go/src/simd/internal/simd_test/unary_test.go
Junyang Shao 934dbcea1a [dev.simd] simd: update CPU feature APIs
This CL also updates the internal uses of these APIs.

This CL also fixed a instable output issue left by previous CLs.

Change-Id: Ibc38361d35e2af0c4943a48578f3c610b74ed14d
Reviewed-on: https://go-review.googlesource.com/c/go/+/720020
Reviewed-by: Cherry Mui <cherryyz@google.com>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
2025-11-17 13:37:30 -08:00

137 lines
5.2 KiB
Go

// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build goexperiment.simd && amd64
package simd_test
import (
"math"
"simd"
"testing"
)
func TestCeil(t *testing.T) {
testFloat32x4Unary(t, simd.Float32x4.Ceil, ceilSlice[float32])
testFloat32x8Unary(t, simd.Float32x8.Ceil, ceilSlice[float32])
testFloat64x2Unary(t, simd.Float64x2.Ceil, ceilSlice[float64])
testFloat64x4Unary(t, simd.Float64x4.Ceil, ceilSlice[float64])
if simd.X86.AVX512() {
// testFloat32x16Unary(t, simd.Float32x16.Ceil, ceilSlice[float32]) // missing
// testFloat64x8Unary(t, simd.Float64x8.Ceil, ceilSlice[float64]) // missing
}
}
func TestFloor(t *testing.T) {
testFloat32x4Unary(t, simd.Float32x4.Floor, floorSlice[float32])
testFloat32x8Unary(t, simd.Float32x8.Floor, floorSlice[float32])
testFloat64x2Unary(t, simd.Float64x2.Floor, floorSlice[float64])
testFloat64x4Unary(t, simd.Float64x4.Floor, floorSlice[float64])
if simd.X86.AVX512() {
// testFloat32x16Unary(t, simd.Float32x16.Floor, floorSlice[float32]) // missing
// testFloat64x8Unary(t, simd.Float64x8.Floor, floorSlice[float64]) // missing
}
}
func TestTrunc(t *testing.T) {
testFloat32x4Unary(t, simd.Float32x4.Trunc, truncSlice[float32])
testFloat32x8Unary(t, simd.Float32x8.Trunc, truncSlice[float32])
testFloat64x2Unary(t, simd.Float64x2.Trunc, truncSlice[float64])
testFloat64x4Unary(t, simd.Float64x4.Trunc, truncSlice[float64])
if simd.X86.AVX512() {
// testFloat32x16Unary(t, simd.Float32x16.Trunc, truncSlice[float32]) // missing
// testFloat64x8Unary(t, simd.Float64x8.Trunc, truncSlice[float64]) // missing
}
}
func TestRound(t *testing.T) {
testFloat32x4Unary(t, simd.Float32x4.RoundToEven, roundSlice[float32])
testFloat32x8Unary(t, simd.Float32x8.RoundToEven, roundSlice[float32])
testFloat64x2Unary(t, simd.Float64x2.RoundToEven, roundSlice[float64])
testFloat64x4Unary(t, simd.Float64x4.RoundToEven, roundSlice[float64])
if simd.X86.AVX512() {
// testFloat32x16Unary(t, simd.Float32x16.Round, roundSlice[float32]) // missing
// testFloat64x8Unary(t, simd.Float64x8.Round, roundSlice[float64]) // missing
}
}
func TestSqrt(t *testing.T) {
testFloat32x4Unary(t, simd.Float32x4.Sqrt, sqrtSlice[float32])
testFloat32x8Unary(t, simd.Float32x8.Sqrt, sqrtSlice[float32])
testFloat64x2Unary(t, simd.Float64x2.Sqrt, sqrtSlice[float64])
testFloat64x4Unary(t, simd.Float64x4.Sqrt, sqrtSlice[float64])
if simd.X86.AVX512() {
testFloat32x16Unary(t, simd.Float32x16.Sqrt, sqrtSlice[float32])
testFloat64x8Unary(t, simd.Float64x8.Sqrt, sqrtSlice[float64])
}
}
func TestNot(t *testing.T) {
testInt8x16Unary(t, simd.Int8x16.Not, map1[int8](not))
testInt8x32Unary(t, simd.Int8x32.Not, map1[int8](not))
testInt16x8Unary(t, simd.Int16x8.Not, map1[int16](not))
testInt16x16Unary(t, simd.Int16x16.Not, map1[int16](not))
testInt32x4Unary(t, simd.Int32x4.Not, map1[int32](not))
testInt32x8Unary(t, simd.Int32x8.Not, map1[int32](not))
}
func TestAbsolute(t *testing.T) {
testInt8x16Unary(t, simd.Int8x16.Abs, map1[int8](abs))
testInt8x32Unary(t, simd.Int8x32.Abs, map1[int8](abs))
testInt16x8Unary(t, simd.Int16x8.Abs, map1[int16](abs))
testInt16x16Unary(t, simd.Int16x16.Abs, map1[int16](abs))
testInt32x4Unary(t, simd.Int32x4.Abs, map1[int32](abs))
testInt32x8Unary(t, simd.Int32x8.Abs, map1[int32](abs))
if simd.X86.AVX512() {
testInt8x64Unary(t, simd.Int8x64.Abs, map1[int8](abs))
testInt16x32Unary(t, simd.Int16x32.Abs, map1[int16](abs))
testInt32x16Unary(t, simd.Int32x16.Abs, map1[int32](abs))
testInt64x2Unary(t, simd.Int64x2.Abs, map1[int64](abs))
testInt64x4Unary(t, simd.Int64x4.Abs, map1[int64](abs))
testInt64x8Unary(t, simd.Int64x8.Abs, map1[int64](abs))
}
}
func TestCeilScaledResidue(t *testing.T) {
if !simd.X86.AVX512() {
t.Skip("Needs AVX512")
}
testFloat64x8UnaryFlaky(t,
func(x simd.Float64x8) simd.Float64x8 { return x.CeilScaledResidue(0) },
map1(ceilResidueForPrecision[float64](0)),
0.001)
testFloat64x8UnaryFlaky(t,
func(x simd.Float64x8) simd.Float64x8 { return x.CeilScaledResidue(1) },
map1(ceilResidueForPrecision[float64](1)),
0.001)
testFloat64x8Unary(t,
func(x simd.Float64x8) simd.Float64x8 { return x.Sub(x.CeilScaled(0)) },
map1[float64](func(x float64) float64 { return x - math.Ceil(x) }))
}
func TestToUint32(t *testing.T) {
if !simd.X86.AVX512() {
t.Skip("Needs AVX512")
}
testFloat32x4ConvertToUint32(t, simd.Float32x4.ConvertToUint32, map1[float32](toUint32))
testFloat32x8ConvertToUint32(t, simd.Float32x8.ConvertToUint32, map1[float32](toUint32))
testFloat32x16ConvertToUint32(t, simd.Float32x16.ConvertToUint32, map1[float32](toUint32))
}
func TestToInt32(t *testing.T) {
testFloat32x4ConvertToInt32(t, simd.Float32x4.ConvertToInt32, map1[float32](toInt32))
testFloat32x8ConvertToInt32(t, simd.Float32x8.ConvertToInt32, map1[float32](toInt32))
}
func TestConverts(t *testing.T) {
testUint8x16ConvertToUint16(t, simd.Uint8x16.ConvertToUint16, map1[uint8](toUint16))
testUint16x8ConvertToUint32(t, simd.Uint16x8.ConvertToUint32, map1[uint16](toUint32))
}
func TestConvertsAVX512(t *testing.T) {
if !simd.X86.AVX512() {
t.Skip("Needs AVX512")
}
testUint8x32ConvertToUint16(t, simd.Uint8x32.ConvertToUint16, map1[uint8](toUint16))
}