mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
To be consistent with go/types. Passes toolstash-check. Change-Id: I5e02f529064a904310a164f8765082aa533cc799 Reviewed-on: https://go-review.googlesource.com/c/go/+/260699 Trust: Cuong Manh Le <cuong.manhle.vn@gmail.com> Run-TryBot: Cuong Manh Le <cuong.manhle.vn@gmail.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
1933 lines
45 KiB
Go
1933 lines
45 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/objabi"
|
|
"cmd/internal/src"
|
|
"crypto/md5"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"os"
|
|
"runtime/debug"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"sync"
|
|
"unicode"
|
|
"unicode/utf8"
|
|
)
|
|
|
|
type Error struct {
|
|
pos src.XPos
|
|
msg string
|
|
}
|
|
|
|
var errors []Error
|
|
|
|
// largeStack is info about a function whose stack frame is too large (rare).
|
|
type largeStack struct {
|
|
locals int64
|
|
args int64
|
|
callee int64
|
|
pos src.XPos
|
|
}
|
|
|
|
var (
|
|
largeStackFramesMu sync.Mutex // protects largeStackFrames
|
|
largeStackFrames []largeStack
|
|
)
|
|
|
|
func errorexit() {
|
|
flusherrors()
|
|
if outfile != "" {
|
|
os.Remove(outfile)
|
|
}
|
|
os.Exit(2)
|
|
}
|
|
|
|
func adderrorname(n *Node) {
|
|
if n.Op != ODOT {
|
|
return
|
|
}
|
|
old := fmt.Sprintf("%v: undefined: %v\n", n.Line(), n.Left)
|
|
if len(errors) > 0 && errors[len(errors)-1].pos.Line() == n.Pos.Line() && errors[len(errors)-1].msg == old {
|
|
errors[len(errors)-1].msg = fmt.Sprintf("%v: undefined: %v in %v\n", n.Line(), n.Left, n)
|
|
}
|
|
}
|
|
|
|
func adderr(pos src.XPos, format string, args ...interface{}) {
|
|
msg := fmt.Sprintf(format, args...)
|
|
// Only add the position if know the position.
|
|
// See issue golang.org/issue/11361.
|
|
if pos.IsKnown() {
|
|
msg = fmt.Sprintf("%v: %s", linestr(pos), msg)
|
|
}
|
|
errors = append(errors, Error{
|
|
pos: pos,
|
|
msg: msg + "\n",
|
|
})
|
|
}
|
|
|
|
// byPos sorts errors by source position.
|
|
type byPos []Error
|
|
|
|
func (x byPos) Len() int { return len(x) }
|
|
func (x byPos) Less(i, j int) bool { return x[i].pos.Before(x[j].pos) }
|
|
func (x byPos) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
|
|
// flusherrors sorts errors seen so far by line number, prints them to stdout,
|
|
// and empties the errors array.
|
|
func flusherrors() {
|
|
Ctxt.Bso.Flush()
|
|
if len(errors) == 0 {
|
|
return
|
|
}
|
|
sort.Stable(byPos(errors))
|
|
for i, err := range errors {
|
|
if i == 0 || err.msg != errors[i-1].msg {
|
|
fmt.Printf("%s", err.msg)
|
|
}
|
|
}
|
|
errors = errors[:0]
|
|
}
|
|
|
|
func hcrash() {
|
|
if Debug['h'] != 0 {
|
|
flusherrors()
|
|
if outfile != "" {
|
|
os.Remove(outfile)
|
|
}
|
|
var x *int
|
|
*x = 0
|
|
}
|
|
}
|
|
|
|
func linestr(pos src.XPos) string {
|
|
return Ctxt.OutermostPos(pos).Format(Debug['C'] == 0, Debug['L'] == 1)
|
|
}
|
|
|
|
// lasterror keeps track of the most recently issued error.
|
|
// It is used to avoid multiple error messages on the same
|
|
// line.
|
|
var lasterror struct {
|
|
syntax src.XPos // source position of last syntax error
|
|
other src.XPos // source position of last non-syntax error
|
|
msg string // error message of last non-syntax error
|
|
}
|
|
|
|
// sameline reports whether two positions a, b are on the same line.
|
|
func sameline(a, b src.XPos) bool {
|
|
p := Ctxt.PosTable.Pos(a)
|
|
q := Ctxt.PosTable.Pos(b)
|
|
return p.Base() == q.Base() && p.Line() == q.Line()
|
|
}
|
|
|
|
func yyerrorl(pos src.XPos, format string, args ...interface{}) {
|
|
msg := fmt.Sprintf(format, args...)
|
|
|
|
if strings.HasPrefix(msg, "syntax error") {
|
|
nsyntaxerrors++
|
|
// only one syntax error per line, no matter what error
|
|
if sameline(lasterror.syntax, pos) {
|
|
return
|
|
}
|
|
lasterror.syntax = pos
|
|
} else {
|
|
// only one of multiple equal non-syntax errors per line
|
|
// (flusherrors shows only one of them, so we filter them
|
|
// here as best as we can (they may not appear in order)
|
|
// so that we don't count them here and exit early, and
|
|
// then have nothing to show for.)
|
|
if sameline(lasterror.other, pos) && lasterror.msg == msg {
|
|
return
|
|
}
|
|
lasterror.other = pos
|
|
lasterror.msg = msg
|
|
}
|
|
|
|
adderr(pos, "%s", msg)
|
|
|
|
hcrash()
|
|
nerrors++
|
|
if nsavederrors+nerrors >= 10 && Debug['e'] == 0 {
|
|
flusherrors()
|
|
fmt.Printf("%v: too many errors\n", linestr(pos))
|
|
errorexit()
|
|
}
|
|
}
|
|
|
|
func yyerrorv(lang string, format string, args ...interface{}) {
|
|
what := fmt.Sprintf(format, args...)
|
|
yyerrorl(lineno, "%s requires %s or later (-lang was set to %s; check go.mod)", what, lang, flag_lang)
|
|
}
|
|
|
|
func yyerror(format string, args ...interface{}) {
|
|
yyerrorl(lineno, format, args...)
|
|
}
|
|
|
|
func Warn(fmt_ string, args ...interface{}) {
|
|
Warnl(lineno, fmt_, args...)
|
|
}
|
|
|
|
func Warnl(line src.XPos, fmt_ string, args ...interface{}) {
|
|
adderr(line, fmt_, args...)
|
|
if Debug['m'] != 0 {
|
|
flusherrors()
|
|
}
|
|
}
|
|
|
|
func Fatalf(fmt_ string, args ...interface{}) {
|
|
flusherrors()
|
|
|
|
if Debug_panic != 0 || nsavederrors+nerrors == 0 {
|
|
fmt.Printf("%v: internal compiler error: ", linestr(lineno))
|
|
fmt.Printf(fmt_, args...)
|
|
fmt.Printf("\n")
|
|
|
|
// If this is a released compiler version, ask for a bug report.
|
|
if strings.HasPrefix(objabi.Version, "go") {
|
|
fmt.Printf("\n")
|
|
fmt.Printf("Please file a bug report including a short program that triggers the error.\n")
|
|
fmt.Printf("https://golang.org/issue/new\n")
|
|
} else {
|
|
// Not a release; dump a stack trace, too.
|
|
fmt.Println()
|
|
os.Stdout.Write(debug.Stack())
|
|
fmt.Println()
|
|
}
|
|
}
|
|
|
|
hcrash()
|
|
errorexit()
|
|
}
|
|
|
|
// hasUniquePos reports whether n has a unique position that can be
|
|
// used for reporting error messages.
|
|
//
|
|
// It's primarily used to distinguish references to named objects,
|
|
// whose Pos will point back to their declaration position rather than
|
|
// their usage position.
|
|
func hasUniquePos(n *Node) bool {
|
|
switch n.Op {
|
|
case ONAME, OPACK:
|
|
return false
|
|
case OLITERAL, OTYPE:
|
|
if n.Sym != nil {
|
|
return false
|
|
}
|
|
}
|
|
|
|
if !n.Pos.IsKnown() {
|
|
if Debug['K'] != 0 {
|
|
Warn("setlineno: unknown position (line 0)")
|
|
}
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
func setlineno(n *Node) src.XPos {
|
|
lno := lineno
|
|
if n != nil && hasUniquePos(n) {
|
|
lineno = n.Pos
|
|
}
|
|
return lno
|
|
}
|
|
|
|
func lookup(name string) *types.Sym {
|
|
return localpkg.Lookup(name)
|
|
}
|
|
|
|
// lookupN looks up the symbol starting with prefix and ending with
|
|
// the decimal n. If prefix is too long, lookupN panics.
|
|
func lookupN(prefix string, n int) *types.Sym {
|
|
var buf [20]byte // plenty long enough for all current users
|
|
copy(buf[:], prefix)
|
|
b := strconv.AppendInt(buf[:len(prefix)], int64(n), 10)
|
|
return localpkg.LookupBytes(b)
|
|
}
|
|
|
|
// autolabel generates a new Name node for use with
|
|
// an automatically generated label.
|
|
// prefix is a short mnemonic (e.g. ".s" for switch)
|
|
// to help with debugging.
|
|
// It should begin with "." to avoid conflicts with
|
|
// user labels.
|
|
func autolabel(prefix string) *types.Sym {
|
|
if prefix[0] != '.' {
|
|
Fatalf("autolabel prefix must start with '.', have %q", prefix)
|
|
}
|
|
fn := Curfn
|
|
if Curfn == nil {
|
|
Fatalf("autolabel outside function")
|
|
}
|
|
n := fn.Func.Label
|
|
fn.Func.Label++
|
|
return lookupN(prefix, int(n))
|
|
}
|
|
|
|
// find all the exported symbols in package opkg
|
|
// and make them available in the current package
|
|
func importdot(opkg *types.Pkg, pack *Node) {
|
|
n := 0
|
|
for _, s := range opkg.Syms {
|
|
if s.Def == nil {
|
|
continue
|
|
}
|
|
if !types.IsExported(s.Name) || strings.ContainsRune(s.Name, 0xb7) { // 0xb7 = center dot
|
|
continue
|
|
}
|
|
s1 := lookup(s.Name)
|
|
if s1.Def != nil {
|
|
pkgerror := fmt.Sprintf("during import %q", opkg.Path)
|
|
redeclare(lineno, s1, pkgerror)
|
|
continue
|
|
}
|
|
|
|
s1.Def = s.Def
|
|
s1.Block = s.Block
|
|
if asNode(s1.Def).Name == nil {
|
|
Dump("s1def", asNode(s1.Def))
|
|
Fatalf("missing Name")
|
|
}
|
|
asNode(s1.Def).Name.Pack = pack
|
|
s1.Origpkg = opkg
|
|
n++
|
|
}
|
|
|
|
if n == 0 {
|
|
// can't possibly be used - there were no symbols
|
|
yyerrorl(pack.Pos, "imported and not used: %q", opkg.Path)
|
|
}
|
|
}
|
|
|
|
func nod(op Op, nleft, nright *Node) *Node {
|
|
return nodl(lineno, op, nleft, nright)
|
|
}
|
|
|
|
func nodl(pos src.XPos, op Op, nleft, nright *Node) *Node {
|
|
var n *Node
|
|
switch op {
|
|
case OCLOSURE, ODCLFUNC:
|
|
var x struct {
|
|
n Node
|
|
f Func
|
|
}
|
|
n = &x.n
|
|
n.Func = &x.f
|
|
case ONAME:
|
|
Fatalf("use newname instead")
|
|
case OLABEL, OPACK:
|
|
var x struct {
|
|
n Node
|
|
m Name
|
|
}
|
|
n = &x.n
|
|
n.Name = &x.m
|
|
default:
|
|
n = new(Node)
|
|
}
|
|
n.Op = op
|
|
n.Left = nleft
|
|
n.Right = nright
|
|
n.Pos = pos
|
|
n.Xoffset = BADWIDTH
|
|
n.Orig = n
|
|
return n
|
|
}
|
|
|
|
// newname returns a new ONAME Node associated with symbol s.
|
|
func newname(s *types.Sym) *Node {
|
|
n := newnamel(lineno, s)
|
|
n.Name.Curfn = Curfn
|
|
return n
|
|
}
|
|
|
|
// newname returns a new ONAME Node associated with symbol s at position pos.
|
|
// The caller is responsible for setting n.Name.Curfn.
|
|
func newnamel(pos src.XPos, s *types.Sym) *Node {
|
|
if s == nil {
|
|
Fatalf("newnamel nil")
|
|
}
|
|
|
|
var x struct {
|
|
n Node
|
|
m Name
|
|
p Param
|
|
}
|
|
n := &x.n
|
|
n.Name = &x.m
|
|
n.Name.Param = &x.p
|
|
|
|
n.Op = ONAME
|
|
n.Pos = pos
|
|
n.Orig = n
|
|
|
|
n.Sym = s
|
|
return n
|
|
}
|
|
|
|
// nodSym makes a Node with Op op and with the Left field set to left
|
|
// and the Sym field set to sym. This is for ODOT and friends.
|
|
func nodSym(op Op, left *Node, sym *types.Sym) *Node {
|
|
return nodlSym(lineno, op, left, sym)
|
|
}
|
|
|
|
// nodlSym makes a Node with position Pos, with Op op, and with the Left field set to left
|
|
// and the Sym field set to sym. This is for ODOT and friends.
|
|
func nodlSym(pos src.XPos, op Op, left *Node, sym *types.Sym) *Node {
|
|
n := nodl(pos, op, left, nil)
|
|
n.Sym = sym
|
|
return n
|
|
}
|
|
|
|
// rawcopy returns a shallow copy of n.
|
|
// Note: copy or sepcopy (rather than rawcopy) is usually the
|
|
// correct choice (see comment with Node.copy, below).
|
|
func (n *Node) rawcopy() *Node {
|
|
copy := *n
|
|
return ©
|
|
}
|
|
|
|
// sepcopy returns a separate shallow copy of n, with the copy's
|
|
// Orig pointing to itself.
|
|
func (n *Node) sepcopy() *Node {
|
|
copy := *n
|
|
copy.Orig = ©
|
|
return ©
|
|
}
|
|
|
|
// copy returns shallow copy of n and adjusts the copy's Orig if
|
|
// necessary: In general, if n.Orig points to itself, the copy's
|
|
// Orig should point to itself as well. Otherwise, if n is modified,
|
|
// the copy's Orig node appears modified, too, and then doesn't
|
|
// represent the original node anymore.
|
|
// (This caused the wrong complit Op to be used when printing error
|
|
// messages; see issues #26855, #27765).
|
|
func (n *Node) copy() *Node {
|
|
copy := *n
|
|
if n.Orig == n {
|
|
copy.Orig = ©
|
|
}
|
|
return ©
|
|
}
|
|
|
|
// methcmp sorts methods by symbol.
|
|
type methcmp []*types.Field
|
|
|
|
func (x methcmp) Len() int { return len(x) }
|
|
func (x methcmp) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
func (x methcmp) Less(i, j int) bool { return x[i].Sym.Less(x[j].Sym) }
|
|
|
|
func nodintconst(v int64) *Node {
|
|
u := new(Mpint)
|
|
u.SetInt64(v)
|
|
return nodlit(Val{u})
|
|
}
|
|
|
|
func nodnil() *Node {
|
|
return nodlit(Val{new(NilVal)})
|
|
}
|
|
|
|
func nodbool(b bool) *Node {
|
|
return nodlit(Val{b})
|
|
}
|
|
|
|
func nodstr(s string) *Node {
|
|
return nodlit(Val{s})
|
|
}
|
|
|
|
// treecopy recursively copies n, with the exception of
|
|
// ONAME, OLITERAL, OTYPE, and ONONAME leaves.
|
|
// If pos.IsKnown(), it sets the source position of newly
|
|
// allocated nodes to pos.
|
|
func treecopy(n *Node, pos src.XPos) *Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
switch n.Op {
|
|
default:
|
|
m := n.sepcopy()
|
|
m.Left = treecopy(n.Left, pos)
|
|
m.Right = treecopy(n.Right, pos)
|
|
m.List.Set(listtreecopy(n.List.Slice(), pos))
|
|
if pos.IsKnown() {
|
|
m.Pos = pos
|
|
}
|
|
if m.Name != nil && n.Op != ODCLFIELD {
|
|
Dump("treecopy", n)
|
|
Fatalf("treecopy Name")
|
|
}
|
|
return m
|
|
|
|
case OPACK:
|
|
// OPACK nodes are never valid in const value declarations,
|
|
// but allow them like any other declared symbol to avoid
|
|
// crashing (golang.org/issue/11361).
|
|
fallthrough
|
|
|
|
case ONAME, ONONAME, OLITERAL, OTYPE:
|
|
return n
|
|
|
|
}
|
|
}
|
|
|
|
// isNil reports whether n represents the universal untyped zero value "nil".
|
|
func (n *Node) isNil() bool {
|
|
// Check n.Orig because constant propagation may produce typed nil constants,
|
|
// which don't exist in the Go spec.
|
|
return Isconst(n.Orig, CTNIL)
|
|
}
|
|
|
|
func isptrto(t *types.Type, et types.EType) bool {
|
|
if t == nil {
|
|
return false
|
|
}
|
|
if !t.IsPtr() {
|
|
return false
|
|
}
|
|
t = t.Elem()
|
|
if t == nil {
|
|
return false
|
|
}
|
|
if t.Etype != et {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (n *Node) isBlank() bool {
|
|
if n == nil {
|
|
return false
|
|
}
|
|
return n.Sym.IsBlank()
|
|
}
|
|
|
|
// methtype returns the underlying type, if any,
|
|
// that owns methods with receiver parameter t.
|
|
// The result is either a named type or an anonymous struct.
|
|
func methtype(t *types.Type) *types.Type {
|
|
if t == nil {
|
|
return nil
|
|
}
|
|
|
|
// Strip away pointer if it's there.
|
|
if t.IsPtr() {
|
|
if t.Sym != nil {
|
|
return nil
|
|
}
|
|
t = t.Elem()
|
|
if t == nil {
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// Must be a named type or anonymous struct.
|
|
if t.Sym == nil && !t.IsStruct() {
|
|
return nil
|
|
}
|
|
|
|
// Check types.
|
|
if issimple[t.Etype] {
|
|
return t
|
|
}
|
|
switch t.Etype {
|
|
case TARRAY, TCHAN, TFUNC, TMAP, TSLICE, TSTRING, TSTRUCT:
|
|
return t
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Is type src assignment compatible to type dst?
|
|
// If so, return op code to use in conversion.
|
|
// If not, return OXXX.
|
|
func assignop(src, dst *types.Type, why *string) Op {
|
|
if why != nil {
|
|
*why = ""
|
|
}
|
|
|
|
if src == dst {
|
|
return OCONVNOP
|
|
}
|
|
if src == nil || dst == nil || src.Etype == TFORW || dst.Etype == TFORW || src.Orig == nil || dst.Orig == nil {
|
|
return OXXX
|
|
}
|
|
|
|
// 1. src type is identical to dst.
|
|
if types.Identical(src, dst) {
|
|
return OCONVNOP
|
|
}
|
|
|
|
// 2. src and dst have identical underlying types
|
|
// and either src or dst is not a named type or
|
|
// both are empty interface types.
|
|
// For assignable but different non-empty interface types,
|
|
// we want to recompute the itab. Recomputing the itab ensures
|
|
// that itabs are unique (thus an interface with a compile-time
|
|
// type I has an itab with interface type I).
|
|
if types.Identical(src.Orig, dst.Orig) {
|
|
if src.IsEmptyInterface() {
|
|
// Conversion between two empty interfaces
|
|
// requires no code.
|
|
return OCONVNOP
|
|
}
|
|
if (src.Sym == nil || dst.Sym == nil) && !src.IsInterface() {
|
|
// Conversion between two types, at least one unnamed,
|
|
// needs no conversion. The exception is nonempty interfaces
|
|
// which need to have their itab updated.
|
|
return OCONVNOP
|
|
}
|
|
}
|
|
|
|
// 3. dst is an interface type and src implements dst.
|
|
if dst.IsInterface() && src.Etype != TNIL {
|
|
var missing, have *types.Field
|
|
var ptr int
|
|
if implements(src, dst, &missing, &have, &ptr) {
|
|
return OCONVIFACE
|
|
}
|
|
|
|
// we'll have complained about this method anyway, suppress spurious messages.
|
|
if have != nil && have.Sym == missing.Sym && (have.Type.Broke() || missing.Type.Broke()) {
|
|
return OCONVIFACE
|
|
}
|
|
|
|
if why != nil {
|
|
if isptrto(src, TINTER) {
|
|
*why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", src)
|
|
} else if have != nil && have.Sym == missing.Sym && have.Nointerface() {
|
|
*why = fmt.Sprintf(":\n\t%v does not implement %v (%v method is marked 'nointerface')", src, dst, missing.Sym)
|
|
} else if have != nil && have.Sym == missing.Sym {
|
|
*why = fmt.Sprintf(":\n\t%v does not implement %v (wrong type for %v method)\n"+
|
|
"\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
|
|
} else if ptr != 0 {
|
|
*why = fmt.Sprintf(":\n\t%v does not implement %v (%v method has pointer receiver)", src, dst, missing.Sym)
|
|
} else if have != nil {
|
|
*why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)\n"+
|
|
"\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
|
|
} else {
|
|
*why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)", src, dst, missing.Sym)
|
|
}
|
|
}
|
|
|
|
return OXXX
|
|
}
|
|
|
|
if isptrto(dst, TINTER) {
|
|
if why != nil {
|
|
*why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", dst)
|
|
}
|
|
return OXXX
|
|
}
|
|
|
|
if src.IsInterface() && dst.Etype != TBLANK {
|
|
var missing, have *types.Field
|
|
var ptr int
|
|
if why != nil && implements(dst, src, &missing, &have, &ptr) {
|
|
*why = ": need type assertion"
|
|
}
|
|
return OXXX
|
|
}
|
|
|
|
// 4. src is a bidirectional channel value, dst is a channel type,
|
|
// src and dst have identical element types, and
|
|
// either src or dst is not a named type.
|
|
if src.IsChan() && src.ChanDir() == types.Cboth && dst.IsChan() {
|
|
if types.Identical(src.Elem(), dst.Elem()) && (src.Sym == nil || dst.Sym == nil) {
|
|
return OCONVNOP
|
|
}
|
|
}
|
|
|
|
// 5. src is the predeclared identifier nil and dst is a nillable type.
|
|
if src.Etype == TNIL {
|
|
switch dst.Etype {
|
|
case TPTR,
|
|
TFUNC,
|
|
TMAP,
|
|
TCHAN,
|
|
TINTER,
|
|
TSLICE:
|
|
return OCONVNOP
|
|
}
|
|
}
|
|
|
|
// 6. rule about untyped constants - already converted by defaultlit.
|
|
|
|
// 7. Any typed value can be assigned to the blank identifier.
|
|
if dst.Etype == TBLANK {
|
|
return OCONVNOP
|
|
}
|
|
|
|
return OXXX
|
|
}
|
|
|
|
// Can we convert a value of type src to a value of type dst?
|
|
// If so, return op code to use in conversion (maybe OCONVNOP).
|
|
// If not, return OXXX.
|
|
// srcConstant indicates whether the value of type src is a constant.
|
|
func convertop(srcConstant bool, src, dst *types.Type, why *string) Op {
|
|
if why != nil {
|
|
*why = ""
|
|
}
|
|
|
|
if src == dst {
|
|
return OCONVNOP
|
|
}
|
|
if src == nil || dst == nil {
|
|
return OXXX
|
|
}
|
|
|
|
// Conversions from regular to go:notinheap are not allowed
|
|
// (unless it's unsafe.Pointer). These are runtime-specific
|
|
// rules.
|
|
// (a) Disallow (*T) to (*U) where T is go:notinheap but U isn't.
|
|
if src.IsPtr() && dst.IsPtr() && dst.Elem().NotInHeap() && !src.Elem().NotInHeap() {
|
|
if why != nil {
|
|
*why = fmt.Sprintf(":\n\t%v is incomplete (or unallocatable), but %v is not", dst.Elem(), src.Elem())
|
|
}
|
|
return OXXX
|
|
}
|
|
// (b) Disallow string to []T where T is go:notinheap.
|
|
if src.IsString() && dst.IsSlice() && dst.Elem().NotInHeap() && (dst.Elem().Etype == types.Bytetype.Etype || dst.Elem().Etype == types.Runetype.Etype) {
|
|
if why != nil {
|
|
*why = fmt.Sprintf(":\n\t%v is incomplete (or unallocatable)", dst.Elem())
|
|
}
|
|
return OXXX
|
|
}
|
|
|
|
// 1. src can be assigned to dst.
|
|
op := assignop(src, dst, why)
|
|
if op != OXXX {
|
|
return op
|
|
}
|
|
|
|
// The rules for interfaces are no different in conversions
|
|
// than assignments. If interfaces are involved, stop now
|
|
// with the good message from assignop.
|
|
// Otherwise clear the error.
|
|
if src.IsInterface() || dst.IsInterface() {
|
|
return OXXX
|
|
}
|
|
if why != nil {
|
|
*why = ""
|
|
}
|
|
|
|
// 2. Ignoring struct tags, src and dst have identical underlying types.
|
|
if types.IdenticalIgnoreTags(src.Orig, dst.Orig) {
|
|
return OCONVNOP
|
|
}
|
|
|
|
// 3. src and dst are unnamed pointer types and, ignoring struct tags,
|
|
// their base types have identical underlying types.
|
|
if src.IsPtr() && dst.IsPtr() && src.Sym == nil && dst.Sym == nil {
|
|
if types.IdenticalIgnoreTags(src.Elem().Orig, dst.Elem().Orig) {
|
|
return OCONVNOP
|
|
}
|
|
}
|
|
|
|
// 4. src and dst are both integer or floating point types.
|
|
if (src.IsInteger() || src.IsFloat()) && (dst.IsInteger() || dst.IsFloat()) {
|
|
if simtype[src.Etype] == simtype[dst.Etype] {
|
|
return OCONVNOP
|
|
}
|
|
return OCONV
|
|
}
|
|
|
|
// 5. src and dst are both complex types.
|
|
if src.IsComplex() && dst.IsComplex() {
|
|
if simtype[src.Etype] == simtype[dst.Etype] {
|
|
return OCONVNOP
|
|
}
|
|
return OCONV
|
|
}
|
|
|
|
// Special case for constant conversions: any numeric
|
|
// conversion is potentially okay. We'll validate further
|
|
// within evconst. See #38117.
|
|
if srcConstant && (src.IsInteger() || src.IsFloat() || src.IsComplex()) && (dst.IsInteger() || dst.IsFloat() || dst.IsComplex()) {
|
|
return OCONV
|
|
}
|
|
|
|
// 6. src is an integer or has type []byte or []rune
|
|
// and dst is a string type.
|
|
if src.IsInteger() && dst.IsString() {
|
|
return ORUNESTR
|
|
}
|
|
|
|
if src.IsSlice() && dst.IsString() {
|
|
if src.Elem().Etype == types.Bytetype.Etype {
|
|
return OBYTES2STR
|
|
}
|
|
if src.Elem().Etype == types.Runetype.Etype {
|
|
return ORUNES2STR
|
|
}
|
|
}
|
|
|
|
// 7. src is a string and dst is []byte or []rune.
|
|
// String to slice.
|
|
if src.IsString() && dst.IsSlice() {
|
|
if dst.Elem().Etype == types.Bytetype.Etype {
|
|
return OSTR2BYTES
|
|
}
|
|
if dst.Elem().Etype == types.Runetype.Etype {
|
|
return OSTR2RUNES
|
|
}
|
|
}
|
|
|
|
// 8. src is a pointer or uintptr and dst is unsafe.Pointer.
|
|
if (src.IsPtr() || src.IsUintptr()) && dst.IsUnsafePtr() {
|
|
return OCONVNOP
|
|
}
|
|
|
|
// 9. src is unsafe.Pointer and dst is a pointer or uintptr.
|
|
if src.IsUnsafePtr() && (dst.IsPtr() || dst.IsUintptr()) {
|
|
return OCONVNOP
|
|
}
|
|
|
|
// src is map and dst is a pointer to corresponding hmap.
|
|
// This rule is needed for the implementation detail that
|
|
// go gc maps are implemented as a pointer to a hmap struct.
|
|
if src.Etype == TMAP && dst.IsPtr() &&
|
|
src.MapType().Hmap == dst.Elem() {
|
|
return OCONVNOP
|
|
}
|
|
|
|
return OXXX
|
|
}
|
|
|
|
func assignconv(n *Node, t *types.Type, context string) *Node {
|
|
return assignconvfn(n, t, func() string { return context })
|
|
}
|
|
|
|
// Convert node n for assignment to type t.
|
|
func assignconvfn(n *Node, t *types.Type, context func() string) *Node {
|
|
if n == nil || n.Type == nil || n.Type.Broke() {
|
|
return n
|
|
}
|
|
|
|
if t.Etype == TBLANK && n.Type.Etype == TNIL {
|
|
yyerror("use of untyped nil")
|
|
}
|
|
|
|
n = convlit1(n, t, false, context)
|
|
if n.Type == nil {
|
|
return n
|
|
}
|
|
if t.Etype == TBLANK {
|
|
return n
|
|
}
|
|
|
|
// Convert ideal bool from comparison to plain bool
|
|
// if the next step is non-bool (like interface{}).
|
|
if n.Type == types.UntypedBool && !t.IsBoolean() {
|
|
if n.Op == ONAME || n.Op == OLITERAL {
|
|
r := nod(OCONVNOP, n, nil)
|
|
r.Type = types.Types[TBOOL]
|
|
r.SetTypecheck(1)
|
|
r.SetImplicit(true)
|
|
n = r
|
|
}
|
|
}
|
|
|
|
if types.Identical(n.Type, t) {
|
|
return n
|
|
}
|
|
|
|
var why string
|
|
op := assignop(n.Type, t, &why)
|
|
if op == OXXX {
|
|
yyerror("cannot use %L as type %v in %s%s", n, t, context(), why)
|
|
op = OCONV
|
|
}
|
|
|
|
r := nod(op, n, nil)
|
|
r.Type = t
|
|
r.SetTypecheck(1)
|
|
r.SetImplicit(true)
|
|
r.Orig = n.Orig
|
|
return r
|
|
}
|
|
|
|
// IsMethod reports whether n is a method.
|
|
// n must be a function or a method.
|
|
func (n *Node) IsMethod() bool {
|
|
return n.Type.Recv() != nil
|
|
}
|
|
|
|
// SliceBounds returns n's slice bounds: low, high, and max in expr[low:high:max].
|
|
// n must be a slice expression. max is nil if n is a simple slice expression.
|
|
func (n *Node) SliceBounds() (low, high, max *Node) {
|
|
if n.List.Len() == 0 {
|
|
return nil, nil, nil
|
|
}
|
|
|
|
switch n.Op {
|
|
case OSLICE, OSLICEARR, OSLICESTR:
|
|
s := n.List.Slice()
|
|
return s[0], s[1], nil
|
|
case OSLICE3, OSLICE3ARR:
|
|
s := n.List.Slice()
|
|
return s[0], s[1], s[2]
|
|
}
|
|
Fatalf("SliceBounds op %v: %v", n.Op, n)
|
|
return nil, nil, nil
|
|
}
|
|
|
|
// SetSliceBounds sets n's slice bounds, where n is a slice expression.
|
|
// n must be a slice expression. If max is non-nil, n must be a full slice expression.
|
|
func (n *Node) SetSliceBounds(low, high, max *Node) {
|
|
switch n.Op {
|
|
case OSLICE, OSLICEARR, OSLICESTR:
|
|
if max != nil {
|
|
Fatalf("SetSliceBounds %v given three bounds", n.Op)
|
|
}
|
|
s := n.List.Slice()
|
|
if s == nil {
|
|
if low == nil && high == nil {
|
|
return
|
|
}
|
|
n.List.Set2(low, high)
|
|
return
|
|
}
|
|
s[0] = low
|
|
s[1] = high
|
|
return
|
|
case OSLICE3, OSLICE3ARR:
|
|
s := n.List.Slice()
|
|
if s == nil {
|
|
if low == nil && high == nil && max == nil {
|
|
return
|
|
}
|
|
n.List.Set3(low, high, max)
|
|
return
|
|
}
|
|
s[0] = low
|
|
s[1] = high
|
|
s[2] = max
|
|
return
|
|
}
|
|
Fatalf("SetSliceBounds op %v: %v", n.Op, n)
|
|
}
|
|
|
|
// IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR).
|
|
// o must be a slicing op.
|
|
func (o Op) IsSlice3() bool {
|
|
switch o {
|
|
case OSLICE, OSLICEARR, OSLICESTR:
|
|
return false
|
|
case OSLICE3, OSLICE3ARR:
|
|
return true
|
|
}
|
|
Fatalf("IsSlice3 op %v", o)
|
|
return false
|
|
}
|
|
|
|
// backingArrayPtrLen extracts the pointer and length from a slice or string.
|
|
// This constructs two nodes referring to n, so n must be a cheapexpr.
|
|
func (n *Node) backingArrayPtrLen() (ptr, len *Node) {
|
|
var init Nodes
|
|
c := cheapexpr(n, &init)
|
|
if c != n || init.Len() != 0 {
|
|
Fatalf("backingArrayPtrLen not cheap: %v", n)
|
|
}
|
|
ptr = nod(OSPTR, n, nil)
|
|
if n.Type.IsString() {
|
|
ptr.Type = types.Types[TUINT8].PtrTo()
|
|
} else {
|
|
ptr.Type = n.Type.Elem().PtrTo()
|
|
}
|
|
len = nod(OLEN, n, nil)
|
|
len.Type = types.Types[TINT]
|
|
return ptr, len
|
|
}
|
|
|
|
// labeledControl returns the control flow Node (for, switch, select)
|
|
// associated with the label n, if any.
|
|
func (n *Node) labeledControl() *Node {
|
|
if n.Op != OLABEL {
|
|
Fatalf("labeledControl %v", n.Op)
|
|
}
|
|
ctl := n.Name.Defn
|
|
if ctl == nil {
|
|
return nil
|
|
}
|
|
switch ctl.Op {
|
|
case OFOR, OFORUNTIL, OSWITCH, OSELECT:
|
|
return ctl
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func syslook(name string) *Node {
|
|
s := Runtimepkg.Lookup(name)
|
|
if s == nil || s.Def == nil {
|
|
Fatalf("syslook: can't find runtime.%s", name)
|
|
}
|
|
return asNode(s.Def)
|
|
}
|
|
|
|
// typehash computes a hash value for type t to use in type switch statements.
|
|
func typehash(t *types.Type) uint32 {
|
|
p := t.LongString()
|
|
|
|
// Using MD5 is overkill, but reduces accidental collisions.
|
|
h := md5.Sum([]byte(p))
|
|
return binary.LittleEndian.Uint32(h[:4])
|
|
}
|
|
|
|
// updateHasCall checks whether expression n contains any function
|
|
// calls and sets the n.HasCall flag if so.
|
|
func updateHasCall(n *Node) {
|
|
if n == nil {
|
|
return
|
|
}
|
|
n.SetHasCall(calcHasCall(n))
|
|
}
|
|
|
|
func calcHasCall(n *Node) bool {
|
|
if n.Ninit.Len() != 0 {
|
|
// TODO(mdempsky): This seems overly conservative.
|
|
return true
|
|
}
|
|
|
|
switch n.Op {
|
|
case OLITERAL, ONAME, OTYPE:
|
|
if n.HasCall() {
|
|
Fatalf("OLITERAL/ONAME/OTYPE should never have calls: %+v", n)
|
|
}
|
|
return false
|
|
case OCALL, OCALLFUNC, OCALLMETH, OCALLINTER:
|
|
return true
|
|
case OANDAND, OOROR:
|
|
// hard with instrumented code
|
|
if instrumenting {
|
|
return true
|
|
}
|
|
case OINDEX, OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR, OSLICESTR,
|
|
ODEREF, ODOTPTR, ODOTTYPE, ODIV, OMOD:
|
|
// These ops might panic, make sure they are done
|
|
// before we start marshaling args for a call. See issue 16760.
|
|
return true
|
|
|
|
// When using soft-float, these ops might be rewritten to function calls
|
|
// so we ensure they are evaluated first.
|
|
case OADD, OSUB, ONEG, OMUL:
|
|
if thearch.SoftFloat && (isFloat[n.Type.Etype] || isComplex[n.Type.Etype]) {
|
|
return true
|
|
}
|
|
case OLT, OEQ, ONE, OLE, OGE, OGT:
|
|
if thearch.SoftFloat && (isFloat[n.Left.Type.Etype] || isComplex[n.Left.Type.Etype]) {
|
|
return true
|
|
}
|
|
case OCONV:
|
|
if thearch.SoftFloat && ((isFloat[n.Type.Etype] || isComplex[n.Type.Etype]) || (isFloat[n.Left.Type.Etype] || isComplex[n.Left.Type.Etype])) {
|
|
return true
|
|
}
|
|
}
|
|
|
|
if n.Left != nil && n.Left.HasCall() {
|
|
return true
|
|
}
|
|
if n.Right != nil && n.Right.HasCall() {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func badtype(op Op, tl *types.Type, tr *types.Type) {
|
|
fmt_ := ""
|
|
if tl != nil {
|
|
fmt_ += fmt.Sprintf("\n\t%v", tl)
|
|
}
|
|
if tr != nil {
|
|
fmt_ += fmt.Sprintf("\n\t%v", tr)
|
|
}
|
|
|
|
// common mistake: *struct and *interface.
|
|
if tl != nil && tr != nil && tl.IsPtr() && tr.IsPtr() {
|
|
if tl.Elem().IsStruct() && tr.Elem().IsInterface() {
|
|
fmt_ += "\n\t(*struct vs *interface)"
|
|
} else if tl.Elem().IsInterface() && tr.Elem().IsStruct() {
|
|
fmt_ += "\n\t(*interface vs *struct)"
|
|
}
|
|
}
|
|
|
|
s := fmt_
|
|
yyerror("illegal types for operand: %v%s", op, s)
|
|
}
|
|
|
|
// brcom returns !(op).
|
|
// For example, brcom(==) is !=.
|
|
func brcom(op Op) Op {
|
|
switch op {
|
|
case OEQ:
|
|
return ONE
|
|
case ONE:
|
|
return OEQ
|
|
case OLT:
|
|
return OGE
|
|
case OGT:
|
|
return OLE
|
|
case OLE:
|
|
return OGT
|
|
case OGE:
|
|
return OLT
|
|
}
|
|
Fatalf("brcom: no com for %v\n", op)
|
|
return op
|
|
}
|
|
|
|
// brrev returns reverse(op).
|
|
// For example, Brrev(<) is >.
|
|
func brrev(op Op) Op {
|
|
switch op {
|
|
case OEQ:
|
|
return OEQ
|
|
case ONE:
|
|
return ONE
|
|
case OLT:
|
|
return OGT
|
|
case OGT:
|
|
return OLT
|
|
case OLE:
|
|
return OGE
|
|
case OGE:
|
|
return OLE
|
|
}
|
|
Fatalf("brrev: no rev for %v\n", op)
|
|
return op
|
|
}
|
|
|
|
// return side effect-free n, appending side effects to init.
|
|
// result is assignable if n is.
|
|
func safeexpr(n *Node, init *Nodes) *Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
if n.Ninit.Len() != 0 {
|
|
walkstmtlist(n.Ninit.Slice())
|
|
init.AppendNodes(&n.Ninit)
|
|
}
|
|
|
|
switch n.Op {
|
|
case ONAME, OLITERAL:
|
|
return n
|
|
|
|
case ODOT, OLEN, OCAP:
|
|
l := safeexpr(n.Left, init)
|
|
if l == n.Left {
|
|
return n
|
|
}
|
|
r := n.copy()
|
|
r.Left = l
|
|
r = typecheck(r, ctxExpr)
|
|
r = walkexpr(r, init)
|
|
return r
|
|
|
|
case ODOTPTR, ODEREF:
|
|
l := safeexpr(n.Left, init)
|
|
if l == n.Left {
|
|
return n
|
|
}
|
|
a := n.copy()
|
|
a.Left = l
|
|
a = walkexpr(a, init)
|
|
return a
|
|
|
|
case OINDEX, OINDEXMAP:
|
|
l := safeexpr(n.Left, init)
|
|
r := safeexpr(n.Right, init)
|
|
if l == n.Left && r == n.Right {
|
|
return n
|
|
}
|
|
a := n.copy()
|
|
a.Left = l
|
|
a.Right = r
|
|
a = walkexpr(a, init)
|
|
return a
|
|
|
|
case OSTRUCTLIT, OARRAYLIT, OSLICELIT:
|
|
if isStaticCompositeLiteral(n) {
|
|
return n
|
|
}
|
|
}
|
|
|
|
// make a copy; must not be used as an lvalue
|
|
if islvalue(n) {
|
|
Fatalf("missing lvalue case in safeexpr: %v", n)
|
|
}
|
|
return cheapexpr(n, init)
|
|
}
|
|
|
|
func copyexpr(n *Node, t *types.Type, init *Nodes) *Node {
|
|
l := temp(t)
|
|
a := nod(OAS, l, n)
|
|
a = typecheck(a, ctxStmt)
|
|
a = walkexpr(a, init)
|
|
init.Append(a)
|
|
return l
|
|
}
|
|
|
|
// return side-effect free and cheap n, appending side effects to init.
|
|
// result may not be assignable.
|
|
func cheapexpr(n *Node, init *Nodes) *Node {
|
|
switch n.Op {
|
|
case ONAME, OLITERAL:
|
|
return n
|
|
}
|
|
|
|
return copyexpr(n, n.Type, init)
|
|
}
|
|
|
|
// Code to resolve elided DOTs in embedded types.
|
|
|
|
// A Dlist stores a pointer to a TFIELD Type embedded within
|
|
// a TSTRUCT or TINTER Type.
|
|
type Dlist struct {
|
|
field *types.Field
|
|
}
|
|
|
|
// dotlist is used by adddot1 to record the path of embedded fields
|
|
// used to access a target field or method.
|
|
// Must be non-nil so that dotpath returns a non-nil slice even if d is zero.
|
|
var dotlist = make([]Dlist, 10)
|
|
|
|
// lookdot0 returns the number of fields or methods named s associated
|
|
// with Type t. If exactly one exists, it will be returned in *save
|
|
// (if save is not nil).
|
|
func lookdot0(s *types.Sym, t *types.Type, save **types.Field, ignorecase bool) int {
|
|
u := t
|
|
if u.IsPtr() {
|
|
u = u.Elem()
|
|
}
|
|
|
|
c := 0
|
|
if u.IsStruct() || u.IsInterface() {
|
|
for _, f := range u.Fields().Slice() {
|
|
if f.Sym == s || (ignorecase && f.IsMethod() && strings.EqualFold(f.Sym.Name, s.Name)) {
|
|
if save != nil {
|
|
*save = f
|
|
}
|
|
c++
|
|
}
|
|
}
|
|
}
|
|
|
|
u = t
|
|
if t.Sym != nil && t.IsPtr() && !t.Elem().IsPtr() {
|
|
// If t is a defined pointer type, then x.m is shorthand for (*x).m.
|
|
u = t.Elem()
|
|
}
|
|
u = methtype(u)
|
|
if u != nil {
|
|
for _, f := range u.Methods().Slice() {
|
|
if f.Embedded == 0 && (f.Sym == s || (ignorecase && strings.EqualFold(f.Sym.Name, s.Name))) {
|
|
if save != nil {
|
|
*save = f
|
|
}
|
|
c++
|
|
}
|
|
}
|
|
}
|
|
|
|
return c
|
|
}
|
|
|
|
// adddot1 returns the number of fields or methods named s at depth d in Type t.
|
|
// If exactly one exists, it will be returned in *save (if save is not nil),
|
|
// and dotlist will contain the path of embedded fields traversed to find it,
|
|
// in reverse order. If none exist, more will indicate whether t contains any
|
|
// embedded fields at depth d, so callers can decide whether to retry at
|
|
// a greater depth.
|
|
func adddot1(s *types.Sym, t *types.Type, d int, save **types.Field, ignorecase bool) (c int, more bool) {
|
|
if t.Recur() {
|
|
return
|
|
}
|
|
t.SetRecur(true)
|
|
defer t.SetRecur(false)
|
|
|
|
var u *types.Type
|
|
d--
|
|
if d < 0 {
|
|
// We've reached our target depth. If t has any fields/methods
|
|
// named s, then we're done. Otherwise, we still need to check
|
|
// below for embedded fields.
|
|
c = lookdot0(s, t, save, ignorecase)
|
|
if c != 0 {
|
|
return c, false
|
|
}
|
|
}
|
|
|
|
u = t
|
|
if u.IsPtr() {
|
|
u = u.Elem()
|
|
}
|
|
if !u.IsStruct() && !u.IsInterface() {
|
|
return c, false
|
|
}
|
|
|
|
for _, f := range u.Fields().Slice() {
|
|
if f.Embedded == 0 || f.Sym == nil {
|
|
continue
|
|
}
|
|
if d < 0 {
|
|
// Found an embedded field at target depth.
|
|
return c, true
|
|
}
|
|
a, more1 := adddot1(s, f.Type, d, save, ignorecase)
|
|
if a != 0 && c == 0 {
|
|
dotlist[d].field = f
|
|
}
|
|
c += a
|
|
if more1 {
|
|
more = true
|
|
}
|
|
}
|
|
|
|
return c, more
|
|
}
|
|
|
|
// dotpath computes the unique shortest explicit selector path to fully qualify
|
|
// a selection expression x.f, where x is of type t and f is the symbol s.
|
|
// If no such path exists, dotpath returns nil.
|
|
// If there are multiple shortest paths to the same depth, ambig is true.
|
|
func dotpath(s *types.Sym, t *types.Type, save **types.Field, ignorecase bool) (path []Dlist, ambig bool) {
|
|
// The embedding of types within structs imposes a tree structure onto
|
|
// types: structs parent the types they embed, and types parent their
|
|
// fields or methods. Our goal here is to find the shortest path to
|
|
// a field or method named s in the subtree rooted at t. To accomplish
|
|
// that, we iteratively perform depth-first searches of increasing depth
|
|
// until we either find the named field/method or exhaust the tree.
|
|
for d := 0; ; d++ {
|
|
if d > len(dotlist) {
|
|
dotlist = append(dotlist, Dlist{})
|
|
}
|
|
if c, more := adddot1(s, t, d, save, ignorecase); c == 1 {
|
|
return dotlist[:d], false
|
|
} else if c > 1 {
|
|
return nil, true
|
|
} else if !more {
|
|
return nil, false
|
|
}
|
|
}
|
|
}
|
|
|
|
// in T.field
|
|
// find missing fields that
|
|
// will give shortest unique addressing.
|
|
// modify the tree with missing type names.
|
|
func adddot(n *Node) *Node {
|
|
n.Left = typecheck(n.Left, ctxType|ctxExpr)
|
|
if n.Left.Diag() {
|
|
n.SetDiag(true)
|
|
}
|
|
t := n.Left.Type
|
|
if t == nil {
|
|
return n
|
|
}
|
|
|
|
if n.Left.Op == OTYPE {
|
|
return n
|
|
}
|
|
|
|
s := n.Sym
|
|
if s == nil {
|
|
return n
|
|
}
|
|
|
|
switch path, ambig := dotpath(s, t, nil, false); {
|
|
case path != nil:
|
|
// rebuild elided dots
|
|
for c := len(path) - 1; c >= 0; c-- {
|
|
n.Left = nodSym(ODOT, n.Left, path[c].field.Sym)
|
|
n.Left.SetImplicit(true)
|
|
}
|
|
case ambig:
|
|
yyerror("ambiguous selector %v", n)
|
|
n.Left = nil
|
|
}
|
|
|
|
return n
|
|
}
|
|
|
|
// Code to help generate trampoline functions for methods on embedded
|
|
// types. These are approx the same as the corresponding adddot
|
|
// routines except that they expect to be called with unique tasks and
|
|
// they return the actual methods.
|
|
|
|
type Symlink struct {
|
|
field *types.Field
|
|
}
|
|
|
|
var slist []Symlink
|
|
|
|
func expand0(t *types.Type) {
|
|
u := t
|
|
if u.IsPtr() {
|
|
u = u.Elem()
|
|
}
|
|
|
|
if u.IsInterface() {
|
|
for _, f := range u.Fields().Slice() {
|
|
if f.Sym.Uniq() {
|
|
continue
|
|
}
|
|
f.Sym.SetUniq(true)
|
|
slist = append(slist, Symlink{field: f})
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
u = methtype(t)
|
|
if u != nil {
|
|
for _, f := range u.Methods().Slice() {
|
|
if f.Sym.Uniq() {
|
|
continue
|
|
}
|
|
f.Sym.SetUniq(true)
|
|
slist = append(slist, Symlink{field: f})
|
|
}
|
|
}
|
|
}
|
|
|
|
func expand1(t *types.Type, top bool) {
|
|
if t.Recur() {
|
|
return
|
|
}
|
|
t.SetRecur(true)
|
|
|
|
if !top {
|
|
expand0(t)
|
|
}
|
|
|
|
u := t
|
|
if u.IsPtr() {
|
|
u = u.Elem()
|
|
}
|
|
|
|
if u.IsStruct() || u.IsInterface() {
|
|
for _, f := range u.Fields().Slice() {
|
|
if f.Embedded == 0 {
|
|
continue
|
|
}
|
|
if f.Sym == nil {
|
|
continue
|
|
}
|
|
expand1(f.Type, false)
|
|
}
|
|
}
|
|
|
|
t.SetRecur(false)
|
|
}
|
|
|
|
func expandmeth(t *types.Type) {
|
|
if t == nil || t.AllMethods().Len() != 0 {
|
|
return
|
|
}
|
|
|
|
// mark top-level method symbols
|
|
// so that expand1 doesn't consider them.
|
|
for _, f := range t.Methods().Slice() {
|
|
f.Sym.SetUniq(true)
|
|
}
|
|
|
|
// generate all reachable methods
|
|
slist = slist[:0]
|
|
expand1(t, true)
|
|
|
|
// check each method to be uniquely reachable
|
|
var ms []*types.Field
|
|
for i, sl := range slist {
|
|
slist[i].field = nil
|
|
sl.field.Sym.SetUniq(false)
|
|
|
|
var f *types.Field
|
|
path, _ := dotpath(sl.field.Sym, t, &f, false)
|
|
if path == nil {
|
|
continue
|
|
}
|
|
|
|
// dotpath may have dug out arbitrary fields, we only want methods.
|
|
if !f.IsMethod() {
|
|
continue
|
|
}
|
|
|
|
// add it to the base type method list
|
|
f = f.Copy()
|
|
f.Embedded = 1 // needs a trampoline
|
|
for _, d := range path {
|
|
if d.field.Type.IsPtr() {
|
|
f.Embedded = 2
|
|
break
|
|
}
|
|
}
|
|
ms = append(ms, f)
|
|
}
|
|
|
|
for _, f := range t.Methods().Slice() {
|
|
f.Sym.SetUniq(false)
|
|
}
|
|
|
|
ms = append(ms, t.Methods().Slice()...)
|
|
sort.Sort(methcmp(ms))
|
|
t.AllMethods().Set(ms)
|
|
}
|
|
|
|
// Given funarg struct list, return list of ODCLFIELD Node fn args.
|
|
func structargs(tl *types.Type, mustname bool) []*Node {
|
|
var args []*Node
|
|
gen := 0
|
|
for _, t := range tl.Fields().Slice() {
|
|
s := t.Sym
|
|
if mustname && (s == nil || s.Name == "_") {
|
|
// invent a name so that we can refer to it in the trampoline
|
|
s = lookupN(".anon", gen)
|
|
gen++
|
|
}
|
|
a := symfield(s, t.Type)
|
|
a.Pos = t.Pos
|
|
a.SetIsDDD(t.IsDDD())
|
|
args = append(args, a)
|
|
}
|
|
|
|
return args
|
|
}
|
|
|
|
// Generate a wrapper function to convert from
|
|
// a receiver of type T to a receiver of type U.
|
|
// That is,
|
|
//
|
|
// func (t T) M() {
|
|
// ...
|
|
// }
|
|
//
|
|
// already exists; this function generates
|
|
//
|
|
// func (u U) M() {
|
|
// u.M()
|
|
// }
|
|
//
|
|
// where the types T and U are such that u.M() is valid
|
|
// and calls the T.M method.
|
|
// The resulting function is for use in method tables.
|
|
//
|
|
// rcvr - U
|
|
// method - M func (t T)(), a TFIELD type struct
|
|
// newnam - the eventual mangled name of this function
|
|
func genwrapper(rcvr *types.Type, method *types.Field, newnam *types.Sym) {
|
|
if false && Debug['r'] != 0 {
|
|
fmt.Printf("genwrapper rcvrtype=%v method=%v newnam=%v\n", rcvr, method, newnam)
|
|
}
|
|
|
|
// Only generate (*T).M wrappers for T.M in T's own package.
|
|
if rcvr.IsPtr() && rcvr.Elem() == method.Type.Recv().Type &&
|
|
rcvr.Elem().Sym != nil && rcvr.Elem().Sym.Pkg != localpkg {
|
|
return
|
|
}
|
|
|
|
// Only generate I.M wrappers for I in I's own package
|
|
// but keep doing it for error.Error (was issue #29304).
|
|
if rcvr.IsInterface() && rcvr.Sym != nil && rcvr.Sym.Pkg != localpkg && rcvr != types.Errortype {
|
|
return
|
|
}
|
|
|
|
lineno = autogeneratedPos
|
|
dclcontext = PEXTERN
|
|
|
|
tfn := nod(OTFUNC, nil, nil)
|
|
tfn.Left = namedfield(".this", rcvr)
|
|
tfn.List.Set(structargs(method.Type.Params(), true))
|
|
tfn.Rlist.Set(structargs(method.Type.Results(), false))
|
|
|
|
fn := dclfunc(newnam, tfn)
|
|
fn.Func.SetDupok(true)
|
|
|
|
nthis := asNode(tfn.Type.Recv().Nname)
|
|
|
|
methodrcvr := method.Type.Recv().Type
|
|
|
|
// generate nil pointer check for better error
|
|
if rcvr.IsPtr() && rcvr.Elem() == methodrcvr {
|
|
// generating wrapper from *T to T.
|
|
n := nod(OIF, nil, nil)
|
|
n.Left = nod(OEQ, nthis, nodnil())
|
|
call := nod(OCALL, syslook("panicwrap"), nil)
|
|
n.Nbody.Set1(call)
|
|
fn.Nbody.Append(n)
|
|
}
|
|
|
|
dot := adddot(nodSym(OXDOT, nthis, method.Sym))
|
|
|
|
// generate call
|
|
// It's not possible to use a tail call when dynamic linking on ppc64le. The
|
|
// bad scenario is when a local call is made to the wrapper: the wrapper will
|
|
// call the implementation, which might be in a different module and so set
|
|
// the TOC to the appropriate value for that module. But if it returns
|
|
// directly to the wrapper's caller, nothing will reset it to the correct
|
|
// value for that function.
|
|
if !instrumenting && rcvr.IsPtr() && methodrcvr.IsPtr() && method.Embedded != 0 && !isifacemethod(method.Type) && !(thearch.LinkArch.Name == "ppc64le" && Ctxt.Flag_dynlink) {
|
|
// generate tail call: adjust pointer receiver and jump to embedded method.
|
|
dot = dot.Left // skip final .M
|
|
// TODO(mdempsky): Remove dependency on dotlist.
|
|
if !dotlist[0].field.Type.IsPtr() {
|
|
dot = nod(OADDR, dot, nil)
|
|
}
|
|
as := nod(OAS, nthis, convnop(dot, rcvr))
|
|
fn.Nbody.Append(as)
|
|
fn.Nbody.Append(nodSym(ORETJMP, nil, methodSym(methodrcvr, method.Sym)))
|
|
} else {
|
|
fn.Func.SetWrapper(true) // ignore frame for panic+recover matching
|
|
call := nod(OCALL, dot, nil)
|
|
call.List.Set(paramNnames(tfn.Type))
|
|
call.SetIsDDD(tfn.Type.IsVariadic())
|
|
if method.Type.NumResults() > 0 {
|
|
n := nod(ORETURN, nil, nil)
|
|
n.List.Set1(call)
|
|
call = n
|
|
}
|
|
fn.Nbody.Append(call)
|
|
}
|
|
|
|
if false && Debug['r'] != 0 {
|
|
dumplist("genwrapper body", fn.Nbody)
|
|
}
|
|
|
|
funcbody()
|
|
if debug_dclstack != 0 {
|
|
testdclstack()
|
|
}
|
|
|
|
fn = typecheck(fn, ctxStmt)
|
|
|
|
Curfn = fn
|
|
typecheckslice(fn.Nbody.Slice(), ctxStmt)
|
|
|
|
// Inline calls within (*T).M wrappers. This is safe because we only
|
|
// generate those wrappers within the same compilation unit as (T).M.
|
|
// TODO(mdempsky): Investigate why we can't enable this more generally.
|
|
if rcvr.IsPtr() && rcvr.Elem() == method.Type.Recv().Type && rcvr.Elem().Sym != nil {
|
|
inlcalls(fn)
|
|
}
|
|
escapeFuncs([]*Node{fn}, false)
|
|
|
|
Curfn = nil
|
|
xtop = append(xtop, fn)
|
|
}
|
|
|
|
func paramNnames(ft *types.Type) []*Node {
|
|
args := make([]*Node, ft.NumParams())
|
|
for i, f := range ft.Params().FieldSlice() {
|
|
args[i] = asNode(f.Nname)
|
|
}
|
|
return args
|
|
}
|
|
|
|
func hashmem(t *types.Type) *Node {
|
|
sym := Runtimepkg.Lookup("memhash")
|
|
|
|
n := newname(sym)
|
|
setNodeNameFunc(n)
|
|
n.Type = functype(nil, []*Node{
|
|
anonfield(types.NewPtr(t)),
|
|
anonfield(types.Types[TUINTPTR]),
|
|
anonfield(types.Types[TUINTPTR]),
|
|
}, []*Node{
|
|
anonfield(types.Types[TUINTPTR]),
|
|
})
|
|
return n
|
|
}
|
|
|
|
func ifacelookdot(s *types.Sym, t *types.Type, ignorecase bool) (m *types.Field, followptr bool) {
|
|
if t == nil {
|
|
return nil, false
|
|
}
|
|
|
|
path, ambig := dotpath(s, t, &m, ignorecase)
|
|
if path == nil {
|
|
if ambig {
|
|
yyerror("%v.%v is ambiguous", t, s)
|
|
}
|
|
return nil, false
|
|
}
|
|
|
|
for _, d := range path {
|
|
if d.field.Type.IsPtr() {
|
|
followptr = true
|
|
break
|
|
}
|
|
}
|
|
|
|
if !m.IsMethod() {
|
|
yyerror("%v.%v is a field, not a method", t, s)
|
|
return nil, followptr
|
|
}
|
|
|
|
return m, followptr
|
|
}
|
|
|
|
func implements(t, iface *types.Type, m, samename **types.Field, ptr *int) bool {
|
|
t0 := t
|
|
if t == nil {
|
|
return false
|
|
}
|
|
|
|
if t.IsInterface() {
|
|
i := 0
|
|
tms := t.Fields().Slice()
|
|
for _, im := range iface.Fields().Slice() {
|
|
for i < len(tms) && tms[i].Sym != im.Sym {
|
|
i++
|
|
}
|
|
if i == len(tms) {
|
|
*m = im
|
|
*samename = nil
|
|
*ptr = 0
|
|
return false
|
|
}
|
|
tm := tms[i]
|
|
if !types.Identical(tm.Type, im.Type) {
|
|
*m = im
|
|
*samename = tm
|
|
*ptr = 0
|
|
return false
|
|
}
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
t = methtype(t)
|
|
var tms []*types.Field
|
|
if t != nil {
|
|
expandmeth(t)
|
|
tms = t.AllMethods().Slice()
|
|
}
|
|
i := 0
|
|
for _, im := range iface.Fields().Slice() {
|
|
if im.Broke() {
|
|
continue
|
|
}
|
|
for i < len(tms) && tms[i].Sym != im.Sym {
|
|
i++
|
|
}
|
|
if i == len(tms) {
|
|
*m = im
|
|
*samename, _ = ifacelookdot(im.Sym, t, true)
|
|
*ptr = 0
|
|
return false
|
|
}
|
|
tm := tms[i]
|
|
if tm.Nointerface() || !types.Identical(tm.Type, im.Type) {
|
|
*m = im
|
|
*samename = tm
|
|
*ptr = 0
|
|
return false
|
|
}
|
|
followptr := tm.Embedded == 2
|
|
|
|
// if pointer receiver in method,
|
|
// the method does not exist for value types.
|
|
rcvr := tm.Type.Recv().Type
|
|
if rcvr.IsPtr() && !t0.IsPtr() && !followptr && !isifacemethod(tm.Type) {
|
|
if false && Debug['r'] != 0 {
|
|
yyerror("interface pointer mismatch")
|
|
}
|
|
|
|
*m = im
|
|
*samename = nil
|
|
*ptr = 1
|
|
return false
|
|
}
|
|
}
|
|
|
|
// We're going to emit an OCONVIFACE.
|
|
// Call itabname so that (t, iface)
|
|
// gets added to itabs early, which allows
|
|
// us to de-virtualize calls through this
|
|
// type/interface pair later. See peekitabs in reflect.go
|
|
if isdirectiface(t0) && !iface.IsEmptyInterface() {
|
|
itabname(t0, iface)
|
|
}
|
|
return true
|
|
}
|
|
|
|
func listtreecopy(l []*Node, pos src.XPos) []*Node {
|
|
var out []*Node
|
|
for _, n := range l {
|
|
out = append(out, treecopy(n, pos))
|
|
}
|
|
return out
|
|
}
|
|
|
|
func liststmt(l []*Node) *Node {
|
|
n := nod(OBLOCK, nil, nil)
|
|
n.List.Set(l)
|
|
if len(l) != 0 {
|
|
n.Pos = l[0].Pos
|
|
}
|
|
return n
|
|
}
|
|
|
|
func (l Nodes) asblock() *Node {
|
|
n := nod(OBLOCK, nil, nil)
|
|
n.List = l
|
|
if l.Len() != 0 {
|
|
n.Pos = l.First().Pos
|
|
}
|
|
return n
|
|
}
|
|
|
|
func ngotype(n *Node) *types.Sym {
|
|
if n.Type != nil {
|
|
return typenamesym(n.Type)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// The result of addinit MUST be assigned back to n, e.g.
|
|
// n.Left = addinit(n.Left, init)
|
|
func addinit(n *Node, init []*Node) *Node {
|
|
if len(init) == 0 {
|
|
return n
|
|
}
|
|
if n.mayBeShared() {
|
|
// Introduce OCONVNOP to hold init list.
|
|
n = nod(OCONVNOP, n, nil)
|
|
n.Type = n.Left.Type
|
|
n.SetTypecheck(1)
|
|
}
|
|
|
|
n.Ninit.Prepend(init...)
|
|
n.SetHasCall(true)
|
|
return n
|
|
}
|
|
|
|
// The linker uses the magic symbol prefixes "go." and "type."
|
|
// Avoid potential confusion between import paths and symbols
|
|
// by rejecting these reserved imports for now. Also, people
|
|
// "can do weird things in GOPATH and we'd prefer they didn't
|
|
// do _that_ weird thing" (per rsc). See also #4257.
|
|
var reservedimports = []string{
|
|
"go",
|
|
"type",
|
|
}
|
|
|
|
func isbadimport(path string, allowSpace bool) bool {
|
|
if strings.Contains(path, "\x00") {
|
|
yyerror("import path contains NUL")
|
|
return true
|
|
}
|
|
|
|
for _, ri := range reservedimports {
|
|
if path == ri {
|
|
yyerror("import path %q is reserved and cannot be used", path)
|
|
return true
|
|
}
|
|
}
|
|
|
|
for _, r := range path {
|
|
if r == utf8.RuneError {
|
|
yyerror("import path contains invalid UTF-8 sequence: %q", path)
|
|
return true
|
|
}
|
|
|
|
if r < 0x20 || r == 0x7f {
|
|
yyerror("import path contains control character: %q", path)
|
|
return true
|
|
}
|
|
|
|
if r == '\\' {
|
|
yyerror("import path contains backslash; use slash: %q", path)
|
|
return true
|
|
}
|
|
|
|
if !allowSpace && unicode.IsSpace(r) {
|
|
yyerror("import path contains space character: %q", path)
|
|
return true
|
|
}
|
|
|
|
if strings.ContainsRune("!\"#$%&'()*,:;<=>?[]^`{|}", r) {
|
|
yyerror("import path contains invalid character '%c': %q", r, path)
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// Can this type be stored directly in an interface word?
|
|
// Yes, if the representation is a single pointer.
|
|
func isdirectiface(t *types.Type) bool {
|
|
if t.Broke() {
|
|
return false
|
|
}
|
|
|
|
switch t.Etype {
|
|
case TPTR,
|
|
TCHAN,
|
|
TMAP,
|
|
TFUNC,
|
|
TUNSAFEPTR:
|
|
return true
|
|
|
|
case TARRAY:
|
|
// Array of 1 direct iface type can be direct.
|
|
return t.NumElem() == 1 && isdirectiface(t.Elem())
|
|
|
|
case TSTRUCT:
|
|
// Struct with 1 field of direct iface type can be direct.
|
|
return t.NumFields() == 1 && isdirectiface(t.Field(0).Type)
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// itabType loads the _type field from a runtime.itab struct.
|
|
func itabType(itab *Node) *Node {
|
|
typ := nodSym(ODOTPTR, itab, nil)
|
|
typ.Type = types.NewPtr(types.Types[TUINT8])
|
|
typ.SetTypecheck(1)
|
|
typ.Xoffset = int64(Widthptr) // offset of _type in runtime.itab
|
|
typ.SetBounded(true) // guaranteed not to fault
|
|
return typ
|
|
}
|
|
|
|
// ifaceData loads the data field from an interface.
|
|
// The concrete type must be known to have type t.
|
|
// It follows the pointer if !isdirectiface(t).
|
|
func ifaceData(pos src.XPos, n *Node, t *types.Type) *Node {
|
|
if t.IsInterface() {
|
|
Fatalf("ifaceData interface: %v", t)
|
|
}
|
|
ptr := nodlSym(pos, OIDATA, n, nil)
|
|
if isdirectiface(t) {
|
|
ptr.Type = t
|
|
ptr.SetTypecheck(1)
|
|
return ptr
|
|
}
|
|
ptr.Type = types.NewPtr(t)
|
|
ptr.SetTypecheck(1)
|
|
ind := nodl(pos, ODEREF, ptr, nil)
|
|
ind.Type = t
|
|
ind.SetTypecheck(1)
|
|
ind.SetBounded(true)
|
|
return ind
|
|
}
|
|
|
|
// typePos returns the position associated with t.
|
|
// This is where t was declared or where it appeared as a type expression.
|
|
func typePos(t *types.Type) src.XPos {
|
|
n := asNode(t.Nod)
|
|
if n == nil || !n.Pos.IsKnown() {
|
|
Fatalf("bad type: %v", t)
|
|
}
|
|
return n.Pos
|
|
}
|