mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
This CL is originally based on CL 484838 from rajbarik@uber.com. Add a new PGO-based devirtualize pass. This pass conditionally devirtualizes interface calls for the hottest callee. That is, it performs a transformation like: type Iface interface { Foo() } type Concrete struct{} func (Concrete) Foo() {} func foo(i Iface) { i.Foo() } to: func foo(i Iface) { if c, ok := i.(Concrete); ok { c.Foo() } else { i.Foo() } } The primary benefit of this transformation is enabling inlining of the direct calls. Today this change has no impact on the escape behavior, as the fallback interface always forces an escape. But improving escape analysis to take advantage of this is an area of potential work. This CL is the bare minimum of a devirtualization implementation. There are still numerous limitations: * Callees not directly referenced in the current package can be missed (even if they are in the transitive dependences). * Callees not in the transitive dependencies of the current package are missed. * Only interface method calls are supported, not other indirect function calls. * Multiple calls to compatible interfaces on the same line cannot be distinguished and will use the same callee target. * Callees that only partially implement an interface (they are embedded in another type that completes the interface) cannot be devirtualized. * Others, mentioned in TODOs. Fixes #59959 Change-Id: I8bedb516139695ee4069650b099d05957b7ce5ee Reviewed-on: https://go-review.googlesource.com/c/go/+/492436 Reviewed-by: Cherry Mui <cherryyz@google.com> Reviewed-by: Matthew Dempsky <mdempsky@google.com> Run-TryBot: Michael Pratt <mpratt@google.com> Auto-Submit: Michael Pratt <mpratt@google.com> TryBot-Result: Gopher Robot <gobot@golang.org>
566 lines
18 KiB
Go
566 lines
18 KiB
Go
// Copyright 2022 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// A note on line numbers: when working with line numbers, we always use the
|
|
// binary-visible relative line number. i.e., the line number as adjusted by
|
|
// //line directives (ctxt.InnermostPos(ir.Node.Pos()).RelLine()). Use
|
|
// NodeLineOffset to compute line offsets.
|
|
//
|
|
// If you are thinking, "wait, doesn't that just make things more complex than
|
|
// using the real line number?", then you are 100% correct. Unfortunately,
|
|
// pprof profiles generated by the runtime always contain line numbers as
|
|
// adjusted by //line directives (because that is what we put in pclntab). Thus
|
|
// for the best behavior when attempting to match the source with the profile
|
|
// it makes sense to use the same line number space.
|
|
//
|
|
// Some of the effects of this to keep in mind:
|
|
//
|
|
// - For files without //line directives there is no impact, as RelLine() ==
|
|
// Line().
|
|
// - For functions entirely covered by the same //line directive (i.e., a
|
|
// directive before the function definition and no directives within the
|
|
// function), there should also be no impact, as line offsets within the
|
|
// function should be the same as the real line offsets.
|
|
// - Functions containing //line directives may be impacted. As fake line
|
|
// numbers need not be monotonic, we may compute negative line offsets. We
|
|
// should accept these and attempt to use them for best-effort matching, as
|
|
// these offsets should still match if the source is unchanged, and may
|
|
// continue to match with changed source depending on the impact of the
|
|
// changes on fake line numbers.
|
|
// - Functions containing //line directives may also contain duplicate lines,
|
|
// making it ambiguous which call the profile is referencing. This is a
|
|
// similar problem to multiple calls on a single real line, as we don't
|
|
// currently track column numbers.
|
|
//
|
|
// Long term it would be best to extend pprof profiles to include real line
|
|
// numbers. Until then, we have to live with these complexities. Luckily,
|
|
// //line directives that change line numbers in strange ways should be rare,
|
|
// and failing PGO matching on these files is not too big of a loss.
|
|
|
|
package pgo
|
|
|
|
import (
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/pgo/internal/graph"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"fmt"
|
|
"internal/profile"
|
|
"os"
|
|
)
|
|
|
|
// IRGraph is a call graph with nodes pointing to IRs of functions and edges
|
|
// carrying weights and callsite information.
|
|
//
|
|
// Nodes for indirect calls may have missing IR (IRNode.AST == nil) if the node
|
|
// is not visible from this package (e.g., not in the transitive deps). Keeping
|
|
// these nodes allows determining the hottest edge from a call even if that
|
|
// callee is not available.
|
|
//
|
|
// TODO(prattmic): Consider merging this data structure with Graph. This is
|
|
// effectively a copy of Graph aggregated to line number and pointing to IR.
|
|
type IRGraph struct {
|
|
// Nodes of the graph
|
|
IRNodes map[string]*IRNode
|
|
}
|
|
|
|
// IRNode represents a node (function) in the IRGraph.
|
|
type IRNode struct {
|
|
// Pointer to the IR of the Function represented by this node.
|
|
AST *ir.Func
|
|
// Linker symbol name of the Function represented by this node.
|
|
// Populated only if AST == nil.
|
|
LinkerSymbolName string
|
|
|
|
// Set of out-edges in the callgraph. The map uniquely identifies each
|
|
// edge based on the callsite and callee, for fast lookup.
|
|
OutEdges map[NodeMapKey]*IREdge
|
|
}
|
|
|
|
// Name returns the symbol name of this function.
|
|
func (i *IRNode) Name() string {
|
|
if i.AST != nil {
|
|
return ir.LinkFuncName(i.AST)
|
|
}
|
|
return i.LinkerSymbolName
|
|
}
|
|
|
|
// IREdge represents a call edge in the IRGraph with source, destination,
|
|
// weight, callsite, and line number information.
|
|
type IREdge struct {
|
|
// Source and destination of the edge in IRNode.
|
|
Src, Dst *IRNode
|
|
Weight int64
|
|
CallSiteOffset int // Line offset from function start line.
|
|
}
|
|
|
|
// NodeMapKey represents a hash key to identify unique call-edges in profile
|
|
// and in IR. Used for deduplication of call edges found in profile.
|
|
//
|
|
// TODO(prattmic): rename to something more descriptive.
|
|
type NodeMapKey struct {
|
|
CallerName string
|
|
CalleeName string
|
|
CallSiteOffset int // Line offset from function start line.
|
|
}
|
|
|
|
// Weights capture both node weight and edge weight.
|
|
type Weights struct {
|
|
NFlat int64
|
|
NCum int64
|
|
EWeight int64
|
|
}
|
|
|
|
// CallSiteInfo captures call-site information and its caller/callee.
|
|
type CallSiteInfo struct {
|
|
LineOffset int // Line offset from function start line.
|
|
Caller *ir.Func
|
|
Callee *ir.Func
|
|
}
|
|
|
|
// Profile contains the processed PGO profile and weighted call graph used for
|
|
// PGO optimizations.
|
|
type Profile struct {
|
|
// Aggregated NodeWeights and EdgeWeights across the profile. This
|
|
// helps us determine the percentage threshold for hot/cold
|
|
// partitioning.
|
|
TotalNodeWeight int64
|
|
TotalEdgeWeight int64
|
|
|
|
// NodeMap contains all unique call-edges in the profile and their
|
|
// aggregated weight.
|
|
NodeMap map[NodeMapKey]*Weights
|
|
|
|
// WeightedCG represents the IRGraph built from profile, which we will
|
|
// update as part of inlining.
|
|
WeightedCG *IRGraph
|
|
}
|
|
|
|
// New generates a profile-graph from the profile.
|
|
func New(profileFile string) (*Profile, error) {
|
|
f, err := os.Open(profileFile)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error opening profile: %w", err)
|
|
}
|
|
defer f.Close()
|
|
profile, err := profile.Parse(f)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error parsing profile: %w", err)
|
|
}
|
|
|
|
if len(profile.Sample) == 0 {
|
|
// We accept empty profiles, but there is nothing to do.
|
|
return nil, nil
|
|
}
|
|
|
|
valueIndex := -1
|
|
for i, s := range profile.SampleType {
|
|
// Samples count is the raw data collected, and CPU nanoseconds is just
|
|
// a scaled version of it, so either one we can find is fine.
|
|
if (s.Type == "samples" && s.Unit == "count") ||
|
|
(s.Type == "cpu" && s.Unit == "nanoseconds") {
|
|
valueIndex = i
|
|
break
|
|
}
|
|
}
|
|
|
|
if valueIndex == -1 {
|
|
return nil, fmt.Errorf(`profile does not contain a sample index with value/type "samples/count" or cpu/nanoseconds"`)
|
|
}
|
|
|
|
g := graph.NewGraph(profile, &graph.Options{
|
|
SampleValue: func(v []int64) int64 { return v[valueIndex] },
|
|
})
|
|
|
|
p := &Profile{
|
|
NodeMap: make(map[NodeMapKey]*Weights),
|
|
WeightedCG: &IRGraph{
|
|
IRNodes: make(map[string]*IRNode),
|
|
},
|
|
}
|
|
|
|
// Build the node map and totals from the profile graph.
|
|
if err := p.processprofileGraph(g); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if p.TotalNodeWeight == 0 || p.TotalEdgeWeight == 0 {
|
|
return nil, nil // accept but ignore profile with no samples.
|
|
}
|
|
|
|
// Create package-level call graph with weights from profile and IR.
|
|
p.initializeIRGraph()
|
|
|
|
return p, nil
|
|
}
|
|
|
|
// processprofileGraph builds various maps from the profile-graph.
|
|
//
|
|
// It initializes NodeMap and Total{Node,Edge}Weight based on the name and
|
|
// callsite to compute node and edge weights which will be used later on to
|
|
// create edges for WeightedCG.
|
|
//
|
|
// Caller should ignore the profile if p.TotalNodeWeight == 0 || p.TotalEdgeWeight == 0.
|
|
func (p *Profile) processprofileGraph(g *graph.Graph) error {
|
|
nFlat := make(map[string]int64)
|
|
nCum := make(map[string]int64)
|
|
seenStartLine := false
|
|
|
|
// Accummulate weights for the same node.
|
|
for _, n := range g.Nodes {
|
|
canonicalName := n.Info.Name
|
|
nFlat[canonicalName] += n.FlatValue()
|
|
nCum[canonicalName] += n.CumValue()
|
|
}
|
|
|
|
// Process graph and build various node and edge maps which will
|
|
// be consumed by AST walk.
|
|
for _, n := range g.Nodes {
|
|
seenStartLine = seenStartLine || n.Info.StartLine != 0
|
|
|
|
p.TotalNodeWeight += n.FlatValue()
|
|
canonicalName := n.Info.Name
|
|
// Create the key to the nodeMapKey.
|
|
nodeinfo := NodeMapKey{
|
|
CallerName: canonicalName,
|
|
CallSiteOffset: n.Info.Lineno - n.Info.StartLine,
|
|
}
|
|
|
|
for _, e := range n.Out {
|
|
p.TotalEdgeWeight += e.WeightValue()
|
|
nodeinfo.CalleeName = e.Dest.Info.Name
|
|
if w, ok := p.NodeMap[nodeinfo]; ok {
|
|
w.EWeight += e.WeightValue()
|
|
} else {
|
|
weights := new(Weights)
|
|
weights.NFlat = nFlat[canonicalName]
|
|
weights.NCum = nCum[canonicalName]
|
|
weights.EWeight = e.WeightValue()
|
|
p.NodeMap[nodeinfo] = weights
|
|
}
|
|
}
|
|
}
|
|
|
|
if p.TotalNodeWeight == 0 || p.TotalEdgeWeight == 0 {
|
|
return nil // accept but ignore profile with no samples.
|
|
}
|
|
|
|
if !seenStartLine {
|
|
// TODO(prattmic): If Function.start_line is missing we could
|
|
// fall back to using absolute line numbers, which is better
|
|
// than nothing.
|
|
return fmt.Errorf("profile missing Function.start_line data (Go version of profiled application too old? Go 1.20+ automatically adds this to profiles)")
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// initializeIRGraph builds the IRGraph by visiting all the ir.Func in decl list
|
|
// of a package.
|
|
func (p *Profile) initializeIRGraph() {
|
|
// Bottomup walk over the function to create IRGraph.
|
|
ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) {
|
|
for _, fn := range list {
|
|
p.VisitIR(fn)
|
|
}
|
|
})
|
|
|
|
// Add additional edges for indirect calls. This must be done second so
|
|
// that IRNodes is fully populated (see the dummy node TODO in
|
|
// addIndirectEdges).
|
|
//
|
|
// TODO(prattmic): VisitIR above populates the graph via direct calls
|
|
// discovered via the IR. addIndirectEdges populates the graph via
|
|
// calls discovered via the profile. This combination of opposite
|
|
// approaches is a bit awkward, particularly because direct calls are
|
|
// discoverable via the profile as well. Unify these into a single
|
|
// approach.
|
|
p.addIndirectEdges()
|
|
}
|
|
|
|
// VisitIR traverses the body of each ir.Func and use NodeMap to determine if
|
|
// we need to add an edge from ir.Func and any node in the ir.Func body.
|
|
func (p *Profile) VisitIR(fn *ir.Func) {
|
|
g := p.WeightedCG
|
|
|
|
if g.IRNodes == nil {
|
|
g.IRNodes = make(map[string]*IRNode)
|
|
}
|
|
|
|
name := ir.LinkFuncName(fn)
|
|
node, ok := g.IRNodes[name]
|
|
if !ok {
|
|
node = &IRNode{
|
|
AST: fn,
|
|
}
|
|
g.IRNodes[name] = node
|
|
}
|
|
|
|
// Recursively walk over the body of the function to create IRGraph edges.
|
|
p.createIRGraphEdge(fn, node, name)
|
|
}
|
|
|
|
// NodeLineOffset returns the line offset of n in fn.
|
|
func NodeLineOffset(n ir.Node, fn *ir.Func) int {
|
|
// See "A note on line numbers" at the top of the file.
|
|
line := int(base.Ctxt.InnermostPos(n.Pos()).RelLine())
|
|
startLine := int(base.Ctxt.InnermostPos(fn.Pos()).RelLine())
|
|
return line - startLine
|
|
}
|
|
|
|
// addIREdge adds an edge between caller and new node that points to `callee`
|
|
// based on the profile-graph and NodeMap.
|
|
func (p *Profile) addIREdge(callerNode *IRNode, callerName string, call ir.Node, callee *ir.Func) {
|
|
g := p.WeightedCG
|
|
|
|
calleeName := ir.LinkFuncName(callee)
|
|
calleeNode, ok := g.IRNodes[calleeName]
|
|
if !ok {
|
|
calleeNode = &IRNode{
|
|
AST: callee,
|
|
}
|
|
g.IRNodes[calleeName] = calleeNode
|
|
}
|
|
|
|
nodeinfo := NodeMapKey{
|
|
CallerName: callerName,
|
|
CalleeName: calleeName,
|
|
CallSiteOffset: NodeLineOffset(call, callerNode.AST),
|
|
}
|
|
|
|
var weight int64
|
|
if weights, ok := p.NodeMap[nodeinfo]; ok {
|
|
weight = weights.EWeight
|
|
}
|
|
|
|
// Add edge in the IRGraph from caller to callee.
|
|
edge := &IREdge{
|
|
Src: callerNode,
|
|
Dst: calleeNode,
|
|
Weight: weight,
|
|
CallSiteOffset: nodeinfo.CallSiteOffset,
|
|
}
|
|
|
|
if callerNode.OutEdges == nil {
|
|
callerNode.OutEdges = make(map[NodeMapKey]*IREdge)
|
|
}
|
|
callerNode.OutEdges[nodeinfo] = edge
|
|
}
|
|
|
|
// addIndirectEdges adds indirect call edges found in the profile to the graph,
|
|
// to be used for devirtualization.
|
|
//
|
|
// targetDeclFuncs is the set of functions in typecheck.Target.Decls. Only
|
|
// edges from these functions will be added.
|
|
//
|
|
// Devirtualization is only applied to typecheck.Target.Decls functions, so there
|
|
// is no need to add edges from other functions.
|
|
//
|
|
// N.B. despite the name, addIndirectEdges will add any edges discovered via
|
|
// the profile. We don't know for sure that they are indirect, but assume they
|
|
// are since direct calls would already be added. (e.g., direct calls that have
|
|
// been deleted from source since the profile was taken would be added here).
|
|
//
|
|
// TODO(prattmic): Devirtualization runs before inlining, so we can't devirtualize
|
|
// calls inside inlined call bodies. If we did add that, we'd need edges from
|
|
// inlined bodies as well.
|
|
func (p *Profile) addIndirectEdges() {
|
|
g := p.WeightedCG
|
|
|
|
// g.IRNodes is populated with the set of functions in the local
|
|
// package build by VisitIR. We want to filter for local functions
|
|
// below, but we also add unknown callees to IRNodes as we go. So make
|
|
// an initial copy of IRNodes to recall just the local functions.
|
|
localNodes := make(map[string]*IRNode, len(g.IRNodes))
|
|
for k, v := range g.IRNodes {
|
|
localNodes[k] = v
|
|
}
|
|
|
|
for key, weights := range p.NodeMap {
|
|
// All callers in the local package build were added to IRNodes
|
|
// in VisitIR. If a caller isn't in the local package build we
|
|
// can skip adding edges, since we won't be devirtualizing in
|
|
// them anyway. This keeps the graph smaller.
|
|
callerNode, ok := localNodes[key.CallerName]
|
|
if !ok {
|
|
continue
|
|
}
|
|
|
|
// Already handled this edge?
|
|
if _, ok := callerNode.OutEdges[key]; ok {
|
|
continue
|
|
}
|
|
|
|
calleeNode, ok := g.IRNodes[key.CalleeName]
|
|
if !ok {
|
|
// IR is missing for this callee. Most likely this is
|
|
// because the callee isn't in the transitive deps of
|
|
// this package.
|
|
//
|
|
// Record this call anyway. If this is the hottest,
|
|
// then we want to skip devirtualization rather than
|
|
// devirtualizing to the second most common callee.
|
|
//
|
|
// TODO(prattmic): VisitIR populates IRNodes with all
|
|
// of the functions discovered via local package
|
|
// function declarations and calls. Thus we could miss
|
|
// functions that are available in export data of
|
|
// transitive deps, but aren't directly reachable. We
|
|
// need to do a lookup directly from package export
|
|
// data to get complete coverage.
|
|
calleeNode = &IRNode{
|
|
LinkerSymbolName: key.CalleeName,
|
|
// TODO: weights? We don't need them.
|
|
}
|
|
// Add dummy node back to IRNodes. We don't need this
|
|
// directly, but PrintWeightedCallGraphDOT uses these
|
|
// to print nodes.
|
|
g.IRNodes[key.CalleeName] = calleeNode
|
|
}
|
|
edge := &IREdge{
|
|
Src: callerNode,
|
|
Dst: calleeNode,
|
|
Weight: weights.EWeight,
|
|
CallSiteOffset: key.CallSiteOffset,
|
|
}
|
|
|
|
if callerNode.OutEdges == nil {
|
|
callerNode.OutEdges = make(map[NodeMapKey]*IREdge)
|
|
}
|
|
callerNode.OutEdges[key] = edge
|
|
}
|
|
}
|
|
|
|
// createIRGraphEdge traverses the nodes in the body of ir.Func and adds edges
|
|
// between the callernode which points to the ir.Func and the nodes in the
|
|
// body.
|
|
func (p *Profile) createIRGraphEdge(fn *ir.Func, callernode *IRNode, name string) {
|
|
ir.VisitList(fn.Body, func(n ir.Node) {
|
|
switch n.Op() {
|
|
case ir.OCALLFUNC:
|
|
call := n.(*ir.CallExpr)
|
|
// Find the callee function from the call site and add the edge.
|
|
callee := DirectCallee(call.X)
|
|
if callee != nil {
|
|
p.addIREdge(callernode, name, n, callee)
|
|
}
|
|
case ir.OCALLMETH:
|
|
call := n.(*ir.CallExpr)
|
|
// Find the callee method from the call site and add the edge.
|
|
callee := ir.MethodExprName(call.X).Func
|
|
p.addIREdge(callernode, name, n, callee)
|
|
}
|
|
})
|
|
}
|
|
|
|
// WeightInPercentage converts profile weights to a percentage.
|
|
func WeightInPercentage(value int64, total int64) float64 {
|
|
return (float64(value) / float64(total)) * 100
|
|
}
|
|
|
|
// PrintWeightedCallGraphDOT prints IRGraph in DOT format.
|
|
func (p *Profile) PrintWeightedCallGraphDOT(edgeThreshold float64) {
|
|
fmt.Printf("\ndigraph G {\n")
|
|
fmt.Printf("forcelabels=true;\n")
|
|
|
|
// List of functions in this package.
|
|
funcs := make(map[string]struct{})
|
|
ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) {
|
|
for _, f := range list {
|
|
name := ir.LinkFuncName(f)
|
|
funcs[name] = struct{}{}
|
|
}
|
|
})
|
|
|
|
// Determine nodes of DOT.
|
|
//
|
|
// Note that ir.Func may be nil for functions not visible from this
|
|
// package.
|
|
nodes := make(map[string]*ir.Func)
|
|
for name := range funcs {
|
|
if n, ok := p.WeightedCG.IRNodes[name]; ok {
|
|
for _, e := range n.OutEdges {
|
|
if _, ok := nodes[e.Src.Name()]; !ok {
|
|
nodes[e.Src.Name()] = e.Src.AST
|
|
}
|
|
if _, ok := nodes[e.Dst.Name()]; !ok {
|
|
nodes[e.Dst.Name()] = e.Dst.AST
|
|
}
|
|
}
|
|
if _, ok := nodes[n.Name()]; !ok {
|
|
nodes[n.Name()] = n.AST
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print nodes.
|
|
for name, ast := range nodes {
|
|
if _, ok := p.WeightedCG.IRNodes[name]; ok {
|
|
style := "solid"
|
|
if ast == nil {
|
|
style = "dashed"
|
|
}
|
|
|
|
if ast != nil && ast.Inl != nil {
|
|
fmt.Printf("\"%v\" [color=black, style=%s, label=\"%v,inl_cost=%d\"];\n", name, style, name, ast.Inl.Cost)
|
|
} else {
|
|
fmt.Printf("\"%v\" [color=black, style=%s, label=\"%v\"];\n", name, style, name)
|
|
}
|
|
}
|
|
}
|
|
// Print edges.
|
|
ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) {
|
|
for _, f := range list {
|
|
name := ir.LinkFuncName(f)
|
|
if n, ok := p.WeightedCG.IRNodes[name]; ok {
|
|
for _, e := range n.OutEdges {
|
|
style := "solid"
|
|
if e.Dst.AST == nil {
|
|
style = "dashed"
|
|
}
|
|
color := "black"
|
|
edgepercent := WeightInPercentage(e.Weight, p.TotalEdgeWeight)
|
|
if edgepercent > edgeThreshold {
|
|
color = "red"
|
|
}
|
|
|
|
fmt.Printf("edge [color=%s, style=%s];\n", color, style)
|
|
fmt.Printf("\"%v\" -> \"%v\" [label=\"%.2f\"];\n", n.Name(), e.Dst.Name(), edgepercent)
|
|
}
|
|
}
|
|
}
|
|
})
|
|
fmt.Printf("}\n")
|
|
}
|
|
|
|
// DirectCallee takes a function-typed expression and returns the underlying
|
|
// function that it refers to if statically known. Otherwise, it returns nil.
|
|
//
|
|
// Equivalent to inline.inlCallee without calling CanInline on closures.
|
|
func DirectCallee(fn ir.Node) *ir.Func {
|
|
fn = ir.StaticValue(fn)
|
|
switch fn.Op() {
|
|
case ir.OMETHEXPR:
|
|
fn := fn.(*ir.SelectorExpr)
|
|
n := ir.MethodExprName(fn)
|
|
// Check that receiver type matches fn.X.
|
|
// TODO(mdempsky): Handle implicit dereference
|
|
// of pointer receiver argument?
|
|
if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) {
|
|
return nil
|
|
}
|
|
return n.Func
|
|
case ir.ONAME:
|
|
fn := fn.(*ir.Name)
|
|
if fn.Class == ir.PFUNC {
|
|
return fn.Func
|
|
}
|
|
case ir.OCLOSURE:
|
|
fn := fn.(*ir.ClosureExpr)
|
|
c := fn.Func
|
|
return c
|
|
}
|
|
return nil
|
|
}
|