go/src/cmd/compile/internal/ssa/poset.go
Giovanni Bajo 90888ed97b cmd/compile: in poset, change the way inequality is recorded
Before this CL, inequality was recorded in a bit matrix using
SSA IDs. This allowed to record inequality for SSA values that
we didn't know any relation in the partial order of. Unfortunately,
this also means that inequality is harder to use within the poset
itself as there is not fast way to map from internal poset indices
and SSA values.

Since we will need to check for inequality in following CLs within
code that lost track of SSA values, switch to use a bit matrix
of poset indices instead. This requires always allocate a poset
node (as a new root) for values that are first seen in a SetNonEqual
call, but it doesn't sound like a big problem. The other solution
(creating and maintaining a reverse map from poset indices to SSA
values) seem more complicated and memory hungry.

Change-Id: Ic917485abbe70aef7ad6fa98408e5430328b6cd9
Reviewed-on: https://go-review.googlesource.com/c/go/+/196782
Run-TryBot: Giovanni Bajo <rasky@develer.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
2019-10-14 21:29:11 +00:00

1304 lines
35 KiB
Go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"fmt"
"os"
)
// If true, check poset integrity after every mutation
var debugPoset = false
const uintSize = 32 << (^uint(0) >> 32 & 1) // 32 or 64
// bitset is a bit array for dense indexes.
type bitset []uint
func newBitset(n int) bitset {
return make(bitset, (n+uintSize-1)/uintSize)
}
func (bs bitset) Reset() {
for i := range bs {
bs[i] = 0
}
}
func (bs bitset) Set(idx uint32) {
bs[idx/uintSize] |= 1 << (idx % uintSize)
}
func (bs bitset) Clear(idx uint32) {
bs[idx/uintSize] &^= 1 << (idx % uintSize)
}
func (bs bitset) Test(idx uint32) bool {
return bs[idx/uintSize]&(1<<(idx%uintSize)) != 0
}
type undoType uint8
const (
undoInvalid undoType = iota
undoCheckpoint // a checkpoint to group undo passes
undoSetChl // change back left child of undo.idx to undo.edge
undoSetChr // change back right child of undo.idx to undo.edge
undoNonEqual // forget that SSA value undo.ID is non-equal to undo.idx (another ID)
undoNewNode // remove new node created for SSA value undo.ID
undoNewConstant // remove the constant node idx from the constants map
undoAliasNode // unalias SSA value undo.ID so that it points back to node index undo.idx
undoNewRoot // remove node undo.idx from root list
undoChangeRoot // remove node undo.idx from root list, and put back undo.edge.Target instead
undoMergeRoot // remove node undo.idx from root list, and put back its children instead
)
// posetUndo represents an undo pass to be performed.
// It's an union of fields that can be used to store information,
// and typ is the discriminant, that specifies which kind
// of operation must be performed. Not all fields are always used.
type posetUndo struct {
typ undoType
idx uint32
ID ID
edge posetEdge
}
const (
// Make poset handle constants as unsigned numbers.
posetFlagUnsigned = 1 << iota
)
// A poset edge. The zero value is the null/empty edge.
// Packs target node index (31 bits) and strict flag (1 bit).
type posetEdge uint32
func newedge(t uint32, strict bool) posetEdge {
s := uint32(0)
if strict {
s = 1
}
return posetEdge(t<<1 | s)
}
func (e posetEdge) Target() uint32 { return uint32(e) >> 1 }
func (e posetEdge) Strict() bool { return uint32(e)&1 != 0 }
func (e posetEdge) String() string {
s := fmt.Sprint(e.Target())
if e.Strict() {
s += "*"
}
return s
}
// posetNode is a node of a DAG within the poset.
type posetNode struct {
l, r posetEdge
}
// poset is a union-find data structure that can represent a partially ordered set
// of SSA values. Given a binary relation that creates a partial order (eg: '<'),
// clients can record relations between SSA values using SetOrder, and later
// check relations (in the transitive closure) with Ordered. For instance,
// if SetOrder is called to record that A<B and B<C, Ordered will later confirm
// that A<C.
//
// It is possible to record equality relations between SSA values with SetEqual and check
// equality with Equal. Equality propagates into the transitive closure for the partial
// order so that if we know that A<B<C and later learn that A==D, Ordered will return
// true for D<C.
//
// It is also possible to record inequality relations between nodes with SetNonEqual;
// non-equality relations are not transitive, but they can still be useful: for instance
// if we know that A<=B and later we learn that A!=B, we can deduce that A<B.
// NonEqual can be used to check whether it is known that the nodes are different, either
// because SetNonEqual was called before, or because we know that they are strictly ordered.
//
// poset will refuse to record new relations that contradict existing relations:
// for instance if A<B<C, calling SetOrder for C<A will fail returning false; also
// calling SetEqual for C==A will fail.
//
// poset is implemented as a forest of DAGs; in each DAG, if there is a path (directed)
// from node A to B, it means that A<B (or A<=B). Equality is represented by mapping
// two SSA values to the same DAG node; when a new equality relation is recorded
// between two existing nodes,the nodes are merged, adjusting incoming and outgoing edges.
//
// Constants are specially treated. When a constant is added to the poset, it is
// immediately linked to other constants already present; so for instance if the
// poset knows that x<=3, and then x is tested against 5, 5 is first added and linked
// 3 (using 3<5), so that the poset knows that x<=3<5; at that point, it is able
// to answer x<5 correctly. This means that all constants are always within the same
// DAG; as an implementation detail, we enfoce that the DAG containtining the constants
// is always the first in the forest.
//
// poset is designed to be memory efficient and do little allocations during normal usage.
// Most internal data structures are pre-allocated and flat, so for instance adding a
// new relation does not cause any allocation. For performance reasons,
// each node has only up to two outgoing edges (like a binary tree), so intermediate
// "dummy" nodes are required to represent more than two relations. For instance,
// to record that A<I, A<J, A<K (with no known relation between I,J,K), we create the
// following DAG:
//
// A
// / \
// I dummy
// / \
// J K
//
type poset struct {
lastidx uint32 // last generated dense index
flags uint8 // internal flags
values map[ID]uint32 // map SSA values to dense indexes
constants map[int64]uint32 // record SSA constants together with their value
nodes []posetNode // nodes (in all DAGs)
roots []uint32 // list of root nodes (forest)
noneq map[uint32]bitset // non-equal relations
undo []posetUndo // undo chain
}
func newPoset() *poset {
return &poset{
values: make(map[ID]uint32),
constants: make(map[int64]uint32, 8),
nodes: make([]posetNode, 1, 16),
roots: make([]uint32, 0, 4),
noneq: make(map[uint32]bitset),
undo: make([]posetUndo, 0, 4),
}
}
func (po *poset) SetUnsigned(uns bool) {
if uns {
po.flags |= posetFlagUnsigned
} else {
po.flags &^= posetFlagUnsigned
}
}
// Handle children
func (po *poset) setchl(i uint32, l posetEdge) { po.nodes[i].l = l }
func (po *poset) setchr(i uint32, r posetEdge) { po.nodes[i].r = r }
func (po *poset) chl(i uint32) uint32 { return po.nodes[i].l.Target() }
func (po *poset) chr(i uint32) uint32 { return po.nodes[i].r.Target() }
func (po *poset) children(i uint32) (posetEdge, posetEdge) {
return po.nodes[i].l, po.nodes[i].r
}
// upush records a new undo step. It can be used for simple
// undo passes that record up to one index and one edge.
func (po *poset) upush(typ undoType, p uint32, e posetEdge) {
po.undo = append(po.undo, posetUndo{typ: typ, idx: p, edge: e})
}
// upushnew pushes an undo pass for a new node
func (po *poset) upushnew(id ID, idx uint32) {
po.undo = append(po.undo, posetUndo{typ: undoNewNode, ID: id, idx: idx})
}
// upushneq pushes a new undo pass for a nonequal relation
func (po *poset) upushneq(idx1 uint32, idx2 uint32) {
po.undo = append(po.undo, posetUndo{typ: undoNonEqual, ID: ID(idx1), idx: idx2})
}
// upushalias pushes a new undo pass for aliasing two nodes
func (po *poset) upushalias(id ID, i2 uint32) {
po.undo = append(po.undo, posetUndo{typ: undoAliasNode, ID: id, idx: i2})
}
// upushconst pushes a new undo pass for a new constant
func (po *poset) upushconst(idx uint32, old uint32) {
po.undo = append(po.undo, posetUndo{typ: undoNewConstant, idx: idx, ID: ID(old)})
}
// addchild adds i2 as direct child of i1.
func (po *poset) addchild(i1, i2 uint32, strict bool) {
i1l, i1r := po.children(i1)
e2 := newedge(i2, strict)
if i1l == 0 {
po.setchl(i1, e2)
po.upush(undoSetChl, i1, 0)
} else if i1r == 0 {
po.setchr(i1, e2)
po.upush(undoSetChr, i1, 0)
} else {
// If n1 already has two children, add an intermediate dummy
// node to record the relation correctly (without relating
// n2 to other existing nodes). Use a non-deterministic value
// to decide whether to append on the left or the right, to avoid
// creating degenerated chains.
//
// n1
// / \
// i1l dummy
// / \
// i1r n2
//
dummy := po.newnode(nil)
if (i1^i2)&1 != 0 { // non-deterministic
po.setchl(dummy, i1r)
po.setchr(dummy, e2)
po.setchr(i1, newedge(dummy, false))
po.upush(undoSetChr, i1, i1r)
} else {
po.setchl(dummy, i1l)
po.setchr(dummy, e2)
po.setchl(i1, newedge(dummy, false))
po.upush(undoSetChl, i1, i1l)
}
}
}
// newnode allocates a new node bound to SSA value n.
// If n is nil, this is a dummy node (= only used internally).
func (po *poset) newnode(n *Value) uint32 {
i := po.lastidx + 1
po.lastidx++
po.nodes = append(po.nodes, posetNode{})
if n != nil {
if po.values[n.ID] != 0 {
panic("newnode for Value already inserted")
}
po.values[n.ID] = i
po.upushnew(n.ID, i)
} else {
po.upushnew(0, i)
}
return i
}
// lookup searches for a SSA value into the forest of DAGS, and return its node.
// Constants are materialized on the fly during lookup.
func (po *poset) lookup(n *Value) (uint32, bool) {
i, f := po.values[n.ID]
if !f && n.isGenericIntConst() {
po.newconst(n)
i, f = po.values[n.ID]
}
return i, f
}
// newconst creates a node for a constant. It links it to other constants, so
// that n<=5 is detected true when n<=3 is known to be true.
// TODO: this is O(N), fix it.
func (po *poset) newconst(n *Value) {
if !n.isGenericIntConst() {
panic("newconst on non-constant")
}
// If the same constant is already present in the poset through a different
// Value, just alias to it without allocating a new node.
val := n.AuxInt
if po.flags&posetFlagUnsigned != 0 {
val = int64(n.AuxUnsigned())
}
if c, found := po.constants[val]; found {
po.values[n.ID] = c
po.upushalias(n.ID, 0)
return
}
// Create the new node for this constant
i := po.newnode(n)
// If this is the first constant, put it as a new root, as
// we can't record an existing connection so we don't have
// a specific DAG to add it to. Notice that we want all
// constants to be in root #0, so make sure the new root
// goes there.
if len(po.constants) == 0 {
idx := len(po.roots)
po.roots = append(po.roots, i)
po.roots[0], po.roots[idx] = po.roots[idx], po.roots[0]
po.upush(undoNewRoot, i, 0)
po.constants[val] = i
po.upushconst(i, 0)
return
}
// Find the lower and upper bound among existing constants. That is,
// find the higher constant that is lower than the one that we're adding,
// and the lower constant that is higher.
// The loop is duplicated to handle signed and unsigned comparison,
// depending on how the poset was configured.
var lowerptr, higherptr uint32
if po.flags&posetFlagUnsigned != 0 {
var lower, higher uint64
val1 := n.AuxUnsigned()
for val2, ptr := range po.constants {
val2 := uint64(val2)
if val1 == val2 {
panic("unreachable")
}
if val2 < val1 && (lowerptr == 0 || val2 > lower) {
lower = val2
lowerptr = ptr
} else if val2 > val1 && (higherptr == 0 || val2 < higher) {
higher = val2
higherptr = ptr
}
}
} else {
var lower, higher int64
val1 := n.AuxInt
for val2, ptr := range po.constants {
if val1 == val2 {
panic("unreachable")
}
if val2 < val1 && (lowerptr == 0 || val2 > lower) {
lower = val2
lowerptr = ptr
} else if val2 > val1 && (higherptr == 0 || val2 < higher) {
higher = val2
higherptr = ptr
}
}
}
if lowerptr == 0 && higherptr == 0 {
// This should not happen, as at least one
// other constant must exist if we get here.
panic("no constant found")
}
// Create the new node and connect it to the bounds, so that
// lower < n < higher. We could have found both bounds or only one
// of them, depending on what other constants are present in the poset.
// Notice that we always link constants together, so they
// are always part of the same DAG.
switch {
case lowerptr != 0 && higherptr != 0:
// Both bounds are present, record lower < n < higher.
po.addchild(lowerptr, i, true)
po.addchild(i, higherptr, true)
case lowerptr != 0:
// Lower bound only, record lower < n.
po.addchild(lowerptr, i, true)
case higherptr != 0:
// Higher bound only. To record n < higher, we need
// a dummy root:
//
// dummy
// / \
// root \
// / n
// .... /
// \ /
// higher
//
i2 := higherptr
r2 := po.findroot(i2)
if r2 != po.roots[0] { // all constants should be in root #0
panic("constant not in root #0")
}
dummy := po.newnode(nil)
po.changeroot(r2, dummy)
po.upush(undoChangeRoot, dummy, newedge(r2, false))
po.addchild(dummy, r2, false)
po.addchild(dummy, i, false)
po.addchild(i, i2, true)
}
po.constants[val] = i
po.upushconst(i, 0)
}
// aliasnode records that n2 is an alias of n1
func (po *poset) aliasnode(n1, n2 *Value) {
i1 := po.values[n1.ID]
if i1 == 0 {
panic("aliasnode for non-existing node")
}
i2 := po.values[n2.ID]
if i2 != 0 {
// Rename all references to i2 into i1
// (do not touch i1 itself, otherwise we can create useless self-loops)
for idx, n := range po.nodes {
if uint32(idx) != i1 {
l, r := n.l, n.r
if l.Target() == i2 {
po.setchl(uint32(idx), newedge(i1, l.Strict()))
po.upush(undoSetChl, uint32(idx), l)
}
if r.Target() == i2 {
po.setchr(uint32(idx), newedge(i1, r.Strict()))
po.upush(undoSetChr, uint32(idx), r)
}
}
}
// Reassign all existing IDs that point to i2 to i1.
// This includes n2.ID.
for k, v := range po.values {
if v == i2 {
po.values[k] = i1
po.upushalias(k, i2)
}
}
if n2.isGenericIntConst() {
val := n2.AuxInt
if po.flags&posetFlagUnsigned != 0 {
val = int64(n2.AuxUnsigned())
}
if po.constants[val] != i2 {
panic("aliasing constant which is not registered")
}
po.constants[val] = i1
po.upushconst(i1, i2)
}
} else {
// n2.ID wasn't seen before, so record it as alias to i1
po.values[n2.ID] = i1
po.upushalias(n2.ID, 0)
}
}
func (po *poset) isroot(r uint32) bool {
for i := range po.roots {
if po.roots[i] == r {
return true
}
}
return false
}
func (po *poset) changeroot(oldr, newr uint32) {
for i := range po.roots {
if po.roots[i] == oldr {
po.roots[i] = newr
return
}
}
panic("changeroot on non-root")
}
func (po *poset) removeroot(r uint32) {
for i := range po.roots {
if po.roots[i] == r {
po.roots = append(po.roots[:i], po.roots[i+1:]...)
return
}
}
panic("removeroot on non-root")
}
// dfs performs a depth-first search within the DAG whose root is r.
// f is the visit function called for each node; if it returns true,
// the search is aborted and true is returned. The root node is
// visited too.
// If strict, ignore edges across a path until at least one
// strict edge is found. For instance, for a chain A<=B<=C<D<=E<F,
// a strict walk visits D,E,F.
// If the visit ends, false is returned.
func (po *poset) dfs(r uint32, strict bool, f func(i uint32) bool) bool {
closed := newBitset(int(po.lastidx + 1))
open := make([]uint32, 1, 64)
open[0] = r
if strict {
// Do a first DFS; walk all paths and stop when we find a strict
// edge, building a "next" list of nodes reachable through strict
// edges. This will be the bootstrap open list for the real DFS.
next := make([]uint32, 0, 64)
for len(open) > 0 {
i := open[len(open)-1]
open = open[:len(open)-1]
// Don't visit the same node twice. Notice that all nodes
// across non-strict paths are still visited at least once, so
// a non-strict path can never obscure a strict path to the
// same node.
if !closed.Test(i) {
closed.Set(i)
l, r := po.children(i)
if l != 0 {
if l.Strict() {
next = append(next, l.Target())
} else {
open = append(open, l.Target())
}
}
if r != 0 {
if r.Strict() {
next = append(next, r.Target())
} else {
open = append(open, r.Target())
}
}
}
}
open = next
closed.Reset()
}
for len(open) > 0 {
i := open[len(open)-1]
open = open[:len(open)-1]
if !closed.Test(i) {
if f(i) {
return true
}
closed.Set(i)
l, r := po.children(i)
if l != 0 {
open = append(open, l.Target())
}
if r != 0 {
open = append(open, r.Target())
}
}
}
return false
}
// Returns true if there is a path from i1 to i2.
// If strict == true: if the function returns true, then i1 < i2.
// If strict == false: if the function returns true, then i1 <= i2.
// If the function returns false, no relation is known.
func (po *poset) reaches(i1, i2 uint32, strict bool) bool {
return po.dfs(i1, strict, func(n uint32) bool {
return n == i2
})
}
// findroot finds i's root, that is which DAG contains i.
// Returns the root; if i is itself a root, it is returned.
// Panic if i is not in any DAG.
func (po *poset) findroot(i uint32) uint32 {
// TODO(rasky): if needed, a way to speed up this search is
// storing a bitset for each root using it as a mini bloom filter
// of nodes present under that root.
for _, r := range po.roots {
if po.reaches(r, i, false) {
return r
}
}
panic("findroot didn't find any root")
}
// mergeroot merges two DAGs into one DAG by creating a new dummy root
func (po *poset) mergeroot(r1, r2 uint32) uint32 {
// Root #0 is special as it contains all constants. Since mergeroot
// discards r2 as root and keeps r1, make sure that r2 is not root #0,
// otherwise constants would move to a different root.
if r2 == po.roots[0] {
r1, r2 = r2, r1
}
r := po.newnode(nil)
po.setchl(r, newedge(r1, false))
po.setchr(r, newedge(r2, false))
po.changeroot(r1, r)
po.removeroot(r2)
po.upush(undoMergeRoot, r, 0)
return r
}
// collapsepath marks i1 and i2 as equal and collapses as equal all
// nodes across all paths between i1 and i2. If a strict edge is
// found, the function does not modify the DAG and returns false.
func (po *poset) collapsepath(n1, n2 *Value) bool {
i1, i2 := po.values[n1.ID], po.values[n2.ID]
if po.reaches(i1, i2, true) {
return false
}
// TODO: for now, only handle the simple case of i2 being child of i1
l, r := po.children(i1)
if l.Target() == i2 || r.Target() == i2 {
po.aliasnode(n1, n2)
po.addchild(i1, i2, false)
return true
}
return true
}
// Check whether it is recorded that i1!=i2
func (po *poset) isnoneq(i1, i2 uint32) bool {
if i1 == i2 {
return false
}
if i1 < i2 {
i1, i2 = i2, i1
}
// Check if we recorded a non-equal relation before
if bs, ok := po.noneq[i1]; ok && bs.Test(i2) {
return true
}
return false
}
// Record that i1!=i2
func (po *poset) setnoneq(n1, n2 *Value) {
i1, f1 := po.lookup(n1)
i2, f2 := po.lookup(n2)
// If any of the nodes do not exist in the poset, allocate them. Since
// we don't know any relation (in the partial order) about them, they must
// become independent roots.
if !f1 {
i1 = po.newnode(n1)
po.roots = append(po.roots, i1)
po.upush(undoNewRoot, i1, 0)
}
if !f2 {
i2 = po.newnode(n2)
po.roots = append(po.roots, i2)
po.upush(undoNewRoot, i2, 0)
}
if i1 == i2 {
panic("setnoneq on same node")
}
if i1 < i2 {
i1, i2 = i2, i1
}
bs := po.noneq[i1]
if bs == nil {
// Given that we record non-equality relations using the
// higher index as a key, the bitsize will never change size.
// TODO(rasky): if memory is a problem, consider allocating
// a small bitset and lazily grow it when higher indices arrive.
bs = newBitset(int(i1))
po.noneq[i1] = bs
} else if bs.Test(i2) {
// Already recorded
return
}
bs.Set(i2)
po.upushneq(i1, i2)
}
// CheckIntegrity verifies internal integrity of a poset. It is intended
// for debugging purposes.
func (po *poset) CheckIntegrity() {
// Record which index is a constant
constants := newBitset(int(po.lastidx + 1))
for _, c := range po.constants {
constants.Set(c)
}
// Verify that each node appears in a single DAG, and that
// all constants are within the first DAG
seen := newBitset(int(po.lastidx + 1))
for ridx, r := range po.roots {
if r == 0 {
panic("empty root")
}
po.dfs(r, false, func(i uint32) bool {
if seen.Test(i) {
panic("duplicate node")
}
seen.Set(i)
if constants.Test(i) {
if ridx != 0 {
panic("constants not in the first DAG")
}
}
return false
})
}
// Verify that values contain the minimum set
for id, idx := range po.values {
if !seen.Test(idx) {
panic(fmt.Errorf("spurious value [%d]=%d", id, idx))
}
}
// Verify that only existing nodes have non-zero children
for i, n := range po.nodes {
if n.l|n.r != 0 {
if !seen.Test(uint32(i)) {
panic(fmt.Errorf("children of unknown node %d->%v", i, n))
}
if n.l.Target() == uint32(i) || n.r.Target() == uint32(i) {
panic(fmt.Errorf("self-loop on node %d", i))
}
}
}
}
// CheckEmpty checks that a poset is completely empty.
// It can be used for debugging purposes, as a poset is supposed to
// be empty after it's fully rolled back through Undo.
func (po *poset) CheckEmpty() error {
if len(po.nodes) != 1 {
return fmt.Errorf("non-empty nodes list: %v", po.nodes)
}
if len(po.values) != 0 {
return fmt.Errorf("non-empty value map: %v", po.values)
}
if len(po.roots) != 0 {
return fmt.Errorf("non-empty root list: %v", po.roots)
}
if len(po.constants) != 0 {
return fmt.Errorf("non-empty constants: %v", po.constants)
}
if len(po.undo) != 0 {
return fmt.Errorf("non-empty undo list: %v", po.undo)
}
if po.lastidx != 0 {
return fmt.Errorf("lastidx index is not zero: %v", po.lastidx)
}
for _, bs := range po.noneq {
for _, x := range bs {
if x != 0 {
return fmt.Errorf("non-empty noneq map")
}
}
}
return nil
}
// DotDump dumps the poset in graphviz format to file fn, with the specified title.
func (po *poset) DotDump(fn string, title string) error {
f, err := os.Create(fn)
if err != nil {
return err
}
defer f.Close()
// Create reverse index mapping (taking aliases into account)
names := make(map[uint32]string)
for id, i := range po.values {
s := names[i]
if s == "" {
s = fmt.Sprintf("v%d", id)
} else {
s += fmt.Sprintf(", v%d", id)
}
names[i] = s
}
// Create reverse constant mapping
consts := make(map[uint32]int64)
for val, idx := range po.constants {
consts[idx] = val
}
fmt.Fprintf(f, "digraph poset {\n")
fmt.Fprintf(f, "\tedge [ fontsize=10 ]\n")
for ridx, r := range po.roots {
fmt.Fprintf(f, "\tsubgraph root%d {\n", ridx)
po.dfs(r, false, func(i uint32) bool {
if val, ok := consts[i]; ok {
// Constant
var vals string
if po.flags&posetFlagUnsigned != 0 {
vals = fmt.Sprint(uint64(val))
} else {
vals = fmt.Sprint(int64(val))
}
fmt.Fprintf(f, "\t\tnode%d [shape=box style=filled fillcolor=cadetblue1 label=<%s <font point-size=\"6\">%s [%d]</font>>]\n",
i, vals, names[i], i)
} else {
// Normal SSA value
fmt.Fprintf(f, "\t\tnode%d [label=<%s <font point-size=\"6\">[%d]</font>>]\n", i, names[i], i)
}
chl, chr := po.children(i)
for _, ch := range []posetEdge{chl, chr} {
if ch != 0 {
if ch.Strict() {
fmt.Fprintf(f, "\t\tnode%d -> node%d [label=\" <\" color=\"red\"]\n", i, ch.Target())
} else {
fmt.Fprintf(f, "\t\tnode%d -> node%d [label=\" <=\" color=\"green\"]\n", i, ch.Target())
}
}
}
return false
})
fmt.Fprintf(f, "\t}\n")
}
fmt.Fprintf(f, "\tlabelloc=\"t\"\n")
fmt.Fprintf(f, "\tlabeldistance=\"3.0\"\n")
fmt.Fprintf(f, "\tlabel=%q\n", title)
fmt.Fprintf(f, "}\n")
return nil
}
// Ordered reports whether n1<n2. It returns false either when it is
// certain that n1<n2 is false, or if there is not enough information
// to tell.
// Complexity is O(n).
func (po *poset) Ordered(n1, n2 *Value) bool {
if debugPoset {
defer po.CheckIntegrity()
}
if n1.ID == n2.ID {
panic("should not call Ordered with n1==n2")
}
i1, f1 := po.lookup(n1)
i2, f2 := po.lookup(n2)
if !f1 || !f2 {
return false
}
return i1 != i2 && po.reaches(i1, i2, true)
}
// Ordered reports whether n1<=n2. It returns false either when it is
// certain that n1<=n2 is false, or if there is not enough information
// to tell.
// Complexity is O(n).
func (po *poset) OrderedOrEqual(n1, n2 *Value) bool {
if debugPoset {
defer po.CheckIntegrity()
}
if n1.ID == n2.ID {
panic("should not call Ordered with n1==n2")
}
i1, f1 := po.lookup(n1)
i2, f2 := po.lookup(n2)
if !f1 || !f2 {
return false
}
return i1 == i2 || po.reaches(i1, i2, false)
}
// Equal reports whether n1==n2. It returns false either when it is
// certain that n1==n2 is false, or if there is not enough information
// to tell.
// Complexity is O(1).
func (po *poset) Equal(n1, n2 *Value) bool {
if debugPoset {
defer po.CheckIntegrity()
}
if n1.ID == n2.ID {
panic("should not call Equal with n1==n2")
}
i1, f1 := po.lookup(n1)
i2, f2 := po.lookup(n2)
return f1 && f2 && i1 == i2
}
// NonEqual reports whether n1!=n2. It returns false either when it is
// certain that n1!=n2 is false, or if there is not enough information
// to tell.
// Complexity is O(n) (because it internally calls Ordered to see if we
// can infer n1!=n2 from n1<n2 or n2<n1).
func (po *poset) NonEqual(n1, n2 *Value) bool {
if debugPoset {
defer po.CheckIntegrity()
}
if n1.ID == n2.ID {
panic("should not call NonEqual with n1==n2")
}
// If we never saw the nodes before, we don't
// have a recorded non-equality.
i1, f1 := po.lookup(n1)
i2, f2 := po.lookup(n2)
if !f1 || !f2 {
return false
}
// Check if we recored inequality
if po.isnoneq(i1, i2) {
return true
}
// Check if n1<n2 or n2<n1, in which case we can infer that n1!=n2
if po.Ordered(n1, n2) || po.Ordered(n2, n1) {
return true
}
return false
}
// setOrder records that n1<n2 or n1<=n2 (depending on strict). Returns false
// if this is a contradiction.
// Implements SetOrder() and SetOrderOrEqual()
func (po *poset) setOrder(n1, n2 *Value, strict bool) bool {
i1, f1 := po.lookup(n1)
i2, f2 := po.lookup(n2)
switch {
case !f1 && !f2:
// Neither n1 nor n2 are in the poset, so they are not related
// in any way to existing nodes.
// Create a new DAG to record the relation.
i1, i2 = po.newnode(n1), po.newnode(n2)
po.roots = append(po.roots, i1)
po.upush(undoNewRoot, i1, 0)
po.addchild(i1, i2, strict)
case f1 && !f2:
// n1 is in one of the DAGs, while n2 is not. Add n2 as children
// of n1.
i2 = po.newnode(n2)
po.addchild(i1, i2, strict)
case !f1 && f2:
// n1 is not in any DAG but n2 is. If n2 is a root, we can put
// n1 in its place as a root; otherwise, we need to create a new
// dummy root to record the relation.
i1 = po.newnode(n1)
if po.isroot(i2) {
po.changeroot(i2, i1)
po.upush(undoChangeRoot, i1, newedge(i2, strict))
po.addchild(i1, i2, strict)
return true
}
// Search for i2's root; this requires a O(n) search on all
// DAGs
r := po.findroot(i2)
// Re-parent as follows:
//
// dummy
// r / \
// \ ===> r i1
// i2 \ /
// i2
//
dummy := po.newnode(nil)
po.changeroot(r, dummy)
po.upush(undoChangeRoot, dummy, newedge(r, false))
po.addchild(dummy, r, false)
po.addchild(dummy, i1, false)
po.addchild(i1, i2, strict)
case f1 && f2:
// If the nodes are aliased, fail only if we're setting a strict order
// (that is, we cannot set n1<n2 if n1==n2).
if i1 == i2 {
return !strict
}
// If we are trying to record n1<=n2 but we learned that n1!=n2,
// record n1<n2, as it provides more information.
if !strict && po.isnoneq(i1, i2) {
strict = true
}
// Both n1 and n2 are in the poset. This is the complex part of the algorithm
// as we need to find many different cases and DAG shapes.
// Check if n1 somehow reaches n2
if po.reaches(i1, i2, false) {
// This is the table of all cases we need to handle:
//
// DAG New Action
// ---------------------------------------------------
// #1: N1<=X<=N2 | N1<=N2 | do nothing
// #2: N1<=X<=N2 | N1<N2 | add strict edge (N1<N2)
// #3: N1<X<N2 | N1<=N2 | do nothing (we already know more)
// #4: N1<X<N2 | N1<N2 | do nothing
// Check if we're in case #2
if strict && !po.reaches(i1, i2, true) {
po.addchild(i1, i2, true)
return true
}
// Case #1, #3 o #4: nothing to do
return true
}
// Check if n2 somehow reaches n1
if po.reaches(i2, i1, false) {
// This is the table of all cases we need to handle:
//
// DAG New Action
// ---------------------------------------------------
// #5: N2<=X<=N1 | N1<=N2 | collapse path (learn that N1=X=N2)
// #6: N2<=X<=N1 | N1<N2 | contradiction
// #7: N2<X<N1 | N1<=N2 | contradiction in the path
// #8: N2<X<N1 | N1<N2 | contradiction
if strict {
// Cases #6 and #8: contradiction
return false
}
// We're in case #5 or #7. Try to collapse path, and that will
// fail if it realizes that we are in case #7.
return po.collapsepath(n2, n1)
}
// We don't know of any existing relation between n1 and n2. They could
// be part of the same DAG or not.
// Find their roots to check whether they are in the same DAG.
r1, r2 := po.findroot(i1), po.findroot(i2)
if r1 != r2 {
// We need to merge the two DAGs to record a relation between the nodes
po.mergeroot(r1, r2)
}
// Connect n1 and n2
po.addchild(i1, i2, strict)
}
return true
}
// SetOrder records that n1<n2. Returns false if this is a contradiction
// Complexity is O(1) if n2 was never seen before, or O(n) otherwise.
func (po *poset) SetOrder(n1, n2 *Value) bool {
if debugPoset {
defer po.CheckIntegrity()
}
if n1.ID == n2.ID {
panic("should not call SetOrder with n1==n2")
}
return po.setOrder(n1, n2, true)
}
// SetOrderOrEqual records that n1<=n2. Returns false if this is a contradiction
// Complexity is O(1) if n2 was never seen before, or O(n) otherwise.
func (po *poset) SetOrderOrEqual(n1, n2 *Value) bool {
if debugPoset {
defer po.CheckIntegrity()
}
if n1.ID == n2.ID {
panic("should not call SetOrder with n1==n2")
}
return po.setOrder(n1, n2, false)
}
// SetEqual records that n1==n2. Returns false if this is a contradiction
// (that is, if it is already recorded that n1<n2 or n2<n1).
// Complexity is O(1) if n2 was never seen before, or O(n) otherwise.
func (po *poset) SetEqual(n1, n2 *Value) bool {
if debugPoset {
defer po.CheckIntegrity()
}
if n1.ID == n2.ID {
panic("should not call Add with n1==n2")
}
i1, f1 := po.lookup(n1)
i2, f2 := po.lookup(n2)
switch {
case !f1 && !f2:
i1 = po.newnode(n1)
po.roots = append(po.roots, i1)
po.upush(undoNewRoot, i1, 0)
po.aliasnode(n1, n2)
case f1 && !f2:
po.aliasnode(n1, n2)
case !f1 && f2:
po.aliasnode(n2, n1)
case f1 && f2:
if i1 == i2 {
// Already aliased, ignore
return true
}
// If we recorded that n1!=n2, this is a contradiction.
if po.isnoneq(i1, i2) {
return false
}
// If we already knew that n1<=n2, we can collapse the path to
// record n1==n2 (and viceversa).
if po.reaches(i1, i2, false) {
return po.collapsepath(n1, n2)
}
if po.reaches(i2, i1, false) {
return po.collapsepath(n2, n1)
}
r1 := po.findroot(i1)
r2 := po.findroot(i2)
if r1 != r2 {
// Merge the two DAGs so we can record relations between the nodes
po.mergeroot(r1, r2)
}
// Set n2 as alias of n1. This will also update all the references
// to n2 to become references to n1
po.aliasnode(n1, n2)
// Connect i2 (now dummy) as child of i1. This allows to keep the correct
// order with its children.
po.addchild(i1, i2, false)
}
return true
}
// SetNonEqual records that n1!=n2. Returns false if this is a contradiction
// (that is, if it is already recorded that n1==n2).
// Complexity is O(n).
func (po *poset) SetNonEqual(n1, n2 *Value) bool {
if debugPoset {
defer po.CheckIntegrity()
}
if n1.ID == n2.ID {
panic("should not call SetNonEqual with n1==n2")
}
// Check whether the nodes are already in the poset
i1, f1 := po.lookup(n1)
i2, f2 := po.lookup(n2)
// If either node wasn't present, we just record the new relation
// and exit.
if !f1 || !f2 {
po.setnoneq(n1, n2)
return true
}
// See if we already know this, in which case there's nothing to do.
if po.isnoneq(i1, i2) {
return true
}
// Check if we're contradicting an existing equality relation
if po.Equal(n1, n2) {
return false
}
// Record non-equality
po.setnoneq(n1, n2)
// If we know that i1<=i2 but not i1<i2, learn that as we
// now know that they are not equal. Do the same for i2<=i1.
// Do this check only if both nodes were already in the DAG,
// otherwise there cannot be an existing relation.
if po.reaches(i1, i2, false) && !po.reaches(i1, i2, true) {
po.addchild(i1, i2, true)
}
if po.reaches(i2, i1, false) && !po.reaches(i2, i1, true) {
po.addchild(i2, i1, true)
}
return true
}
// Checkpoint saves the current state of the DAG so that it's possible
// to later undo this state.
// Complexity is O(1).
func (po *poset) Checkpoint() {
po.undo = append(po.undo, posetUndo{typ: undoCheckpoint})
}
// Undo restores the state of the poset to the previous checkpoint.
// Complexity depends on the type of operations that were performed
// since the last checkpoint; each Set* operation creates an undo
// pass which Undo has to revert with a worst-case complexity of O(n).
func (po *poset) Undo() {
if len(po.undo) == 0 {
panic("empty undo stack")
}
if debugPoset {
defer po.CheckIntegrity()
}
for len(po.undo) > 0 {
pass := po.undo[len(po.undo)-1]
po.undo = po.undo[:len(po.undo)-1]
switch pass.typ {
case undoCheckpoint:
return
case undoSetChl:
po.setchl(pass.idx, pass.edge)
case undoSetChr:
po.setchr(pass.idx, pass.edge)
case undoNonEqual:
po.noneq[uint32(pass.ID)].Clear(pass.idx)
case undoNewNode:
if pass.idx != po.lastidx {
panic("invalid newnode index")
}
if pass.ID != 0 {
if po.values[pass.ID] != pass.idx {
panic("invalid newnode undo pass")
}
delete(po.values, pass.ID)
}
po.setchl(pass.idx, 0)
po.setchr(pass.idx, 0)
po.nodes = po.nodes[:pass.idx]
po.lastidx--
case undoNewConstant:
// FIXME: remove this O(n) loop
var val int64
var i uint32
for val, i = range po.constants {
if i == pass.idx {
break
}
}
if i != pass.idx {
panic("constant not found in undo pass")
}
if pass.ID == 0 {
delete(po.constants, val)
} else {
// Restore previous index as constant node
// (also restoring the invariant on correct bounds)
oldidx := uint32(pass.ID)
po.constants[val] = oldidx
}
case undoAliasNode:
ID, prev := pass.ID, pass.idx
cur := po.values[ID]
if prev == 0 {
// Born as an alias, die as an alias
delete(po.values, ID)
} else {
if cur == prev {
panic("invalid aliasnode undo pass")
}
// Give it back previous value
po.values[ID] = prev
}
case undoNewRoot:
i := pass.idx
l, r := po.children(i)
if l|r != 0 {
panic("non-empty root in undo newroot")
}
po.removeroot(i)
case undoChangeRoot:
i := pass.idx
l, r := po.children(i)
if l|r != 0 {
panic("non-empty root in undo changeroot")
}
po.changeroot(i, pass.edge.Target())
case undoMergeRoot:
i := pass.idx
l, r := po.children(i)
po.changeroot(i, l.Target())
po.roots = append(po.roots, r.Target())
default:
panic(pass.typ)
}
}
if debugPoset && po.CheckEmpty() != nil {
panic("poset not empty at the end of undo")
}
}