|
|
return s.Def
|
|
}
|
|
|
|
// compute a hash value for type t.
|
|
// if t is a method type, ignore the receiver
|
|
// so that the hash can be used in interface checks.
|
|
// %T already contains
|
|
// all the necessary logic to generate a representation
|
|
// of the type that completely describes it.
|
|
// using smprint here avoids duplicating that code.
|
|
// using md5 here is overkill, but i got tired of
|
|
// accidental collisions making the runtime think
|
|
// two types are equal when they really aren't.
|
|
func typehash(t *Type) uint32 {
|
|
var p string
|
|
|
|
if t.Thistuple != 0 {
|
|
// hide method receiver from Tpretty
|
|
t.Thistuple = 0
|
|
|
|
p = Tconv(t, FmtLeft|FmtUnsigned)
|
|
t.Thistuple = 1
|
|
} else {
|
|
p = Tconv(t, FmtLeft|FmtUnsigned)
|
|
}
|
|
|
|
//print("typehash: %s\n", p);
|
|
h := md5.Sum([]byte(p))
|
|
return binary.LittleEndian.Uint32(h[:4])
|
|
}
|
|
|
|
var initPtrtoDone bool
|
|
|
|
var (
|
|
ptrToUint8 *Type
|
|
ptrToAny *Type
|
|
ptrToString *Type
|
|
ptrToBool *Type
|
|
ptrToInt32 *Type
|
|
)
|
|
|
|
func initPtrto() {
|
|
ptrToUint8 = ptrto1(Types[TUINT8])
|
|
ptrToAny = ptrto1(Types[TANY])
|
|
ptrToString = ptrto1(Types[TSTRING])
|
|
ptrToBool = ptrto1(Types[TBOOL])
|
|
ptrToInt32 = ptrto1(Types[TINT32])
|
|
}
|
|
|
|
func ptrto1(t *Type) *Type {
|
|
t1 := typ(Tptr)
|
|
t1.Type = t
|
|
t1.Width = int64(Widthptr)
|
|
t1.Align = uint8(Widthptr)
|
|
return t1
|
|
}
|
|
|
|
// Ptrto returns the Type *t.
|
|
// The returned struct must not be modified.
|
|
func Ptrto(t *Type) *Type {
|
|
if Tptr == 0 {
|
|
Fatalf("ptrto: no tptr")
|
|
}
|
|
// Reduce allocations by pre-creating common cases.
|
|
if !initPtrtoDone {
|
|
initPtrto()
|
|
initPtrtoDone = true
|
|
}
|
|
switch t {
|
|
case Types[TUINT8]:
|
|
return ptrToUint8
|
|
case Types[TINT32]:
|
|
return ptrToInt32
|
|
case Types[TANY]:
|
|
return ptrToAny
|
|
case Types[TSTRING]:
|
|
return ptrToString
|
|
case Types[TBOOL]:
|
|
return ptrToBool
|
|
}
|
|
return ptrto1(t)
|
|
}
|
|
|
|
func frame(context int) {
|
|
if context != 0 {
|
|
fmt.Printf("--- external frame ---\n")
|
|
for _, n := range externdcl {
|
|
printframenode(n)
|
|
}
|
|
return
|
|
}
|
|
|
|
if Curfn != nil {
|
|
fmt.Printf("--- %v frame ---\n", Curfn.Func.Nname.Sym)
|
|
for _, ln := range Curfn.Func.Dcl {
|
|
printframenode(ln)
|
|
}
|
|
}
|
|
}
|
|
|
|
func printframenode(n *Node) {
|
|
w := int64(-1)
|
|
if n.Type != nil {
|
|
w = n.Type.Width
|
|
}
|
|
switch n.Op {
|
|
case ONAME:
|
|
fmt.Printf("%v %v G%d %v width=%d\n", Oconv(n.Op, 0), n.Sym, n.Name.Vargen, n.Type, w)
|
|
case OTYPE:
|
|
fmt.Printf("%v %v width=%d\n", Oconv(n.Op, 0), n.Type, w)
|
|
}
|
|
}
|
|
|
|
// calculate sethi/ullman number
|
|
// roughly how many registers needed to
|
|
// compile a node. used to compile the
|
|
// hardest side first to minimize registers.
|
|
func ullmancalc(n *Node) {
|
|
if n == nil {
|
|
return
|
|
}
|
|
|
|
var ul int
|
|
var ur int
|
|
if n.Ninit.Len() != 0 {
|
|
ul = UINF
|
|
goto out
|
|
}
|
|
|
|
switch n.Op {
|
|
case OREGISTER, OLITERAL, ONAME:
|
|
ul = 1
|
|
if n.Class == PPARAMREF || (n.Class&PHEAP != 0) {
|
|
ul++
|
|
}
|
|
goto out
|
|
|
|
case OCALL, OCALLFUNC, OCALLMETH, OCALLINTER, OASWB:
|
|
ul = UINF
|
|
goto out
|
|
|
|
// hard with instrumented code
|
|
case OANDAND, OOROR:
|
|
if instrumenting {
|
|
ul = UINF
|
|
goto out
|
|
}
|
|
}
|
|
|
|
ul = 1
|
|
if n.Left != nil {
|
|
ul = int(n.Left.Ullman)
|
|
}
|
|
ur = 1
|
|
if n.Right != nil {
|
|
ur = int(n.Right.Ullman)
|
|
}
|
|
if ul == ur {
|
|
ul += 1
|
|
}
|
|
if ur > ul {
|
|
ul = ur
|
|
}
|
|
|
|
out:
|
|
if ul > 200 {
|
|
ul = 200 // clamp to uchar with room to grow
|
|
}
|
|
n.Ullman = uint8(ul)
|
|
}
|
|
|
|
func badtype(op Op, tl *Type, tr *Type) {
|
|
fmt_ := ""
|
|
if tl != nil {
|
|
fmt_ += fmt.Sprintf("\n\t%v", tl)
|
|
}
|
|
if tr != nil {
|
|
fmt_ += fmt.Sprintf("\n\t%v", tr)
|
|
}
|
|
|
|
// common mistake: *struct and *interface.
|
|
if tl != nil && tr != nil && Isptr[tl.Etype] && Isptr[tr.Etype] {
|
|
if tl.Type.Etype == TSTRUCT && tr.Type.Etype == TINTER {
|
|
fmt_ += "\n\t(*struct vs *interface)"
|
|
} else if tl.Type.Etype == TINTER && tr.Type.Etype == TSTRUCT {
|
|
fmt_ += "\n\t(*interface vs *struct)"
|
|
}
|
|
}
|
|
|
|
s := fmt_
|
|
Yyerror("illegal types for operand: %v%s", Oconv(op, 0), s)
|
|
}
|
|
|
|
// Brcom returns !(op).
|
|
// For example, Brcom(==) is !=.
|
|
func Brcom(op Op) Op {
|
|
switch op {
|
|
case OEQ:
|
|
return ONE
|
|
case ONE:
|
|
return OEQ
|
|
case OLT:
|
|
return OGE
|
|
case OGT:
|
|
return OLE
|
|
case OLE:
|
|
return OGT
|
|
case OGE:
|
|
return OLT
|
|
}
|
|
Fatalf("brcom: no com for %v\n", Oconv(op, 0))
|
|
return op
|
|
}
|
|
|
|
// Brrev returns reverse(op).
|
|
// For example, Brrev(<) is >.
|
|
func Brrev(op Op) Op {
|
|
switch op {
|
|
case OEQ:
|
|
return OEQ
|
|
case ONE:
|
|
return ONE
|
|
case OLT:
|
|
return OGT
|
|
case OGT:
|
|
return OLT
|
|
case OLE:
|
|
return OGE
|
|
case OGE:
|
|
return OLE
|
|
}
|
|
Fatalf("brrev: no rev for %v\n", Oconv(op, 0))
|
|
return op
|
|
}
|
|
|
|
// return side effect-free n, appending side effects to init.
|
|
// result is assignable if n is.
|
|
func safeexpr(n *Node, init *Nodes) *Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
if n.Ninit.Len() != 0 {
|
|
walkstmtlist(n.Ninit.Slice())
|
|
init.AppendNodes(&n.Ninit)
|
|
}
|
|
|
|
switch n.Op {
|
|
case ONAME, OLITERAL:
|
|
return n
|
|
|
|
case ODOT, OLEN, OCAP:
|
|
l := safeexpr(n.Left, init)
|
|
if l == n.Left {
|
|
return n
|
|
}
|
|
r := Nod(OXXX, nil, nil)
|
|
*r = *n
|
|
r.Left = l
|
|
typecheck(&r, Erv)
|
|
walkexpr(&r, init)
|
|
return r
|
|
|
|
case ODOTPTR, OIND:
|
|
l := safeexpr(n.Left, init)
|
|
if l == n.Left {
|
|
return n
|
|
}
|
|
a := Nod(OXXX, nil, nil)
|
|
*a = *n
|
|
a.Left = l
|
|
walkexpr(&a, init)
|
|
return a
|
|
|
|
case OINDEX, OINDEXMAP:
|
|
l := safeexpr(n.Left, init)
|
|
r := safeexpr(n.Right, init)
|
|
if l == n.Left && r == n.Right {
|
|
return n
|
|
}
|
|
a := Nod(OXXX, nil, nil)
|
|
*a = *n
|
|
a.Left = l
|
|
a.Right = r
|
|
walkexpr(&a, init)
|
|
return a
|
|
}
|
|
|
|
// make a copy; must not be used as an lvalue
|
|
if islvalue(n) {
|
|
Fatalf("missing lvalue case in safeexpr: %v", n)
|
|
}
|
|
return cheapexpr(n, init)
|
|
}
|
|
|
|
func copyexpr(n *Node, t *Type, init *Nodes) *Node {
|
|
l := temp(t)
|
|
a := Nod(OAS, l, n)
|
|
typecheck(&a, Etop)
|
|
walkexpr(&a, init)
|
|
init.Append(a)
|
|
return l
|
|
}
|
|
|
|
// return side-effect free and cheap n, appending side effects to init.
|
|
// result may not be assignable.
|
|
func cheapexpr(n *Node, init *Nodes) *Node {
|
|
switch n.Op {
|
|
case ONAME, OLITERAL:
|
|
return n
|
|
}
|
|
|
|
return copyexpr(n, n.Type, init)
|
|
}
|
|
|
|
func Setmaxarg(t *Type, extra int32) {
|
|
dowidth(t)
|
|
w := t.Argwid
|
|
if w >= Thearch.MAXWIDTH {
|
|
Fatalf("bad argwid %v", t)
|
|
}
|
|
w += int64(extra)
|
|
if w >= Thearch.MAXWIDTH {
|
|
Fatalf("bad argwid %d + %v", extra, t)
|
|
}
|
|
if w > Maxarg {
|
|
Maxarg = w
|
|
}
|
|
}
|
|
|
|
// Code to resolve elided DOTs in embedded types.
|
|
|
|
// A Dlist stores a pointer to a TFIELD Type embedded within
|
|
// a TSTRUCT or TINTER Type.
|
|
type Dlist struct {
|
|
field *Field
|
|
}
|
|
|
|
// dotlist is used by adddot1 to record the path of embedded fields
|
|
// used to access a target field or method.
|
|
// Must be non-nil so that dotpath returns a non-nil slice even if d is zero.
|
|
var dotlist = make([]Dlist, 10)
|
|
|
|
// lookdot0 returns the number of fields or methods named s associated
|
|
// with Type t. If exactly one exists, it will be returned in *save
|
|
// (if save is not nil).
|
|
func lookdot0(s *Sym, t *Type, save **Field, ignorecase bool) int {
|
|
u := t
|
|
if Isptr[u.Etype] {
|
|
u = u.Type
|
|
}
|
|
|
|
c := 0
|
|
if u.Etype == TSTRUCT || u.Etype == TINTER {
|
|
for f, it := IterFields(u); f != nil; f = it.Next() {
|
|
if f.Sym == s || (ignorecase && f.Type.Etype == TFUNC && f.Type.Thistuple > 0 && strings.EqualFold(f.Sym.Name, s.Name)) {
|
|
if save != nil {
|
|
*save = f
|
|
}
|
|
c++
|
|
}
|
|
}
|
|
}
|
|
|
|
u = methtype(t, 0)
|
|
if u != nil {
|
|
for f, it := IterMethods(u); f != nil; f = it.Next() {
|
|
if f.Embedded == 0 && (f.Sym == s || (ignorecase && strings.EqualFold(f.Sym.Name, s.Name))) {
|
|
if save != nil {
|
|
*save = f
|
|
}
|
|
c++
|
|
}
|
|
}
|
|
}
|
|
|
|
return c
|
|
}
|
|
|
|
// adddot1 returns the number of fields or methods named s at depth d in Type t.
|
|
// If exactly one exists, it will be returned in *save (if save is not nil),
|
|
// and dotlist will contain the path of embedded fields traversed to find it,
|
|
// in reverse order. If none exist, more will indicate whether t contains any
|
|
// embedded fields at depth d, so callers can decide whether to retry at
|
|
// a greater depth.
|
|
func adddot1(s *Sym, t *Type, d int, save **Field, ignorecase bool) (c int, more bool) {
|
|
if t.Trecur != 0 {
|
|
return
|
|
}
|
|
t.Trecur = 1
|
|
|
|
var u *Type
|
|
d--
|
|
if d < 0 {
|
|
// We've reached our target depth. If t has any fields/methods
|
|
// named s, then we're done. Otherwise, we still need to check
|
|
// below for embedded fields.
|
|
c = lookdot0(s, t, save, ignorecase)
|
|
if c != 0 {
|
|
goto out
|
|
}
|
|
}
|
|
|
|
u = t
|
|
if Isptr[u.Etype] {
|
|
u = u.Type
|
|
}
|
|
if u.Etype != TSTRUCT && u.Etype != TINTER {
|
|
goto out
|
|
}
|
|
|
|
for f, it := IterFields(u); f != nil; f = it.Next() {
|
|
if f.Embedded == 0 || f.Sym == nil {
|
|
continue
|
|
}
|
|
if d < 0 {
|
|
// Found an embedded field at target depth.
|
|
more = true
|
|
goto out
|
|
}
|
|
a, more1 := adddot1(s, f.Type, d, save, ignorecase)
|
|
if a != 0 && c == 0 {
|
|
dotlist[d].field = f
|
|
}
|
|
c += a
|
|
if more1 {
|
|
more = true
|
|
}
|
|
}
|
|
|
|
out:
|
|
t.Trecur = 0
|
|
return c, more
|
|
}
|
|
|
|
// dotpath computes the unique shortest explicit selector path to fully qualify
|
|
// a selection expression x.f, where x is of type t and f is the symbol s.
|
|
// If no such path exists, dotpath returns nil.
|
|
// If there are multiple shortest paths to the same depth, ambig is true.
|
|
func dotpath(s *Sym, t *Type, save **Field, ignorecase bool) (path []Dlist, ambig bool) {
|
|
// The embedding of types within structs imposes a tree structure onto
|
|
// types: structs parent the types they embed, and types parent their
|
|
// fields or methods. Our goal here is to find the shortest path to
|
|
// a field or method named s in the subtree rooted at t. To accomplish
|
|
// that, we iteratively perform depth-first searches of increasing depth
|
|
// until we either find the named field/method or exhaust the tree.
|
|
for d := 0; ; d++ {
|
|
if d > len(dotlist) {
|
|
dotlist = append(dotlist, Dlist{})
|
|
}
|
|
if c, more := adddot1(s, t, d, save, ignorecase); c == 1 {
|
|
return dotlist[:d], false
|
|
} else if c > 1 {
|
|
return nil, true
|
|
} else if !more {
|
|
return nil, false
|
|
}
|
|
}
|
|
}
|
|
|
|
// in T.field
|
|
// find missing fields that
|
|
// will give shortest unique addressing.
|
|
// modify the tree with missing type names.
|
|
func adddot(n *Node) *Node {
|
|
typecheck(&n.Left, Etype|Erv)
|
|
n.Diag |= n.Left.Diag
|
|
t := n.Left.Type
|
|
if t == nil {
|
|
return n
|
|
}
|
|
|
|
if n.Left.Op == OTYPE {
|
|
return n
|
|
}
|
|
|
|
if n.Right.Op != ONAME {
|
|
return n
|
|
}
|
|
s := n.Right.Sym
|
|
if s == nil {
|
|
return n
|
|
}
|
|
|
|
switch path, ambig := dotpath(s, t, nil, false); {
|
|
case path != nil:
|
|
// rebuild elided dots
|
|
for c := len(path) - 1; c >= 0; c-- {
|
|
n.Left = Nod(ODOT, n.Left, newname(path[c].field.Sym))
|
|
n.Left.Implicit = true
|
|
}
|
|
case ambig:
|
|
Yyerror("ambiguous selector %v", n)
|
|
n.Left = nil
|
|
}
|
|
|
|
return n
|
|
}
|
|
|
|
// code to help generate trampoline
|
|
// functions for methods on embedded
|
|
// subtypes.
|
|
// these are approx the same as
|
|
// the corresponding adddot routines
|
|
// except that they expect to be called
|
|
// with unique tasks and they return
|
|
// the actual methods.
|
|
type Symlink struct {
|
|
field *Field
|
|
link *Symlink
|
|
good bool
|
|
followptr bool
|
|
}
|
|
|
|
var slist *Symlink
|
|
|
|
func expand0(t *Type, followptr bool) {
|
|
u := t
|
|
if Isptr[u.Etype] {
|
|
followptr = true
|
|
u = u.Type
|
|
}
|
|
|
|
if u.Etype == TINTER {
|
|
var sl *Symlink
|
|
for f, it := IterFields(u); f != nil; f = it.Next() {
|
|
if f.Sym.Flags&SymUniq != 0 {
|
|
continue
|
|
}
|
|
f.Sym.Flags |= SymUniq
|
|
sl = new(Symlink)
|
|
sl.field = f
|
|
sl.link = slist
|
|
sl.followptr = followptr
|
|
slist = sl
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
u = methtype(t, 0)
|
|
if u != nil {
|
|
var sl *Symlink
|
|
for f, it := IterMethods(u); f != nil; f = it.Next() {
|
|
if f.Sym.Flags&SymUniq != 0 {
|
|
continue
|
|
}
|
|
f.Sym.Flags |= SymUniq
|
|
sl = new(Symlink)
|
|
sl.field = f
|
|
sl.link = slist
|
|
sl.followptr = followptr
|
|
slist = sl
|
|
}
|
|
}
|
|
}
|
|
|
|
func expand1(t *Type, top, followptr bool) {
|
|
if t.Trecur != 0 {
|
|
return
|
|
}
|
|
t.Trecur = 1
|
|
|
|
if !top {
|
|
expand0(t, followptr)
|
|
}
|
|
|
|
u := t
|
|
if Isptr[u.Etype] {
|
|
followptr = true
|
|
u = u.Type
|
|
}
|
|
|
|
if u.Etype != TSTRUCT && u.Etype != TINTER {
|
|
goto out
|
|
}
|
|
|
|
for f, it := IterFields(u); f != nil; f = it.Next() {
|
|
if f.Embedded == 0 {
|
|
continue
|
|
}
|
|
if f.Sym == nil {
|
|
continue
|
|
}
|
|
expand1(f.Type, false, followptr)
|
|
}
|
|
|
|
out:
|
|
t.Trecur = 0
|
|
}
|
|
|
|
func expandmeth(t *Type) {
|
|
if t == nil || t.Xmethod != nil {
|
|
return
|
|
}
|
|
|
|
// mark top-level method symbols
|
|
// so that expand1 doesn't consider them.
|
|
for f, it := IterMethods(t); f != nil; f = it.Next() {
|
|
f.Sym.Flags |= SymUniq
|
|
}
|
|
|
|
// generate all reachable methods
|
|
slist = nil
|
|
|
|
expand1(t, true, false)
|
|
|
|
// check each method to be uniquely reachable
|
|
for sl := slist; sl != nil; sl = sl.link {
|
|
sl.field.Sym.Flags &^= SymUniq
|
|
var f *Field
|
|
if path, _ := dotpath(sl.field.Sym, t, &f, false); path == nil {
|
|
continue
|
|
}
|
|
// dotpath may have dug out arbitrary fields, we only want methods.
|
|
if f.Type.Etype == TFUNC && f.Type.Thistuple > 0 {
|
|
sl.good = true
|
|
sl.field = f
|
|
}
|
|
}
|
|
|
|
for f, it := IterMethods(t); f != nil; f = it.Next() {
|
|
f.Sym.Flags &^= SymUniq
|
|
}
|
|
|
|
t.Xmethod = t.Method
|
|
for sl := slist; sl != nil; sl = sl.link {
|
|
if sl.good {
|
|
// add it to the base type method list
|
|
f := sl.field.Copy()
|
|
f.Embedded = 1 // needs a trampoline
|
|
if sl.followptr {
|
|
f.Embedded = 2
|
|
}
|
|
f.Down = t.Xmethod
|
|
t.Xmethod = f
|
|
}
|
|
}
|
|
}
|
|
|
|
// Given funarg struct list, return list of ODCLFIELD Node fn args.
|
|
func structargs(tl *Type, mustname bool) []*Node {
|
|
var args []*Node
|
|
gen := 0
|
|
for t, it := IterFields(tl); t != nil; t = it.Next() {
|
|
var n *Node
|
|
if mustname && (t.Sym == nil || t.Sym.Name == "_") {
|
|
// invent a name so that we can refer to it in the trampoline
|
|
buf := fmt.Sprintf(".anon%d", gen)
|
|
gen++
|
|
n = newname(Lookup(buf))
|
|
} else if t.Sym != nil {
|
|
n = newname(t.Sym)
|
|
}
|
|
a := Nod(ODCLFIELD, n, typenod(t.Type))
|
|
a.Isddd = t.Isddd
|
|
if n != nil {
|
|
n.Isddd = t.Isddd
|
|
}
|
|
args = append(args, a)
|
|
}
|
|
|
|
return args
|
|
}
|
|
|
|
// Generate a wrapper function to convert from
|
|
// a receiver of type T to a receiver of type U.
|
|
// That is,
|
|
//
|
|
// func (t T) M() {
|
|
// ...
|
|
// }
|
|
//
|
|
// already exists; this function generates
|
|
//
|
|
// func (u U) M() {
|
|
// u.M()
|
|
// }
|
|
//
|
|
// where the types T and U are such that u.M() is valid
|
|
// and calls the T.M method.
|
|
// The resulting function is for use in method tables.
|
|
//
|
|
// rcvr - U
|
|
// method - M func (t T)(), a TFIELD type struct
|
|
// newnam - the eventual mangled name of this function
|
|
|
|
var genwrapper_linehistdone int = 0
|
|
|
|
func genwrapper(rcvr *Type, method *Field, newnam *Sym, iface int) {
|
|
if false && Debug['r'] != 0 {
|
|
fmt.Printf("genwrapper rcvrtype=%v method=%v newnam=%v\n", rcvr, method, newnam)
|
|
}
|
|
|
|
lexlineno++
|
|
lineno = lexlineno
|
|
if genwrapper_linehistdone == 0 {
|
|
// All the wrappers can share the same linehist entry.
|
|
linehistpush("<autogenerated>")
|
|
|
|
genwrapper_linehistdone = 1
|
|
}
|
|
|
|
dclcontext = PEXTERN
|
|
markdcl()
|
|
|
|
this := Nod(ODCLFIELD, newname(Lookup(".this")), typenod(rcvr))
|
|
this.Left.Name.Param.Ntype = this.Right
|
|
in := structargs(method.Type.Params(), true)
|
|
out := structargs(method.Type.Results(), false)
|
|
|
|
t := Nod(OTFUNC, nil, nil)
|
|
l := []*Node{this}
|
|
if iface != 0 && rcvr.Width < Types[Tptr].Width {
|
|
// Building method for interface table and receiver
|
|
// is smaller than the single pointer-sized word
|
|
// that the interface call will pass in.
|
|
// Add a dummy padding argument after the
|
|
// receiver to make up the difference.
|
|
tpad := typ(TARRAY)
|
|
|
|
tpad.Type = Types[TUINT8]
|
|
tpad.Bound = Types[Tptr].Width - rcvr.Width
|
|
pad := Nod(ODCLFIELD, newname(Lookup(".pad")), typenod(tpad))
|
|
l = append(l, pad)
|
|
}
|
|
|
|
t.List.Set(append(l, in...))
|
|
t.Rlist.Set(out)
|
|
|
|
fn := Nod(ODCLFUNC, nil, nil)
|
|
fn.Func.Nname = newname(newnam)
|
|
fn.Func.Nname.Name.Defn = fn
|
|
fn.Func.Nname.Name.Param.Ntype = t
|
|
declare(fn.Func.Nname, PFUNC)
|
|
funchdr(fn)
|
|
|
|
// arg list
|
|
var args []*Node
|
|
|
|
isddd := false
|
|
for _, n := range in {
|
|
args = append(args, n.Left)
|
|
isddd = n.Left.Isddd
|
|
}
|
|
|
|
methodrcvr := method.Type.Recv().Type
|
|
|
|
// generate nil pointer check for better error
|
|
if Isptr[rcvr.Etype] && rcvr.Type == methodrcvr {
|
|
// generating wrapper from *T to T.
|
|
n := Nod(OIF, nil, nil)
|
|
|
|
n.Left = Nod(OEQ, this.Left, nodnil())
|
|
|
|
// these strings are already in the reflect tables,
|
|
// so no space cost to use them here.
|
|
var l []*Node
|
|
|
|
var v Val
|
|
v.U = rcvr.Type.Sym.Pkg.Name // package name
|
|
l = append(l, nodlit(v))
|
|
v.U = rcvr.Type.Sym.Name // type name
|
|
l = append(l, nodlit(v))
|
|
v.U = method.Sym.Name
|
|
l = append(l, nodlit(v)) // method name
|
|
call := Nod(OCALL, syslook("panicwrap"), nil)
|
|
call.List.Set(l)
|
|
n.Nbody.Set1(call)
|
|
fn.Nbody.Append(n)
|
|
}
|
|
|
|
dot := adddot(Nod(OXDOT, this.Left, newname(method.Sym)))
|
|
|
|
// generate call
|
|
if !instrumenting && Isptr[rcvr.Etype] && Isptr[methodrcvr.Etype] && method.Embedded != 0 && !isifacemethod(method.Type) {
|
|
// generate tail call: adjust pointer receiver and jump to embedded method.
|
|
dot = dot.Left // skip final .M
|
|
// TODO(mdempsky): Remove dependency on dotlist.
|
|
if !Isptr[dotlist[0].field.Type.Etype] {
|
|
dot = Nod(OADDR, dot, nil)
|
|
}
|
|
as := Nod(OAS, this.Left, Nod(OCONVNOP, dot, nil))
|
|
as.Right.Type = rcvr
|
|
fn.Nbody.Append(as)
|
|
n := Nod(ORETJMP, nil, nil)
|
|
n.Left = newname(methodsym(method.Sym, methodrcvr, 0))
|
|
fn.Nbody.Append(n)
|
|
} else {
|
|
fn.Func.Wrapper = true // ignore frame for panic+recover matching
|
|
call := Nod(OCALL, dot, nil)
|
|
call.List.Set(args)
|
|
call.Isddd = isddd
|
|
if method.Type.Outtuple > 0 {
|
|
n := Nod(ORETURN, nil, nil)
|
|
n.List.Set1(call)
|
|
call = n
|
|
}
|
|
|
|
fn.Nbody.Append(call)
|
|
}
|
|
|
|
if false && Debug['r'] != 0 {
|
|
dumplist("genwrapper body", fn.Nbody)
|
|
}
|
|
|
|
funcbody(fn)
|
|
Curfn = fn
|
|
popdcl()
|
|
testdclstack()
|
|
|
|
// wrappers where T is anonymous (struct or interface) can be duplicated.
|
|
if rcvr.Etype == TSTRUCT || rcvr.Etype == TINTER || Isptr[rcvr.Etype] && rcvr.Type.Etype == TSTRUCT {
|
|
fn.Func.Dupok = true
|
|
}
|
|
typecheck(&fn, Etop)
|
|
typechecklist(fn.Nbody.Slice(), Etop)
|
|
|
|
inlcalls(fn)
|
|
escAnalyze([]*Node{fn}, false)
|
|
|
|
Curfn = nil
|
|
funccompile(fn)
|
|
}
|
|
|
|
func hashmem(t *Type) *Node {
|
|
sym := Pkglookup("memhash", Runtimepkg)
|
|
|
|
n := newname(sym)
|
|
n.Class = PFUNC
|
|
tfn := Nod(OTFUNC, nil, nil)
|
|
tfn.List.Append(Nod(ODCLFIELD, nil, typenod(Ptrto(t))))
|
|
tfn.List.Append(Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
|
|
tfn.List.Append(Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
|
|
tfn.Rlist.Append(Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
|
|
typecheck(&tfn, Etype)
|
|
n.Type = tfn.Type
|
|
return n
|
|
}
|
|
|
|
func ifacelookdot(s *Sym, t *Type, followptr *bool, ignorecase bool) *Field {
|
|
*followptr = false
|
|
|
|
if t == nil {
|
|
return nil
|
|
}
|
|
|
|
var m *Field
|
|
path, ambig := dotpath(s, t, &m, ignorecase)
|
|
if path == nil {
|
|
if ambig {
|
|
Yyerror("%v.%v is ambiguous", t, s)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
for _, d := range path {
|
|
if Isptr[d.field.Type.Etype] {
|
|
*followptr = true
|
|
break
|
|
}
|
|
}
|
|
|
|
if m.Type.Etype != TFUNC || m.Type.Thistuple == 0 {
|
|
Yyerror("%v.%v is a field, not a method", t, s)
|
|
return nil
|
|
}
|
|
|
|
return m
|
|
}
|
|
|
|
func implements(t, iface *Type, m, samename **Field, ptr *int) bool {
|
|
t0 := t
|
|
if t == nil {
|
|
return false
|
|
}
|
|
|
|
// if this is too slow,
|
|
// could sort these first
|
|
// and then do one loop.
|
|
|
|
if t.Etype == TINTER {
|
|
for im, it := IterFields(iface); im != nil; im = it.Next() {
|
|
for tm, it2 := IterFields(t); tm != nil; tm = it2.Next() {
|
|
if tm.Sym == im.Sym {
|
|
if Eqtype(tm.Type, im.Type) {
|
|
goto found
|
|
}
|
|
*m = im
|
|
*samename = tm
|
|
*ptr = 0
|
|
return false
|
|
}
|
|
}
|
|
|
|
*m = im
|
|
*samename = nil
|
|
*ptr = 0
|
|
return false
|
|
found:
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
t = methtype(t, 0)
|
|
if t != nil {
|
|
expandmeth(t)
|
|
}
|
|
for im, it := IterFields(iface); im != nil; im = it.Next() {
|
|
if im.Broke {
|
|
continue
|
|
}
|
|
var followptr bool
|
|
tm := ifacelookdot(im.Sym, t, &followptr, false)
|
|
if tm == nil || tm.Nointerface || !Eqtype(tm.Type, im.Type) {
|
|
if tm == nil {
|
|
tm = ifacelookdot(im.Sym, t, &followptr, true)
|
|
}
|
|
*m = im
|
|
*samename = tm
|
|
*ptr = 0
|
|
return false
|
|
}
|
|
|
|
// if pointer receiver in method,
|
|
// the method does not exist for value types.
|
|
rcvr := tm.Type.Recv().Type
|
|
|
|
if Isptr[rcvr.Etype] && !Isptr[t0.Etype] && !followptr && !isifacemethod(tm.Type) {
|
|
if false && Debug['r'] != 0 {
|
|
Yyerror("interface pointer mismatch")
|
|
}
|
|
|
|
*m = im
|
|
*samename = nil
|
|
*ptr = 1
|
|
return false
|
|
}
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// even simpler simtype; get rid of ptr, bool.
|
|
// assuming that the front end has rejected
|
|
// all the invalid conversions (like ptr -> bool)
|
|
func Simsimtype(t *Type) EType {
|
|
if t == nil {
|
|
return 0
|
|
}
|
|
|
|
et := Simtype[t.Etype]
|
|
switch et {
|
|
case TPTR32:
|
|
et = TUINT32
|
|
|
|
case TPTR64:
|
|
et = TUINT64
|
|
|
|
case TBOOL:
|
|
et = TUINT8
|
|
}
|
|
|
|
return et
|
|
}
|
|
|
|
func listtreecopy(l []*Node, lineno int32) []*Node {
|
|
var out []*Node
|
|
for _, n := range l {
|
|
out = append(out, treecopy(n, lineno))
|
|
}
|
|
return out
|
|
}
|
|
|
|
func liststmt(l []*Node) *Node {
|
|
n := Nod(OBLOCK, nil, nil)
|
|
n.List.Set(l)
|
|
if len(l) != 0 {
|
|
n.Lineno = l[0].Lineno
|
|
}
|
|
return n
|
|
}
|
|
|
|
// return power of 2 of the constant
|
|
// operand. -1 if it is not a power of 2.
|
|
// 1000+ if it is a -(power of 2)
|
|
func powtwo(n *Node) int {
|
|
if n == nil || n.Op != OLITERAL || n.Type == nil {
|
|
return -1
|
|
}
|
|
if !Isint[n.Type.Etype] {
|
|
return -1
|
|
}
|
|
|
|
v := uint64(Mpgetfix(n.Val().U.(*Mpint)))
|
|
b := uint64(1)
|
|
for i := 0; i < 64; i++ {
|
|
if b == v {
|
|
return i
|
|
}
|
|
b = b << 1
|
|
}
|
|
|
|
if !Issigned[n.Type.Etype] {
|
|
return -1
|
|
}
|
|
|
|
v = -v
|
|
b = 1
|
|
for i := 0; i < 64; i++ {
|
|
if b == v {
|
|
return i + 1000
|
|
}
|
|
b = b << 1
|
|
}
|
|
|
|
return -1
|
|
}
|
|
|
|
// return the unsigned type for
|
|
// a signed integer type.
|
|
// returns T if input is not a
|
|
// signed integer type.
|
|
func tounsigned(t *Type) *Type {
|
|
// this is types[et+1], but not sure
|
|
// that this relation is immutable
|
|
switch t.Etype {
|
|
default:
|
|
fmt.Printf("tounsigned: unknown type %v\n", t)
|
|
t = nil
|
|
|
|
case TINT:
|
|
t = Types[TUINT]
|
|
|
|
case TINT8:
|
|
t = Types[TUINT8]
|
|
|
|
case TINT16:
|
|
t = Types[TUINT16]
|
|
|
|
case TINT32:
|
|
t = Types[TUINT32]
|
|
|
|
case TINT64:
|
|
t = Types[TUINT64]
|
|
}
|
|
|
|
return t
|
|
}
|
|
|
|
func ngotype(n *Node) *Sym {
|
|
if n.Type != nil {
|
|
return typenamesym(n.Type)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Convert raw string to the prefix that will be used in the symbol
|
|
// table. All control characters, space, '%' and '"', as well as
|
|
// non-7-bit clean bytes turn into %xx. The period needs escaping
|
|
// only in the last segment of the path, and it makes for happier
|
|
// users if we escape that as little as possible.
|
|
//
|
|
// If you edit this, edit ../../debug/goobj/read.go:/importPathToPrefix too.
|
|
func pathtoprefix(s string) string {
|
|
slash := strings.LastIndex(s, "/")
|
|
for i := 0; i < len(s); i++ {
|
|
c := s[i]
|
|
if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F {
|
|
var buf bytes.Buffer
|
|
for i := 0; i < len(s); i++ {
|
|
c := s[i]
|
|
if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F {
|
|
fmt.Fprintf(&buf, "%%%02x", c)
|
|
continue
|
|
}
|
|
buf.WriteByte(c)
|
|
}
|
|
return buf.String()
|
|
}
|
|
}
|
|
return s
|
|
}
|
|
|
|
var pkgMap = make(map[string]*Pkg)
|
|
var pkgs []*Pkg
|
|
|
|
func mkpkg(path string) *Pkg {
|
|
if p := pkgMap[path]; p != nil {
|
|
return p
|
|
}
|
|
|
|
p := new(Pkg)
|
|
p.Path = path
|
|
p.Prefix = pathtoprefix(path)
|
|
p.Syms = make(map[string]*Sym)
|
|
pkgMap[path] = p
|
|
pkgs = append(pkgs, p)
|
|
return p
|
|
}
|
|
|
|
func addinit(np **Node, init []*Node) {
|
|
if len(init) == 0 {
|
|
return
|
|
}
|
|
|
|
n := *np
|
|
switch n.Op {
|
|
// There may be multiple refs to this node;
|
|
// introduce OCONVNOP to hold init list.
|
|
case ONAME, OLITERAL:
|
|
n = Nod(OCONVNOP, n, nil)
|
|
|
|
n.Type = n.Left.Type
|
|
n.Typecheck = 1
|
|
*np = n
|
|
}
|
|
|
|
n.Ninit.Set(append(init, n.Ninit.Slice()...))
|
|
n.Ullman = UINF
|
|
}
|
|
|
|
var reservedimports = []string{
|
|
"go",
|
|
"type",
|
|
}
|
|
|
|
func isbadimport(path string) bool {
|
|
if strings.Contains(path, "\x00") {
|
|
Yyerror("import path contains NUL")
|
|
return true
|
|
}
|
|
|
|
for _, ri := range reservedimports {
|
|
if path == ri {
|
|
Yyerror("import path %q is reserved and cannot be used", path)
|
|
return true
|
|
}
|
|
}
|
|
|
|
for _, r := range path {
|
|
if r == utf8.RuneError {
|
|
Yyerror("import path contains invalid UTF-8 sequence: %q", path)
|
|
return true
|
|
}
|
|
|
|
if r < 0x20 || r == 0x7f {
|
|
Yyerror("import path contains control character: %q", path)
|
|
return true
|
|
}
|
|
|
|
if r == '\\' {
|
|
Yyerror("import path contains backslash; use slash: %q", path)
|
|
return true
|
|
}
|
|
|
|
if unicode.IsSpace(r) {
|
|
Yyerror("import path contains space character: %q", path)
|
|
return true
|
|
}
|
|
|
|
if strings.ContainsRune("!\"#$%&'()*,:;<=>?[]^`{|}", r) {
|
|
Yyerror("import path contains invalid character '%c': %q", r, path)
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
func checknil(x *Node, init *Nodes) {
|
|
if Isinter(x.Type) {
|
|
x = Nod(OITAB, x, nil)
|
|
typecheck(&x, Erv)
|
|
}
|
|
|
|
n := Nod(OCHECKNIL, x, nil)
|
|
n.Typecheck = 1
|
|
init.Append(n)
|
|
}
|
|
|
|
// Can this type be stored directly in an interface word?
|
|
// Yes, if the representation is a single pointer.
|
|
func isdirectiface(t *Type) bool {
|
|
switch t.Etype {
|
|
case TPTR32,
|
|
TPTR64,
|
|
TCHAN,
|
|
TMAP,
|
|
TFUNC,
|
|
TUNSAFEPTR:
|
|
return true
|
|
|
|
case TARRAY:
|
|
// Array of 1 direct iface type can be direct.
|
|
return t.Bound == 1 && isdirectiface(t.Type)
|
|
|
|
case TSTRUCT:
|
|
// Struct with 1 field of direct iface type can be direct.
|
|
return countfield(t) == 1 && isdirectiface(t.Field(0).Type)
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// iet returns 'T' if t is a concrete type,
|
|
// 'I' if t is an interface type, and 'E' if t is an empty interface type.
|
|
// It is used to build calls to the conv* and assert* runtime routines.
|
|
func (t *Type) iet() byte {
|
|
if isnilinter(t) {
|
|
return 'E'
|
|
}
|
|
if Isinter(t) {
|
|
return 'I'
|
|
}
|
|
return 'T'
|
|
}
|