mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
When converting from a generic function to a concrete implementation,
add a dictionary argument to the generic function (both an actual
argument at each callsite, and a formal argument of each
implementation).
The dictionary argument comes before all other arguments (including
any receiver).
The dictionary argument is checked for validity, but is otherwise unused.
Subsequent CLs will start using the dictionary for, e.g., converting a
value of generic type to interface{}.
Import/export required adding support for LINKSYMOFFSET, which is used
by the dictionary checking code.
Change-Id: I16a7a8d23c7bd6a897e0da87c69f273be9103bd7
Reviewed-on: https://go-review.googlesource.com/c/go/+/323272
Trust: Keith Randall <khr@golang.org>
Trust: Dan Scales <danscales@google.com>
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Dan Scales <danscales@google.com>
1203 lines
39 KiB
Go
1203 lines
39 KiB
Go
// Copyright 2021 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// This file will evolve, since we plan to do a mix of stenciling and passing
|
|
// around dictionaries.
|
|
|
|
package noder
|
|
|
|
import (
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/reflectdata"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"fmt"
|
|
"go/constant"
|
|
"strings"
|
|
)
|
|
|
|
// For catching problems as we add more features
|
|
// TODO(danscales): remove assertions or replace with base.FatalfAt()
|
|
func assert(p bool) {
|
|
if !p {
|
|
panic("assertion failed")
|
|
}
|
|
}
|
|
|
|
// stencil scans functions for instantiated generic function calls and creates the
|
|
// required instantiations for simple generic functions. It also creates
|
|
// instantiated methods for all fully-instantiated generic types that have been
|
|
// encountered already or new ones that are encountered during the stenciling
|
|
// process.
|
|
func (g *irgen) stencil() {
|
|
g.target.Stencils = make(map[*types.Sym]*ir.Func)
|
|
|
|
// Instantiate the methods of instantiated generic types that we have seen so far.
|
|
g.instantiateMethods()
|
|
|
|
// Don't use range(g.target.Decls) - we also want to process any new instantiated
|
|
// functions that are created during this loop, in order to handle generic
|
|
// functions calling other generic functions.
|
|
for i := 0; i < len(g.target.Decls); i++ {
|
|
decl := g.target.Decls[i]
|
|
|
|
// Look for function instantiations in bodies of non-generic
|
|
// functions or in global assignments (ignore global type and
|
|
// constant declarations).
|
|
switch decl.Op() {
|
|
case ir.ODCLFUNC:
|
|
if decl.Type().HasTParam() {
|
|
// Skip any generic functions
|
|
continue
|
|
}
|
|
// transformCall() below depends on CurFunc being set.
|
|
ir.CurFunc = decl.(*ir.Func)
|
|
|
|
case ir.OAS, ir.OAS2, ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2RECV, ir.OASOP:
|
|
// These are all the various kinds of global assignments,
|
|
// whose right-hand-sides might contain a function
|
|
// instantiation.
|
|
|
|
default:
|
|
// The other possible ops at the top level are ODCLCONST
|
|
// and ODCLTYPE, which don't have any function
|
|
// instantiations.
|
|
continue
|
|
}
|
|
|
|
// For all non-generic code, search for any function calls using
|
|
// generic function instantiations. Then create the needed
|
|
// instantiated function if it hasn't been created yet, and change
|
|
// to calling that function directly.
|
|
modified := false
|
|
closureRequired := false
|
|
ir.Visit(decl, func(n ir.Node) {
|
|
if n.Op() == ir.OFUNCINST {
|
|
// generic F, not immediately called
|
|
closureRequired = true
|
|
}
|
|
if n.Op() == ir.OMETHEXPR && len(n.(*ir.SelectorExpr).X.Type().RParams()) > 0 {
|
|
// T.M, T a type which is generic, not immediately called
|
|
closureRequired = true
|
|
}
|
|
if n.Op() == ir.OCALL && n.(*ir.CallExpr).X.Op() == ir.OFUNCINST {
|
|
// We have found a function call using a generic function
|
|
// instantiation.
|
|
call := n.(*ir.CallExpr)
|
|
inst := call.X.(*ir.InstExpr)
|
|
st := g.getInstantiationForNode(inst)
|
|
// Replace the OFUNCINST with a direct reference to the
|
|
// new stenciled function
|
|
call.X = st.Nname
|
|
if inst.X.Op() == ir.OCALLPART {
|
|
// When we create an instantiation of a method
|
|
// call, we make it a function. So, move the
|
|
// receiver to be the first arg of the function
|
|
// call.
|
|
call.Args.Prepend(inst.X.(*ir.SelectorExpr).X)
|
|
}
|
|
// Add dictionary to argument list.
|
|
dict := reflectdata.GetDictionaryForInstantiation(inst)
|
|
call.Args.Prepend(dict)
|
|
// Transform the Call now, which changes OCALL
|
|
// to OCALLFUNC and does typecheckaste/assignconvfn.
|
|
transformCall(call)
|
|
modified = true
|
|
}
|
|
if n.Op() == ir.OCALLMETH && n.(*ir.CallExpr).X.Op() == ir.ODOTMETH && len(deref(n.(*ir.CallExpr).X.Type().Recv().Type).RParams()) > 0 {
|
|
// Method call on a generic type, which was instantiated by stenciling.
|
|
// Method calls on explicitly instantiated types will have an OFUNCINST
|
|
// and are handled above.
|
|
call := n.(*ir.CallExpr)
|
|
meth := call.X.(*ir.SelectorExpr)
|
|
targs := deref(meth.Type().Recv().Type).RParams()
|
|
|
|
t := meth.X.Type()
|
|
baseSym := deref(t).OrigSym
|
|
baseType := baseSym.Def.(*ir.Name).Type()
|
|
var gf *ir.Name
|
|
for _, m := range baseType.Methods().Slice() {
|
|
if meth.Sel == m.Sym {
|
|
gf = m.Nname.(*ir.Name)
|
|
break
|
|
}
|
|
}
|
|
|
|
st := g.getInstantiation(gf, targs, true)
|
|
call.SetOp(ir.OCALL)
|
|
call.X = st.Nname
|
|
dict := reflectdata.GetDictionaryForMethod(gf, targs)
|
|
call.Args.Prepend(dict, meth.X)
|
|
// Transform the Call now, which changes OCALL
|
|
// to OCALLFUNC and does typecheckaste/assignconvfn.
|
|
transformCall(call)
|
|
modified = true
|
|
}
|
|
})
|
|
|
|
// If we found a reference to a generic instantiation that wasn't an
|
|
// immediate call, then traverse the nodes of decl again (with
|
|
// EditChildren rather than Visit), where we actually change the
|
|
// reference to the instantiation to a closure that captures the
|
|
// dictionary, then does a direct call.
|
|
// EditChildren is more expensive than Visit, so we only do this
|
|
// in the infrequent case of an OFUNCINST without a corresponding
|
|
// call.
|
|
if closureRequired {
|
|
var edit func(ir.Node) ir.Node
|
|
edit = func(x ir.Node) ir.Node {
|
|
ir.EditChildren(x, edit)
|
|
switch {
|
|
case x.Op() == ir.OFUNCINST:
|
|
return g.buildClosure(decl.(*ir.Func), x)
|
|
case x.Op() == ir.OMETHEXPR && len(deref(x.(*ir.SelectorExpr).X.Type()).RParams()) > 0: // TODO: test for ptr-to-method case
|
|
return g.buildClosure(decl.(*ir.Func), x)
|
|
}
|
|
return x
|
|
}
|
|
edit(decl)
|
|
}
|
|
if base.Flag.W > 1 && modified {
|
|
ir.Dump(fmt.Sprintf("\nmodified %v", decl), decl)
|
|
}
|
|
ir.CurFunc = nil
|
|
// We may have seen new fully-instantiated generic types while
|
|
// instantiating any needed functions/methods in the above
|
|
// function. If so, instantiate all the methods of those types
|
|
// (which will then lead to more function/methods to scan in the loop).
|
|
g.instantiateMethods()
|
|
}
|
|
|
|
}
|
|
|
|
// buildClosure makes a closure to implement x, a OFUNCINST or OMETHEXPR
|
|
// of generic type. outer is the containing function.
|
|
func (g *irgen) buildClosure(outer *ir.Func, x ir.Node) ir.Node {
|
|
pos := x.Pos()
|
|
var target *ir.Func // target instantiated function/method
|
|
var dictValue ir.Node // dictionary to use
|
|
var rcvrValue ir.Node // receiver, if a method value
|
|
typ := x.Type() // type of the closure
|
|
if x.Op() == ir.OFUNCINST {
|
|
inst := x.(*ir.InstExpr)
|
|
|
|
// Type arguments we're instantiating with.
|
|
targs := typecheck.TypesOf(inst.Targs)
|
|
|
|
// Find the generic function/method.
|
|
var gf *ir.Name
|
|
if inst.X.Op() == ir.ONAME {
|
|
// Instantiating a generic function call.
|
|
gf = inst.X.(*ir.Name)
|
|
} else if inst.X.Op() == ir.OCALLPART {
|
|
// Instantiating a method value x.M.
|
|
se := inst.X.(*ir.SelectorExpr)
|
|
rcvrValue = se.X
|
|
gf = se.Selection.Nname.(*ir.Name)
|
|
} else {
|
|
panic("unhandled")
|
|
}
|
|
|
|
// target is the instantiated function we're trying to call.
|
|
// For functions, the target expects a dictionary as its first argument.
|
|
// For method values, the target expects a dictionary and the receiver
|
|
// as its first two arguments.
|
|
target = g.getInstantiation(gf, targs, rcvrValue != nil)
|
|
|
|
// The value to use for the dictionary argument.
|
|
if rcvrValue == nil {
|
|
dictValue = reflectdata.GetDictionaryForFunc(gf, targs)
|
|
} else {
|
|
dictValue = reflectdata.GetDictionaryForMethod(gf, targs)
|
|
}
|
|
} else { // ir.OMETHEXPR
|
|
// Method expression T.M where T is a generic type.
|
|
// TODO: Is (*T).M right?
|
|
se := x.(*ir.SelectorExpr)
|
|
targs := se.X.Type().RParams()
|
|
if len(targs) == 0 {
|
|
if se.X.Type().IsPtr() {
|
|
targs = se.X.Type().Elem().RParams()
|
|
if len(targs) == 0 {
|
|
panic("bad")
|
|
}
|
|
}
|
|
}
|
|
t := se.X.Type()
|
|
baseSym := t.OrigSym
|
|
baseType := baseSym.Def.(*ir.Name).Type()
|
|
var gf *ir.Name
|
|
for _, m := range baseType.Methods().Slice() {
|
|
if se.Sel == m.Sym {
|
|
gf = m.Nname.(*ir.Name)
|
|
break
|
|
}
|
|
}
|
|
target = g.getInstantiation(gf, targs, true)
|
|
dictValue = reflectdata.GetDictionaryForMethod(gf, targs)
|
|
}
|
|
|
|
// Build a closure to implement a function instantiation.
|
|
//
|
|
// func f[T any] (int, int) (int, int) { ...whatever... }
|
|
//
|
|
// Then any reference to f[int] not directly called gets rewritten to
|
|
//
|
|
// .dictN := ... dictionary to use ...
|
|
// func(a0, a1 int) (r0, r1 int) {
|
|
// return .inst.f[int](.dictN, a0, a1)
|
|
// }
|
|
//
|
|
// Similarly for method expressions,
|
|
//
|
|
// type g[T any] ....
|
|
// func (rcvr g[T]) f(a0, a1 int) (r0, r1 int) { ... }
|
|
//
|
|
// Any reference to g[int].f not directly called gets rewritten to
|
|
//
|
|
// .dictN := ... dictionary to use ...
|
|
// func(rcvr g[int], a0, a1 int) (r0, r1 int) {
|
|
// return .inst.g[int].f(.dictN, rcvr, a0, a1)
|
|
// }
|
|
//
|
|
// Also method values
|
|
//
|
|
// var x g[int]
|
|
//
|
|
// Any reference to x.f not directly called gets rewritten to
|
|
//
|
|
// .dictN := ... dictionary to use ...
|
|
// x2 := x
|
|
// func(a0, a1 int) (r0, r1 int) {
|
|
// return .inst.g[int].f(.dictN, x2, a0, a1)
|
|
// }
|
|
|
|
// Make a new internal function.
|
|
fn := ir.NewFunc(pos)
|
|
fn.SetIsHiddenClosure(true)
|
|
|
|
// This is the dictionary we want to use.
|
|
// Note: for now this is a compile-time constant, so we don't really need a closure
|
|
// to capture it (a wrapper function would work just as well). But eventually it
|
|
// will be a read of a subdictionary from the parent dictionary.
|
|
dictVar := ir.NewNameAt(pos, typecheck.LookupNum(".dict", g.dnum))
|
|
g.dnum++
|
|
dictVar.Class = ir.PAUTO
|
|
typed(types.Types[types.TUINTPTR], dictVar)
|
|
dictVar.Curfn = outer
|
|
dictAssign := ir.NewAssignStmt(pos, dictVar, dictValue)
|
|
dictAssign.SetTypecheck(1)
|
|
dictVar.Defn = dictAssign
|
|
outer.Dcl = append(outer.Dcl, dictVar)
|
|
|
|
// assign the receiver to a temporary.
|
|
var rcvrVar *ir.Name
|
|
var rcvrAssign ir.Node
|
|
if rcvrValue != nil {
|
|
rcvrVar = ir.NewNameAt(pos, typecheck.LookupNum(".rcvr", g.dnum))
|
|
g.dnum++
|
|
rcvrVar.Class = ir.PAUTO
|
|
typed(rcvrValue.Type(), rcvrVar)
|
|
rcvrVar.Curfn = outer
|
|
rcvrAssign = ir.NewAssignStmt(pos, rcvrVar, rcvrValue)
|
|
rcvrAssign.SetTypecheck(1)
|
|
rcvrVar.Defn = rcvrAssign
|
|
outer.Dcl = append(outer.Dcl, rcvrVar)
|
|
}
|
|
|
|
// Build formal argument and return lists.
|
|
var formalParams []*types.Field // arguments of closure
|
|
var formalResults []*types.Field // returns of closure
|
|
for i := 0; i < typ.NumParams(); i++ {
|
|
t := typ.Params().Field(i).Type
|
|
arg := ir.NewNameAt(pos, typecheck.LookupNum("a", i))
|
|
arg.Class = ir.PPARAM
|
|
typed(t, arg)
|
|
arg.Curfn = fn
|
|
fn.Dcl = append(fn.Dcl, arg)
|
|
f := types.NewField(pos, arg.Sym(), t)
|
|
f.Nname = arg
|
|
formalParams = append(formalParams, f)
|
|
}
|
|
for i := 0; i < typ.NumResults(); i++ {
|
|
t := typ.Results().Field(i).Type
|
|
result := ir.NewNameAt(pos, typecheck.LookupNum("r", i)) // TODO: names not needed?
|
|
result.Class = ir.PPARAMOUT
|
|
typed(t, result)
|
|
result.Curfn = fn
|
|
fn.Dcl = append(fn.Dcl, result)
|
|
f := types.NewField(pos, result.Sym(), t)
|
|
f.Nname = result
|
|
formalResults = append(formalResults, f)
|
|
}
|
|
|
|
// Build an internal function with the right signature.
|
|
closureType := types.NewSignature(x.Type().Pkg(), nil, nil, formalParams, formalResults)
|
|
sym := typecheck.ClosureName(outer)
|
|
sym.SetFunc(true)
|
|
fn.Nname = ir.NewNameAt(pos, sym)
|
|
fn.Nname.Func = fn
|
|
fn.Nname.Defn = fn
|
|
typed(closureType, fn.Nname)
|
|
fn.SetTypecheck(1)
|
|
|
|
// Build body of closure. This involves just calling the wrapped function directly
|
|
// with the additional dictionary argument.
|
|
|
|
// First, capture the dictionary variable for use in the closure.
|
|
dict2Var := ir.CaptureName(pos, fn, dictVar)
|
|
// Also capture the receiver variable.
|
|
var rcvr2Var *ir.Name
|
|
if rcvrValue != nil {
|
|
rcvr2Var = ir.CaptureName(pos, fn, rcvrVar)
|
|
}
|
|
|
|
// Build arguments to call inside the closure.
|
|
var args []ir.Node
|
|
|
|
// First the dictionary argument.
|
|
args = append(args, dict2Var)
|
|
// Then the receiver.
|
|
if rcvrValue != nil {
|
|
args = append(args, rcvr2Var)
|
|
}
|
|
// Then all the other arguments (including receiver for method expressions).
|
|
for i := 0; i < typ.NumParams(); i++ {
|
|
args = append(args, formalParams[i].Nname.(*ir.Name))
|
|
}
|
|
|
|
// Build call itself.
|
|
var innerCall ir.Node = ir.NewCallExpr(pos, ir.OCALL, target.Nname, args)
|
|
if len(formalResults) > 0 {
|
|
innerCall = ir.NewReturnStmt(pos, []ir.Node{innerCall})
|
|
}
|
|
// Finish building body of closure.
|
|
ir.CurFunc = fn
|
|
// TODO: set types directly here instead of using typecheck.Stmt
|
|
typecheck.Stmt(innerCall)
|
|
ir.CurFunc = nil
|
|
fn.Body = []ir.Node{innerCall}
|
|
|
|
// We're all done with the captured dictionary (and receiver, for method values).
|
|
ir.FinishCaptureNames(pos, outer, fn)
|
|
|
|
// Make a closure referencing our new internal function.
|
|
c := ir.NewClosureExpr(pos, fn)
|
|
init := []ir.Node{dictAssign}
|
|
if rcvrValue != nil {
|
|
init = append(init, rcvrAssign)
|
|
}
|
|
c.SetInit(init)
|
|
typed(x.Type(), c)
|
|
return c
|
|
}
|
|
|
|
// instantiateMethods instantiates all the methods of all fully-instantiated
|
|
// generic types that have been added to g.instTypeList.
|
|
func (g *irgen) instantiateMethods() {
|
|
for i := 0; i < len(g.instTypeList); i++ {
|
|
typ := g.instTypeList[i]
|
|
// Mark runtime type as needed, since this ensures that the
|
|
// compiler puts out the needed DWARF symbols, when this
|
|
// instantiated type has a different package from the local
|
|
// package.
|
|
typecheck.NeedRuntimeType(typ)
|
|
// Lookup the method on the base generic type, since methods may
|
|
// not be set on imported instantiated types.
|
|
baseSym := typ.OrigSym
|
|
baseType := baseSym.Def.(*ir.Name).Type()
|
|
for j, _ := range typ.Methods().Slice() {
|
|
baseNname := baseType.Methods().Slice()[j].Nname.(*ir.Name)
|
|
// Eagerly generate the instantiations that implement these methods.
|
|
// We don't use the instantiations here, just generate them (and any
|
|
// further instantiations those generate, etc.).
|
|
// Note that we don't set the Func for any methods on instantiated
|
|
// types. Their signatures don't match so that would be confusing.
|
|
// Direct method calls go directly to the instantiations, implemented above.
|
|
// Indirect method calls use wrappers generated in reflectcall. Those wrappers
|
|
// will use these instantiations if they are needed (for interface tables or reflection).
|
|
_ = g.getInstantiation(baseNname, typ.RParams(), true)
|
|
}
|
|
}
|
|
g.instTypeList = nil
|
|
|
|
}
|
|
|
|
// genericSym returns the name of the base generic type for the type named by
|
|
// sym. It simply returns the name obtained by removing everything after the
|
|
// first bracket ("[").
|
|
func genericTypeName(sym *types.Sym) string {
|
|
return sym.Name[0:strings.Index(sym.Name, "[")]
|
|
}
|
|
|
|
// getInstantiationForNode returns the function/method instantiation for a
|
|
// InstExpr node inst.
|
|
func (g *irgen) getInstantiationForNode(inst *ir.InstExpr) *ir.Func {
|
|
if meth, ok := inst.X.(*ir.SelectorExpr); ok {
|
|
return g.getInstantiation(meth.Selection.Nname.(*ir.Name), typecheck.TypesOf(inst.Targs), true)
|
|
} else {
|
|
return g.getInstantiation(inst.X.(*ir.Name), typecheck.TypesOf(inst.Targs), false)
|
|
}
|
|
}
|
|
|
|
// getInstantiation gets the instantiantion of the function or method nameNode
|
|
// with the type arguments targs. If the instantiated function is not already
|
|
// cached, then it calls genericSubst to create the new instantiation.
|
|
func (g *irgen) getInstantiation(nameNode *ir.Name, targs []*types.Type, isMeth bool) *ir.Func {
|
|
if nameNode.Func.Body == nil && nameNode.Func.Inl != nil {
|
|
// If there is no body yet but Func.Inl exists, then we can can
|
|
// import the whole generic body.
|
|
assert(nameNode.Func.Inl.Cost == 1 && nameNode.Sym().Pkg != types.LocalPkg)
|
|
typecheck.ImportBody(nameNode.Func)
|
|
assert(nameNode.Func.Inl.Body != nil)
|
|
nameNode.Func.Body = nameNode.Func.Inl.Body
|
|
nameNode.Func.Dcl = nameNode.Func.Inl.Dcl
|
|
}
|
|
sym := typecheck.MakeInstName(nameNode.Sym(), targs, isMeth)
|
|
st := g.target.Stencils[sym]
|
|
if st == nil {
|
|
// If instantiation doesn't exist yet, create it and add
|
|
// to the list of decls.
|
|
st = g.genericSubst(sym, nameNode, targs, isMeth)
|
|
// This ensures that the linker drops duplicates of this instantiation.
|
|
// All just works!
|
|
st.SetDupok(true)
|
|
g.target.Stencils[sym] = st
|
|
g.target.Decls = append(g.target.Decls, st)
|
|
if base.Flag.W > 1 {
|
|
ir.Dump(fmt.Sprintf("\nstenciled %v", st), st)
|
|
}
|
|
}
|
|
return st
|
|
}
|
|
|
|
// Struct containing info needed for doing the substitution as we create the
|
|
// instantiation of a generic function with specified type arguments.
|
|
type subster struct {
|
|
g *irgen
|
|
isMethod bool // If a method is being instantiated
|
|
newf *ir.Func // Func node for the new stenciled function
|
|
tparams []*types.Type
|
|
targs []*types.Type
|
|
// The substitution map from name nodes in the generic function to the
|
|
// name nodes in the new stenciled function.
|
|
vars map[*ir.Name]*ir.Name
|
|
}
|
|
|
|
// genericSubst returns a new function with name newsym. The function is an
|
|
// instantiation of a generic function or method specified by namedNode with type
|
|
// args targs. For a method with a generic receiver, it returns an instantiated
|
|
// function type where the receiver becomes the first parameter. Otherwise the
|
|
// instantiated method would still need to be transformed by later compiler
|
|
// phases.
|
|
func (g *irgen) genericSubst(newsym *types.Sym, nameNode *ir.Name, targs []*types.Type, isMethod bool) *ir.Func {
|
|
var tparams []*types.Type
|
|
if isMethod {
|
|
// Get the type params from the method receiver (after skipping
|
|
// over any pointer)
|
|
recvType := nameNode.Type().Recv().Type
|
|
recvType = deref(recvType)
|
|
tparams = recvType.RParams()
|
|
} else {
|
|
fields := nameNode.Type().TParams().Fields().Slice()
|
|
tparams = make([]*types.Type, len(fields))
|
|
for i, f := range fields {
|
|
tparams[i] = f.Type
|
|
}
|
|
}
|
|
gf := nameNode.Func
|
|
// Pos of the instantiated function is same as the generic function
|
|
newf := ir.NewFunc(gf.Pos())
|
|
newf.Pragma = gf.Pragma // copy over pragmas from generic function to stenciled implementation.
|
|
newf.Nname = ir.NewNameAt(gf.Pos(), newsym)
|
|
newf.Nname.Func = newf
|
|
newf.Nname.Defn = newf
|
|
newsym.Def = newf.Nname
|
|
savef := ir.CurFunc
|
|
// transformCall/transformReturn (called during stenciling of the body)
|
|
// depend on ir.CurFunc being set.
|
|
ir.CurFunc = newf
|
|
|
|
assert(len(tparams) == len(targs))
|
|
|
|
subst := &subster{
|
|
g: g,
|
|
isMethod: isMethod,
|
|
newf: newf,
|
|
tparams: tparams,
|
|
targs: targs,
|
|
vars: make(map[*ir.Name]*ir.Name),
|
|
}
|
|
|
|
newf.Dcl = make([]*ir.Name, 0, len(gf.Dcl)+1)
|
|
|
|
// Replace the types in the function signature.
|
|
// Ugly: also, we have to insert the Name nodes of the parameters/results into
|
|
// the function type. The current function type has no Nname fields set,
|
|
// because it came via conversion from the types2 type.
|
|
oldt := nameNode.Type()
|
|
// We also transform a generic method type to the corresponding
|
|
// instantiated function type where the dictionary is the first parameter.
|
|
dictionarySym := types.LocalPkg.Lookup(".dict")
|
|
dictionaryType := types.Types[types.TUINTPTR]
|
|
dictionaryName := ir.NewNameAt(gf.Pos(), dictionarySym)
|
|
typed(dictionaryType, dictionaryName)
|
|
dictionaryName.Class = ir.PPARAM
|
|
dictionaryName.Curfn = newf
|
|
newf.Dcl = append(newf.Dcl, dictionaryName)
|
|
for _, n := range gf.Dcl {
|
|
if n.Sym().Name == ".dict" {
|
|
panic("already has dictionary")
|
|
}
|
|
newf.Dcl = append(newf.Dcl, subst.localvar(n))
|
|
}
|
|
dictionaryArg := types.NewField(gf.Pos(), dictionarySym, dictionaryType)
|
|
dictionaryArg.Nname = dictionaryName
|
|
var args []*types.Field
|
|
args = append(args, dictionaryArg)
|
|
args = append(args, oldt.Recvs().FieldSlice()...)
|
|
args = append(args, oldt.Params().FieldSlice()...)
|
|
newt := types.NewSignature(oldt.Pkg(), nil, nil,
|
|
subst.fields(ir.PPARAM, args, newf.Dcl),
|
|
subst.fields(ir.PPARAMOUT, oldt.Results().FieldSlice(), newf.Dcl))
|
|
|
|
typed(newt, newf.Nname)
|
|
ir.MarkFunc(newf.Nname)
|
|
newf.SetTypecheck(1)
|
|
|
|
// Make sure name/type of newf is set before substituting the body.
|
|
newf.Body = subst.list(gf.Body)
|
|
|
|
// Add code to check that the dictionary is correct.
|
|
newf.Body.Prepend(g.checkDictionary(dictionaryName, targs)...)
|
|
|
|
ir.CurFunc = savef
|
|
|
|
return newf
|
|
}
|
|
|
|
// localvar creates a new name node for the specified local variable and enters it
|
|
// in subst.vars. It substitutes type arguments for type parameters in the type of
|
|
// name as needed.
|
|
func (subst *subster) localvar(name *ir.Name) *ir.Name {
|
|
m := ir.NewNameAt(name.Pos(), name.Sym())
|
|
if name.IsClosureVar() {
|
|
m.SetIsClosureVar(true)
|
|
}
|
|
m.SetType(subst.typ(name.Type()))
|
|
m.BuiltinOp = name.BuiltinOp
|
|
m.Curfn = subst.newf
|
|
m.Class = name.Class
|
|
assert(name.Class != ir.PEXTERN && name.Class != ir.PFUNC)
|
|
m.Func = name.Func
|
|
subst.vars[name] = m
|
|
m.SetTypecheck(1)
|
|
return m
|
|
}
|
|
|
|
// checkDictionary returns code that does runtime consistency checks
|
|
// between the dictionary and the types it should contain.
|
|
func (g *irgen) checkDictionary(name *ir.Name, targs []*types.Type) (code []ir.Node) {
|
|
if false {
|
|
return // checking turned off
|
|
}
|
|
// TODO: when moving to GCshape, this test will become harder. Call into
|
|
// runtime to check the expected shape is correct?
|
|
pos := name.Pos()
|
|
// Convert dictionary to *[N]uintptr
|
|
d := ir.NewConvExpr(pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], name)
|
|
d.SetTypecheck(1)
|
|
d = ir.NewConvExpr(pos, ir.OCONVNOP, types.NewArray(types.Types[types.TUINTPTR], int64(len(targs))).PtrTo(), d)
|
|
d.SetTypecheck(1)
|
|
|
|
// Check that each type entry in the dictionary is correct.
|
|
for i, t := range targs {
|
|
want := reflectdata.TypePtr(t)
|
|
typed(types.Types[types.TUINTPTR], want)
|
|
deref := ir.NewStarExpr(pos, d)
|
|
typed(d.Type().Elem(), deref)
|
|
idx := ir.NewConstExpr(constant.MakeUint64(uint64(i)), name) // TODO: what to set orig to?
|
|
typed(types.Types[types.TUINTPTR], idx)
|
|
got := ir.NewIndexExpr(pos, deref, idx)
|
|
typed(types.Types[types.TUINTPTR], got)
|
|
cond := ir.NewBinaryExpr(pos, ir.ONE, want, got)
|
|
typed(types.Types[types.TBOOL], cond)
|
|
panicArg := ir.NewNilExpr(pos)
|
|
typed(types.NewInterface(types.LocalPkg, nil), panicArg)
|
|
then := ir.NewUnaryExpr(pos, ir.OPANIC, panicArg)
|
|
then.SetTypecheck(1)
|
|
x := ir.NewIfStmt(pos, cond, []ir.Node{then}, nil)
|
|
x.SetTypecheck(1)
|
|
code = append(code, x)
|
|
}
|
|
return
|
|
}
|
|
|
|
// node is like DeepCopy(), but substitutes ONAME nodes based on subst.vars, and
|
|
// also descends into closures. It substitutes type arguments for type parameters
|
|
// in all the new nodes.
|
|
func (subst *subster) node(n ir.Node) ir.Node {
|
|
// Use closure to capture all state needed by the ir.EditChildren argument.
|
|
var edit func(ir.Node) ir.Node
|
|
edit = func(x ir.Node) ir.Node {
|
|
switch x.Op() {
|
|
case ir.OTYPE:
|
|
return ir.TypeNode(subst.typ(x.Type()))
|
|
|
|
case ir.ONAME:
|
|
if v := subst.vars[x.(*ir.Name)]; v != nil {
|
|
return v
|
|
}
|
|
return x
|
|
case ir.ONONAME:
|
|
// This handles the identifier in a type switch guard
|
|
fallthrough
|
|
case ir.OLITERAL, ir.ONIL:
|
|
if x.Sym() != nil {
|
|
return x
|
|
}
|
|
}
|
|
m := ir.Copy(x)
|
|
if _, isExpr := m.(ir.Expr); isExpr {
|
|
t := x.Type()
|
|
if t == nil {
|
|
// t can be nil only if this is a call that has no
|
|
// return values, so allow that and otherwise give
|
|
// an error.
|
|
_, isCallExpr := m.(*ir.CallExpr)
|
|
_, isStructKeyExpr := m.(*ir.StructKeyExpr)
|
|
if !isCallExpr && !isStructKeyExpr && x.Op() != ir.OPANIC &&
|
|
x.Op() != ir.OCLOSE {
|
|
base.Fatalf(fmt.Sprintf("Nil type for %v", x))
|
|
}
|
|
} else if x.Op() != ir.OCLOSURE {
|
|
m.SetType(subst.typ(x.Type()))
|
|
}
|
|
}
|
|
ir.EditChildren(m, edit)
|
|
|
|
m.SetTypecheck(1)
|
|
if typecheck.IsCmp(x.Op()) {
|
|
transformCompare(m.(*ir.BinaryExpr))
|
|
} else {
|
|
switch x.Op() {
|
|
case ir.OSLICE, ir.OSLICE3:
|
|
transformSlice(m.(*ir.SliceExpr))
|
|
|
|
case ir.OADD:
|
|
m = transformAdd(m.(*ir.BinaryExpr))
|
|
|
|
case ir.OINDEX:
|
|
transformIndex(m.(*ir.IndexExpr))
|
|
|
|
case ir.OAS2:
|
|
as2 := m.(*ir.AssignListStmt)
|
|
transformAssign(as2, as2.Lhs, as2.Rhs)
|
|
|
|
case ir.OAS:
|
|
as := m.(*ir.AssignStmt)
|
|
if as.Y != nil {
|
|
// transformAssign doesn't handle the case
|
|
// of zeroing assignment of a dcl (rhs[0] is nil).
|
|
lhs, rhs := []ir.Node{as.X}, []ir.Node{as.Y}
|
|
transformAssign(as, lhs, rhs)
|
|
}
|
|
|
|
case ir.OASOP:
|
|
as := m.(*ir.AssignOpStmt)
|
|
transformCheckAssign(as, as.X)
|
|
|
|
case ir.ORETURN:
|
|
transformReturn(m.(*ir.ReturnStmt))
|
|
|
|
case ir.OSEND:
|
|
transformSend(m.(*ir.SendStmt))
|
|
|
|
}
|
|
}
|
|
|
|
switch x.Op() {
|
|
case ir.OLITERAL:
|
|
t := m.Type()
|
|
if t != x.Type() {
|
|
// types2 will give us a constant with a type T,
|
|
// if an untyped constant is used with another
|
|
// operand of type T (in a provably correct way).
|
|
// When we substitute in the type args during
|
|
// stenciling, we now know the real type of the
|
|
// constant. We may then need to change the
|
|
// BasicLit.val to be the correct type (e.g.
|
|
// convert an int64Val constant to a floatVal
|
|
// constant).
|
|
m.SetType(types.UntypedInt) // use any untyped type for DefaultLit to work
|
|
m = typecheck.DefaultLit(m, t)
|
|
}
|
|
|
|
case ir.OXDOT:
|
|
// A method value/call via a type param will have been
|
|
// left as an OXDOT. When we see this during stenciling,
|
|
// finish the transformation, now that we have the
|
|
// instantiated receiver type. We need to do this now,
|
|
// since the access/selection to the method for the real
|
|
// type is very different from the selection for the type
|
|
// param. m will be transformed to an OCALLPART node. It
|
|
// will be transformed to an ODOTMETH or ODOTINTER node if
|
|
// we find in the OCALL case below that the method value
|
|
// is actually called.
|
|
transformDot(m.(*ir.SelectorExpr), false)
|
|
m.SetTypecheck(1)
|
|
|
|
case ir.OCALL:
|
|
call := m.(*ir.CallExpr)
|
|
switch call.X.Op() {
|
|
case ir.OTYPE:
|
|
// Transform the conversion, now that we know the
|
|
// type argument.
|
|
m = transformConvCall(m.(*ir.CallExpr))
|
|
|
|
case ir.OCALLPART:
|
|
// Redo the transformation of OXDOT, now that we
|
|
// know the method value is being called. Then
|
|
// transform the call.
|
|
call.X.(*ir.SelectorExpr).SetOp(ir.OXDOT)
|
|
transformDot(call.X.(*ir.SelectorExpr), true)
|
|
transformCall(call)
|
|
|
|
case ir.ODOT, ir.ODOTPTR:
|
|
// An OXDOT for a generic receiver was resolved to
|
|
// an access to a field which has a function
|
|
// value. Transform the call to that function, now
|
|
// that the OXDOT was resolved.
|
|
transformCall(call)
|
|
|
|
case ir.ONAME:
|
|
name := call.X.Name()
|
|
if name.BuiltinOp != ir.OXXX {
|
|
switch name.BuiltinOp {
|
|
case ir.OMAKE, ir.OREAL, ir.OIMAG, ir.OLEN, ir.OCAP, ir.OAPPEND:
|
|
// Transform these builtins now that we
|
|
// know the type of the args.
|
|
m = transformBuiltin(call)
|
|
default:
|
|
base.FatalfAt(call.Pos(), "Unexpected builtin op")
|
|
}
|
|
} else {
|
|
// This is the case of a function value that was a
|
|
// type parameter (implied to be a function via a
|
|
// structural constraint) which is now resolved.
|
|
transformCall(call)
|
|
}
|
|
|
|
case ir.OCLOSURE:
|
|
transformCall(call)
|
|
|
|
case ir.OFUNCINST:
|
|
// A call with an OFUNCINST will get transformed
|
|
// in stencil() once we have created & attached the
|
|
// instantiation to be called.
|
|
|
|
default:
|
|
base.FatalfAt(call.Pos(), fmt.Sprintf("Unexpected op with CALL during stenciling: %v", call.X.Op()))
|
|
}
|
|
|
|
case ir.OCLOSURE:
|
|
x := x.(*ir.ClosureExpr)
|
|
// Need to duplicate x.Func.Nname, x.Func.Dcl, x.Func.ClosureVars, and
|
|
// x.Func.Body.
|
|
oldfn := x.Func
|
|
newfn := ir.NewFunc(oldfn.Pos())
|
|
if oldfn.ClosureCalled() {
|
|
newfn.SetClosureCalled(true)
|
|
}
|
|
newfn.SetIsHiddenClosure(true)
|
|
m.(*ir.ClosureExpr).Func = newfn
|
|
// Closure name can already have brackets, if it derives
|
|
// from a generic method
|
|
newsym := typecheck.MakeInstName(oldfn.Nname.Sym(), subst.targs, subst.isMethod)
|
|
newfn.Nname = ir.NewNameAt(oldfn.Nname.Pos(), newsym)
|
|
newfn.Nname.Func = newfn
|
|
newfn.Nname.Defn = newfn
|
|
ir.MarkFunc(newfn.Nname)
|
|
newfn.OClosure = m.(*ir.ClosureExpr)
|
|
|
|
saveNewf := subst.newf
|
|
ir.CurFunc = newfn
|
|
subst.newf = newfn
|
|
newfn.Dcl = subst.namelist(oldfn.Dcl)
|
|
newfn.ClosureVars = subst.namelist(oldfn.ClosureVars)
|
|
|
|
typed(subst.typ(oldfn.Nname.Type()), newfn.Nname)
|
|
typed(newfn.Nname.Type(), m)
|
|
newfn.SetTypecheck(1)
|
|
|
|
// Make sure type of closure function is set before doing body.
|
|
newfn.Body = subst.list(oldfn.Body)
|
|
subst.newf = saveNewf
|
|
ir.CurFunc = saveNewf
|
|
|
|
subst.g.target.Decls = append(subst.g.target.Decls, newfn)
|
|
}
|
|
return m
|
|
}
|
|
|
|
return edit(n)
|
|
}
|
|
|
|
func (subst *subster) namelist(l []*ir.Name) []*ir.Name {
|
|
s := make([]*ir.Name, len(l))
|
|
for i, n := range l {
|
|
s[i] = subst.localvar(n)
|
|
if n.Defn != nil {
|
|
s[i].Defn = subst.node(n.Defn)
|
|
}
|
|
if n.Outer != nil {
|
|
s[i].Outer = subst.node(n.Outer).(*ir.Name)
|
|
}
|
|
}
|
|
return s
|
|
}
|
|
|
|
func (subst *subster) list(l []ir.Node) []ir.Node {
|
|
s := make([]ir.Node, len(l))
|
|
for i, n := range l {
|
|
s[i] = subst.node(n)
|
|
}
|
|
return s
|
|
}
|
|
|
|
// tstruct substitutes type params in types of the fields of a structure type. For
|
|
// each field, tstruct copies the Nname, and translates it if Nname is in
|
|
// subst.vars. To always force the creation of a new (top-level) struct,
|
|
// regardless of whether anything changed with the types or names of the struct's
|
|
// fields, set force to true.
|
|
func (subst *subster) tstruct(t *types.Type, force bool) *types.Type {
|
|
if t.NumFields() == 0 {
|
|
if t.HasTParam() {
|
|
// For an empty struct, we need to return a new type,
|
|
// since it may now be fully instantiated (HasTParam
|
|
// becomes false).
|
|
return types.NewStruct(t.Pkg(), nil)
|
|
}
|
|
return t
|
|
}
|
|
var newfields []*types.Field
|
|
if force {
|
|
newfields = make([]*types.Field, t.NumFields())
|
|
}
|
|
for i, f := range t.Fields().Slice() {
|
|
t2 := subst.typ(f.Type)
|
|
if (t2 != f.Type || f.Nname != nil) && newfields == nil {
|
|
newfields = make([]*types.Field, t.NumFields())
|
|
for j := 0; j < i; j++ {
|
|
newfields[j] = t.Field(j)
|
|
}
|
|
}
|
|
if newfields != nil {
|
|
// TODO(danscales): make sure this works for the field
|
|
// names of embedded types (which should keep the name of
|
|
// the type param, not the instantiated type).
|
|
newfields[i] = types.NewField(f.Pos, f.Sym, t2)
|
|
if f.Nname != nil {
|
|
v := subst.vars[f.Nname.(*ir.Name)]
|
|
if v != nil {
|
|
// This is the case where we are
|
|
// translating the type of the function we
|
|
// are substituting, so its dcls are in
|
|
// the subst.vars table, and we want to
|
|
// change to reference the new dcl.
|
|
newfields[i].Nname = v
|
|
} else {
|
|
// This is the case where we are
|
|
// translating the type of a function
|
|
// reference inside the function we are
|
|
// substituting, so we leave the Nname
|
|
// value as is.
|
|
newfields[i].Nname = f.Nname
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if newfields != nil {
|
|
return types.NewStruct(t.Pkg(), newfields)
|
|
}
|
|
return t
|
|
|
|
}
|
|
|
|
// tinter substitutes type params in types of the methods of an interface type.
|
|
func (subst *subster) tinter(t *types.Type) *types.Type {
|
|
if t.Methods().Len() == 0 {
|
|
return t
|
|
}
|
|
var newfields []*types.Field
|
|
for i, f := range t.Methods().Slice() {
|
|
t2 := subst.typ(f.Type)
|
|
if (t2 != f.Type || f.Nname != nil) && newfields == nil {
|
|
newfields = make([]*types.Field, t.Methods().Len())
|
|
for j := 0; j < i; j++ {
|
|
newfields[j] = t.Methods().Index(j)
|
|
}
|
|
}
|
|
if newfields != nil {
|
|
newfields[i] = types.NewField(f.Pos, f.Sym, t2)
|
|
}
|
|
}
|
|
if newfields != nil {
|
|
return types.NewInterface(t.Pkg(), newfields)
|
|
}
|
|
return t
|
|
}
|
|
|
|
// typ computes the type obtained by substituting any type parameter in t with the
|
|
// corresponding type argument in subst. If t contains no type parameters, the
|
|
// result is t; otherwise the result is a new type. It deals with recursive types
|
|
// by using TFORW types and finding partially or fully created types via sym.Def.
|
|
func (subst *subster) typ(t *types.Type) *types.Type {
|
|
if !t.HasTParam() && t.Kind() != types.TFUNC {
|
|
// Note: function types need to be copied regardless, as the
|
|
// types of closures may contain declarations that need
|
|
// to be copied. See #45738.
|
|
return t
|
|
}
|
|
|
|
if t.Kind() == types.TTYPEPARAM {
|
|
for i, tp := range subst.tparams {
|
|
if tp == t {
|
|
return subst.targs[i]
|
|
}
|
|
}
|
|
// If t is a simple typeparam T, then t has the name/symbol 'T'
|
|
// and t.Underlying() == t.
|
|
//
|
|
// However, consider the type definition: 'type P[T any] T'. We
|
|
// might use this definition so we can have a variant of type T
|
|
// that we can add new methods to. Suppose t is a reference to
|
|
// P[T]. t has the name 'P[T]', but its kind is TTYPEPARAM,
|
|
// because P[T] is defined as T. If we look at t.Underlying(), it
|
|
// is different, because the name of t.Underlying() is 'T' rather
|
|
// than 'P[T]'. But the kind of t.Underlying() is also TTYPEPARAM.
|
|
// In this case, we do the needed recursive substitution in the
|
|
// case statement below.
|
|
if t.Underlying() == t {
|
|
// t is a simple typeparam that didn't match anything in tparam
|
|
return t
|
|
}
|
|
// t is a more complex typeparam (e.g. P[T], as above, whose
|
|
// definition is just T).
|
|
assert(t.Sym() != nil)
|
|
}
|
|
|
|
var newsym *types.Sym
|
|
var neededTargs []*types.Type
|
|
var forw *types.Type
|
|
|
|
if t.Sym() != nil {
|
|
// Translate the type params for this type according to
|
|
// the tparam/targs mapping from subst.
|
|
neededTargs = make([]*types.Type, len(t.RParams()))
|
|
for i, rparam := range t.RParams() {
|
|
neededTargs[i] = subst.typ(rparam)
|
|
}
|
|
// For a named (defined) type, we have to change the name of the
|
|
// type as well. We do this first, so we can look up if we've
|
|
// already seen this type during this substitution or other
|
|
// definitions/substitutions.
|
|
genName := genericTypeName(t.Sym())
|
|
newsym = t.Sym().Pkg.Lookup(typecheck.InstTypeName(genName, neededTargs))
|
|
if newsym.Def != nil {
|
|
// We've already created this instantiated defined type.
|
|
return newsym.Def.Type()
|
|
}
|
|
|
|
// In order to deal with recursive generic types, create a TFORW
|
|
// type initially and set the Def field of its sym, so it can be
|
|
// found if this type appears recursively within the type.
|
|
forw = typecheck.NewIncompleteNamedType(t.Pos(), newsym)
|
|
//println("Creating new type by sub", newsym.Name, forw.HasTParam())
|
|
forw.SetRParams(neededTargs)
|
|
// Copy the OrigSym from the re-instantiated type (which is the sym of
|
|
// the base generic type).
|
|
assert(t.OrigSym != nil)
|
|
forw.OrigSym = t.OrigSym
|
|
}
|
|
|
|
var newt *types.Type
|
|
|
|
switch t.Kind() {
|
|
case types.TTYPEPARAM:
|
|
if t.Sym() == newsym {
|
|
// The substitution did not change the type.
|
|
return t
|
|
}
|
|
// Substitute the underlying typeparam (e.g. T in P[T], see
|
|
// the example describing type P[T] above).
|
|
newt = subst.typ(t.Underlying())
|
|
assert(newt != t)
|
|
|
|
case types.TARRAY:
|
|
elem := t.Elem()
|
|
newelem := subst.typ(elem)
|
|
if newelem != elem {
|
|
newt = types.NewArray(newelem, t.NumElem())
|
|
}
|
|
|
|
case types.TPTR:
|
|
elem := t.Elem()
|
|
newelem := subst.typ(elem)
|
|
if newelem != elem {
|
|
newt = types.NewPtr(newelem)
|
|
}
|
|
|
|
case types.TSLICE:
|
|
elem := t.Elem()
|
|
newelem := subst.typ(elem)
|
|
if newelem != elem {
|
|
newt = types.NewSlice(newelem)
|
|
}
|
|
|
|
case types.TSTRUCT:
|
|
newt = subst.tstruct(t, false)
|
|
if newt == t {
|
|
newt = nil
|
|
}
|
|
|
|
case types.TFUNC:
|
|
newrecvs := subst.tstruct(t.Recvs(), false)
|
|
newparams := subst.tstruct(t.Params(), false)
|
|
newresults := subst.tstruct(t.Results(), false)
|
|
if newrecvs != t.Recvs() || newparams != t.Params() || newresults != t.Results() {
|
|
// If any types have changed, then the all the fields of
|
|
// of recv, params, and results must be copied, because they have
|
|
// offset fields that are dependent, and so must have an
|
|
// independent copy for each new signature.
|
|
var newrecv *types.Field
|
|
if newrecvs.NumFields() > 0 {
|
|
if newrecvs == t.Recvs() {
|
|
newrecvs = subst.tstruct(t.Recvs(), true)
|
|
}
|
|
newrecv = newrecvs.Field(0)
|
|
}
|
|
if newparams == t.Params() {
|
|
newparams = subst.tstruct(t.Params(), true)
|
|
}
|
|
if newresults == t.Results() {
|
|
newresults = subst.tstruct(t.Results(), true)
|
|
}
|
|
newt = types.NewSignature(t.Pkg(), newrecv, t.TParams().FieldSlice(), newparams.FieldSlice(), newresults.FieldSlice())
|
|
}
|
|
|
|
case types.TINTER:
|
|
newt = subst.tinter(t)
|
|
if newt == t {
|
|
newt = nil
|
|
}
|
|
|
|
case types.TMAP:
|
|
newkey := subst.typ(t.Key())
|
|
newval := subst.typ(t.Elem())
|
|
if newkey != t.Key() || newval != t.Elem() {
|
|
newt = types.NewMap(newkey, newval)
|
|
}
|
|
|
|
case types.TCHAN:
|
|
elem := t.Elem()
|
|
newelem := subst.typ(elem)
|
|
if newelem != elem {
|
|
newt = types.NewChan(newelem, t.ChanDir())
|
|
if !newt.HasTParam() {
|
|
// TODO(danscales): not sure why I have to do this
|
|
// only for channels.....
|
|
types.CheckSize(newt)
|
|
}
|
|
}
|
|
}
|
|
if newt == nil {
|
|
// Even though there were typeparams in the type, there may be no
|
|
// change if this is a function type for a function call (which will
|
|
// have its own tparams/targs in the function instantiation).
|
|
return t
|
|
}
|
|
|
|
if t.Sym() == nil {
|
|
// Not a named type, so there was no forwarding type and there are
|
|
// no methods to substitute.
|
|
assert(t.Methods().Len() == 0)
|
|
return newt
|
|
}
|
|
|
|
forw.SetUnderlying(newt)
|
|
newt = forw
|
|
|
|
if t.Kind() != types.TINTER && t.Methods().Len() > 0 {
|
|
// Fill in the method info for the new type.
|
|
var newfields []*types.Field
|
|
newfields = make([]*types.Field, t.Methods().Len())
|
|
for i, f := range t.Methods().Slice() {
|
|
t2 := subst.typ(f.Type)
|
|
oldsym := f.Nname.Sym()
|
|
newsym := typecheck.MakeInstName(oldsym, subst.targs, true)
|
|
// TODO: use newsym?
|
|
var nname *ir.Name
|
|
if newsym.Def != nil {
|
|
nname = newsym.Def.(*ir.Name)
|
|
} else {
|
|
nname = ir.NewNameAt(f.Pos, oldsym)
|
|
nname.SetType(t2)
|
|
oldsym.Def = nname
|
|
}
|
|
newfields[i] = types.NewField(f.Pos, f.Sym, t2)
|
|
newfields[i].Nname = nname
|
|
}
|
|
newt.Methods().Set(newfields)
|
|
if !newt.HasTParam() {
|
|
// Generate all the methods for a new fully-instantiated type.
|
|
subst.g.instTypeList = append(subst.g.instTypeList, newt)
|
|
}
|
|
}
|
|
return newt
|
|
}
|
|
|
|
// fields sets the Nname field for the Field nodes inside a type signature, based
|
|
// on the corresponding in/out parameters in dcl. It depends on the in and out
|
|
// parameters being in order in dcl.
|
|
func (subst *subster) fields(class ir.Class, oldfields []*types.Field, dcl []*ir.Name) []*types.Field {
|
|
// Find the starting index in dcl of declarations of the class (either
|
|
// PPARAM or PPARAMOUT).
|
|
var i int
|
|
for i = range dcl {
|
|
if dcl[i].Class == class {
|
|
break
|
|
}
|
|
}
|
|
|
|
// Create newfields nodes that are copies of the oldfields nodes, but
|
|
// with substitution for any type params, and with Nname set to be the node in
|
|
// Dcl for the corresponding PPARAM or PPARAMOUT.
|
|
newfields := make([]*types.Field, len(oldfields))
|
|
for j := range oldfields {
|
|
newfields[j] = oldfields[j].Copy()
|
|
newfields[j].Type = subst.typ(oldfields[j].Type)
|
|
// A PPARAM field will be missing from dcl if its name is
|
|
// unspecified or specified as "_". So, we compare the dcl sym
|
|
// with the field sym (or sym of the field's Nname node). (Unnamed
|
|
// results still have a name like ~r2 in their Nname node.) If
|
|
// they don't match, this dcl (if there is one left) must apply to
|
|
// a later field.
|
|
if i < len(dcl) && (dcl[i].Sym() == oldfields[j].Sym ||
|
|
(oldfields[j].Nname != nil && dcl[i].Sym() == oldfields[j].Nname.Sym())) {
|
|
newfields[j].Nname = dcl[i]
|
|
i++
|
|
}
|
|
}
|
|
return newfields
|
|
}
|
|
|
|
// defer does a single defer of type t, if it is a pointer type.
|
|
func deref(t *types.Type) *types.Type {
|
|
if t.IsPtr() {
|
|
return t.Elem()
|
|
}
|
|
return t
|
|
}
|