go/src/cmd/compile/internal/walk/assign.go
Cherry Zhang 9913f821e2 cmd/compile: make map functions ABI insensitive
Following CL 309029, this CL does the same thing for map
functions (mapaccess, mapassign, mapdelete).

For simplicity, always wrap "defer delete(m, k)". With
regabidefers enabled, this call is wrapped in a closure and the
rewriting happens automatically. Without regabidefers, it may not
be wrapped for certain key types, and then we'd need special
handling of the delete (because earlier the order pass does not
handle it). And we will turn on defer wrapping by default anyway.

Change-Id: I30663b1aa8e1d6f98e1fb81bf8c0c0ce607ab80b
Reviewed-on: https://go-review.googlesource.com/c/go/+/309510
Trust: Cherry Zhang <cherryyz@google.com>
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Than McIntosh <thanm@google.com>
2021-04-13 21:18:03 +00:00

719 lines
20 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package walk
import (
"go/constant"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
// walkAssign walks an OAS (AssignExpr) or OASOP (AssignOpExpr) node.
func walkAssign(init *ir.Nodes, n ir.Node) ir.Node {
init.Append(ir.TakeInit(n)...)
var left, right ir.Node
switch n.Op() {
case ir.OAS:
n := n.(*ir.AssignStmt)
left, right = n.X, n.Y
case ir.OASOP:
n := n.(*ir.AssignOpStmt)
left, right = n.X, n.Y
}
// Recognize m[k] = append(m[k], ...) so we can reuse
// the mapassign call.
var mapAppend *ir.CallExpr
if left.Op() == ir.OINDEXMAP && right.Op() == ir.OAPPEND {
left := left.(*ir.IndexExpr)
mapAppend = right.(*ir.CallExpr)
if !ir.SameSafeExpr(left, mapAppend.Args[0]) {
base.Fatalf("not same expressions: %v != %v", left, mapAppend.Args[0])
}
}
left = walkExpr(left, init)
left = safeExpr(left, init)
if mapAppend != nil {
mapAppend.Args[0] = left
}
if n.Op() == ir.OASOP {
// Rewrite x op= y into x = x op y.
n = ir.NewAssignStmt(base.Pos, left, typecheck.Expr(ir.NewBinaryExpr(base.Pos, n.(*ir.AssignOpStmt).AsOp, left, right)))
} else {
n.(*ir.AssignStmt).X = left
}
as := n.(*ir.AssignStmt)
if oaslit(as, init) {
return ir.NewBlockStmt(as.Pos(), nil)
}
if as.Y == nil {
// TODO(austin): Check all "implicit zeroing"
return as
}
if !base.Flag.Cfg.Instrumenting && ir.IsZero(as.Y) {
return as
}
switch as.Y.Op() {
default:
as.Y = walkExpr(as.Y, init)
case ir.ORECV:
// x = <-c; as.Left is x, as.Right.Left is c.
// order.stmt made sure x is addressable.
recv := as.Y.(*ir.UnaryExpr)
recv.X = walkExpr(recv.X, init)
n1 := typecheck.NodAddr(as.X)
r := recv.X // the channel
return mkcall1(chanfn("chanrecv1", 2, r.Type()), nil, init, r, n1)
case ir.OAPPEND:
// x = append(...)
call := as.Y.(*ir.CallExpr)
if call.Type().Elem().NotInHeap() {
base.Errorf("%v can't be allocated in Go; it is incomplete (or unallocatable)", call.Type().Elem())
}
var r ir.Node
switch {
case isAppendOfMake(call):
// x = append(y, make([]T, y)...)
r = extendSlice(call, init)
case call.IsDDD:
r = appendSlice(call, init) // also works for append(slice, string).
default:
r = walkAppend(call, init, as)
}
as.Y = r
if r.Op() == ir.OAPPEND {
// Left in place for back end.
// Do not add a new write barrier.
// Set up address of type for back end.
r.(*ir.CallExpr).X = reflectdata.TypePtr(r.Type().Elem())
return as
}
// Otherwise, lowered for race detector.
// Treat as ordinary assignment.
}
if as.X != nil && as.Y != nil {
return convas(as, init)
}
return as
}
// walkAssignDotType walks an OAS2DOTTYPE node.
func walkAssignDotType(n *ir.AssignListStmt, init *ir.Nodes) ir.Node {
walkExprListSafe(n.Lhs, init)
n.Rhs[0] = walkExpr(n.Rhs[0], init)
return n
}
// walkAssignFunc walks an OAS2FUNC node.
func walkAssignFunc(init *ir.Nodes, n *ir.AssignListStmt) ir.Node {
init.Append(ir.TakeInit(n)...)
r := n.Rhs[0]
walkExprListSafe(n.Lhs, init)
r = walkExpr(r, init)
if ir.IsIntrinsicCall(r.(*ir.CallExpr)) {
n.Rhs = []ir.Node{r}
return n
}
init.Append(r)
ll := ascompatet(n.Lhs, r.Type())
return ir.NewBlockStmt(src.NoXPos, ll)
}
// walkAssignList walks an OAS2 node.
func walkAssignList(init *ir.Nodes, n *ir.AssignListStmt) ir.Node {
init.Append(ir.TakeInit(n)...)
return ir.NewBlockStmt(src.NoXPos, ascompatee(ir.OAS, n.Lhs, n.Rhs))
}
// walkAssignMapRead walks an OAS2MAPR node.
func walkAssignMapRead(init *ir.Nodes, n *ir.AssignListStmt) ir.Node {
init.Append(ir.TakeInit(n)...)
r := n.Rhs[0].(*ir.IndexExpr)
walkExprListSafe(n.Lhs, init)
r.X = walkExpr(r.X, init)
r.Index = walkExpr(r.Index, init)
t := r.X.Type()
fast := mapfast(t)
var key ir.Node
if fast != mapslow {
// fast versions take key by value
key = r.Index
} else {
// standard version takes key by reference
// order.expr made sure key is addressable.
key = typecheck.NodAddr(r.Index)
}
// from:
// a,b = m[i]
// to:
// var,b = mapaccess2*(t, m, i)
// a = *var
a := n.Lhs[0]
var call *ir.CallExpr
if w := t.Elem().Width; w <= zeroValSize {
fn := mapfn(mapaccess2[fast], t, false)
call = mkcall1(fn, fn.Type().Results(), init, reflectdata.TypePtr(t), r.X, key)
} else {
fn := mapfn("mapaccess2_fat", t, true)
z := reflectdata.ZeroAddr(w)
call = mkcall1(fn, fn.Type().Results(), init, reflectdata.TypePtr(t), r.X, key, z)
}
// mapaccess2* returns a typed bool, but due to spec changes,
// the boolean result of i.(T) is now untyped so we make it the
// same type as the variable on the lhs.
if ok := n.Lhs[1]; !ir.IsBlank(ok) && ok.Type().IsBoolean() {
call.Type().Field(1).Type = ok.Type()
}
n.Rhs = []ir.Node{call}
n.SetOp(ir.OAS2FUNC)
// don't generate a = *var if a is _
if ir.IsBlank(a) {
return walkExpr(typecheck.Stmt(n), init)
}
var_ := typecheck.Temp(types.NewPtr(t.Elem()))
var_.SetTypecheck(1)
var_.MarkNonNil() // mapaccess always returns a non-nil pointer
n.Lhs[0] = var_
init.Append(walkExpr(n, init))
as := ir.NewAssignStmt(base.Pos, a, ir.NewStarExpr(base.Pos, var_))
return walkExpr(typecheck.Stmt(as), init)
}
// walkAssignRecv walks an OAS2RECV node.
func walkAssignRecv(init *ir.Nodes, n *ir.AssignListStmt) ir.Node {
init.Append(ir.TakeInit(n)...)
r := n.Rhs[0].(*ir.UnaryExpr) // recv
walkExprListSafe(n.Lhs, init)
r.X = walkExpr(r.X, init)
var n1 ir.Node
if ir.IsBlank(n.Lhs[0]) {
n1 = typecheck.NodNil()
} else {
n1 = typecheck.NodAddr(n.Lhs[0])
}
fn := chanfn("chanrecv2", 2, r.X.Type())
ok := n.Lhs[1]
call := mkcall1(fn, types.Types[types.TBOOL], init, r.X, n1)
return typecheck.Stmt(ir.NewAssignStmt(base.Pos, ok, call))
}
// walkReturn walks an ORETURN node.
func walkReturn(n *ir.ReturnStmt) ir.Node {
fn := ir.CurFunc
fn.NumReturns++
if len(n.Results) == 0 {
return n
}
results := fn.Type().Results().FieldSlice()
dsts := make([]ir.Node, len(results))
for i, v := range results {
// TODO(mdempsky): typecheck should have already checked the result variables.
dsts[i] = typecheck.AssignExpr(v.Nname.(*ir.Name))
}
n.Results = ascompatee(n.Op(), dsts, n.Results)
return n
}
// check assign type list to
// an expression list. called in
// expr-list = func()
func ascompatet(nl ir.Nodes, nr *types.Type) []ir.Node {
if len(nl) != nr.NumFields() {
base.Fatalf("ascompatet: assignment count mismatch: %d = %d", len(nl), nr.NumFields())
}
var nn ir.Nodes
for i, l := range nl {
if ir.IsBlank(l) {
continue
}
r := nr.Field(i)
// Order should have created autotemps of the appropriate type for
// us to store results into.
if tmp, ok := l.(*ir.Name); !ok || !tmp.AutoTemp() || !types.Identical(tmp.Type(), r.Type) {
base.FatalfAt(l.Pos(), "assigning %v to %+v", r.Type, l)
}
res := ir.NewResultExpr(base.Pos, nil, types.BADWIDTH)
res.Index = int64(i)
res.SetType(r.Type)
res.SetTypecheck(1)
nn.Append(ir.NewAssignStmt(base.Pos, l, res))
}
return nn
}
// check assign expression list to
// an expression list. called in
// expr-list = expr-list
func ascompatee(op ir.Op, nl, nr []ir.Node) []ir.Node {
// cannot happen: should have been rejected during type checking
if len(nl) != len(nr) {
base.Fatalf("assignment operands mismatch: %+v / %+v", ir.Nodes(nl), ir.Nodes(nr))
}
var assigned ir.NameSet
var memWrite, deferResultWrite bool
// affected reports whether expression n could be affected by
// the assignments applied so far.
affected := func(n ir.Node) bool {
if deferResultWrite {
return true
}
return ir.Any(n, func(n ir.Node) bool {
if n.Op() == ir.ONAME && assigned.Has(n.(*ir.Name)) {
return true
}
if memWrite && readsMemory(n) {
return true
}
return false
})
}
// If a needed expression may be affected by an
// earlier assignment, make an early copy of that
// expression and use the copy instead.
var early ir.Nodes
save := func(np *ir.Node) {
if n := *np; affected(n) {
*np = copyExpr(n, n.Type(), &early)
}
}
var late ir.Nodes
for i, lorig := range nl {
l, r := lorig, nr[i]
// Do not generate 'x = x' during return. See issue 4014.
if op == ir.ORETURN && ir.SameSafeExpr(l, r) {
continue
}
// Save subexpressions needed on left side.
// Drill through non-dereferences.
for {
switch ll := l.(type) {
case *ir.IndexExpr:
if ll.X.Type().IsArray() {
save(&ll.Index)
l = ll.X
continue
}
case *ir.ParenExpr:
l = ll.X
continue
case *ir.SelectorExpr:
if ll.Op() == ir.ODOT {
l = ll.X
continue
}
}
break
}
var name *ir.Name
switch l.Op() {
default:
base.Fatalf("unexpected lvalue %v", l.Op())
case ir.ONAME:
name = l.(*ir.Name)
case ir.OINDEX, ir.OINDEXMAP:
l := l.(*ir.IndexExpr)
save(&l.X)
save(&l.Index)
case ir.ODEREF:
l := l.(*ir.StarExpr)
save(&l.X)
case ir.ODOTPTR:
l := l.(*ir.SelectorExpr)
save(&l.X)
}
// Save expression on right side.
save(&r)
appendWalkStmt(&late, convas(ir.NewAssignStmt(base.Pos, lorig, r), &late))
// Check for reasons why we may need to compute later expressions
// before this assignment happens.
if name == nil {
// Not a direct assignment to a declared variable.
// Conservatively assume any memory access might alias.
memWrite = true
continue
}
if name.Class == ir.PPARAMOUT && ir.CurFunc.HasDefer() {
// Assignments to a result parameter in a function with defers
// becomes visible early if evaluation of any later expression
// panics (#43835).
deferResultWrite = true
continue
}
if sym := types.OrigSym(name.Sym()); sym == nil || sym.IsBlank() {
// We can ignore assignments to blank or anonymous result parameters.
// These can't appear in expressions anyway.
continue
}
if name.Addrtaken() || !name.OnStack() {
// Global variable, heap escaped, or just addrtaken.
// Conservatively assume any memory access might alias.
memWrite = true
continue
}
// Local, non-addrtaken variable.
// Assignments can only alias with direct uses of this variable.
assigned.Add(name)
}
early.Append(late.Take()...)
return early
}
// readsMemory reports whether the evaluation n directly reads from
// memory that might be written to indirectly.
func readsMemory(n ir.Node) bool {
switch n.Op() {
case ir.ONAME:
n := n.(*ir.Name)
if n.Class == ir.PFUNC {
return false
}
return n.Addrtaken() || !n.OnStack()
case ir.OADD,
ir.OAND,
ir.OANDAND,
ir.OANDNOT,
ir.OBITNOT,
ir.OCONV,
ir.OCONVIFACE,
ir.OCONVNOP,
ir.ODIV,
ir.ODOT,
ir.ODOTTYPE,
ir.OLITERAL,
ir.OLSH,
ir.OMOD,
ir.OMUL,
ir.ONEG,
ir.ONIL,
ir.OOR,
ir.OOROR,
ir.OPAREN,
ir.OPLUS,
ir.ORSH,
ir.OSUB,
ir.OXOR:
return false
}
// Be conservative.
return true
}
// expand append(l1, l2...) to
// init {
// s := l1
// n := len(s) + len(l2)
// // Compare as uint so growslice can panic on overflow.
// if uint(n) > uint(cap(s)) {
// s = growslice(s, n)
// }
// s = s[:n]
// memmove(&s[len(l1)], &l2[0], len(l2)*sizeof(T))
// }
// s
//
// l2 is allowed to be a string.
func appendSlice(n *ir.CallExpr, init *ir.Nodes) ir.Node {
walkAppendArgs(n, init)
l1 := n.Args[0]
l2 := n.Args[1]
l2 = cheapExpr(l2, init)
n.Args[1] = l2
var nodes ir.Nodes
// var s []T
s := typecheck.Temp(l1.Type())
nodes.Append(ir.NewAssignStmt(base.Pos, s, l1)) // s = l1
elemtype := s.Type().Elem()
// n := len(s) + len(l2)
nn := typecheck.Temp(types.Types[types.TINT])
nodes.Append(ir.NewAssignStmt(base.Pos, nn, ir.NewBinaryExpr(base.Pos, ir.OADD, ir.NewUnaryExpr(base.Pos, ir.OLEN, s), ir.NewUnaryExpr(base.Pos, ir.OLEN, l2))))
// if uint(n) > uint(cap(s))
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nuint := typecheck.Conv(nn, types.Types[types.TUINT])
scapuint := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OCAP, s), types.Types[types.TUINT])
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OGT, nuint, scapuint)
// instantiate growslice(typ *type, []any, int) []any
fn := typecheck.LookupRuntime("growslice")
fn = typecheck.SubstArgTypes(fn, elemtype, elemtype)
// s = growslice(T, s, n)
nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, s, mkcall1(fn, s.Type(), nif.PtrInit(), reflectdata.TypePtr(elemtype), s, nn))}
nodes.Append(nif)
// s = s[:n]
nt := ir.NewSliceExpr(base.Pos, ir.OSLICE, s, nil, nn, nil)
nt.SetBounded(true)
nodes.Append(ir.NewAssignStmt(base.Pos, s, nt))
var ncopy ir.Node
if elemtype.HasPointers() {
// copy(s[len(l1):], l2)
slice := ir.NewSliceExpr(base.Pos, ir.OSLICE, s, ir.NewUnaryExpr(base.Pos, ir.OLEN, l1), nil, nil)
slice.SetType(s.Type())
ir.CurFunc.SetWBPos(n.Pos())
// instantiate typedslicecopy(typ *type, dstPtr *any, dstLen int, srcPtr *any, srcLen int) int
fn := typecheck.LookupRuntime("typedslicecopy")
fn = typecheck.SubstArgTypes(fn, l1.Type().Elem(), l2.Type().Elem())
ptr1, len1 := backingArrayPtrLen(cheapExpr(slice, &nodes))
ptr2, len2 := backingArrayPtrLen(l2)
ncopy = mkcall1(fn, types.Types[types.TINT], &nodes, reflectdata.TypePtr(elemtype), ptr1, len1, ptr2, len2)
} else if base.Flag.Cfg.Instrumenting && !base.Flag.CompilingRuntime {
// rely on runtime to instrument:
// copy(s[len(l1):], l2)
// l2 can be a slice or string.
slice := ir.NewSliceExpr(base.Pos, ir.OSLICE, s, ir.NewUnaryExpr(base.Pos, ir.OLEN, l1), nil, nil)
slice.SetType(s.Type())
ptr1, len1 := backingArrayPtrLen(cheapExpr(slice, &nodes))
ptr2, len2 := backingArrayPtrLen(l2)
fn := typecheck.LookupRuntime("slicecopy")
fn = typecheck.SubstArgTypes(fn, ptr1.Type().Elem(), ptr2.Type().Elem())
ncopy = mkcall1(fn, types.Types[types.TINT], &nodes, ptr1, len1, ptr2, len2, ir.NewInt(elemtype.Width))
} else {
// memmove(&s[len(l1)], &l2[0], len(l2)*sizeof(T))
ix := ir.NewIndexExpr(base.Pos, s, ir.NewUnaryExpr(base.Pos, ir.OLEN, l1))
ix.SetBounded(true)
addr := typecheck.NodAddr(ix)
sptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, l2)
nwid := cheapExpr(typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, l2), types.Types[types.TUINTPTR]), &nodes)
nwid = ir.NewBinaryExpr(base.Pos, ir.OMUL, nwid, ir.NewInt(elemtype.Width))
// instantiate func memmove(to *any, frm *any, length uintptr)
fn := typecheck.LookupRuntime("memmove")
fn = typecheck.SubstArgTypes(fn, elemtype, elemtype)
ncopy = mkcall1(fn, nil, &nodes, addr, sptr, nwid)
}
ln := append(nodes, ncopy)
typecheck.Stmts(ln)
walkStmtList(ln)
init.Append(ln...)
return s
}
// isAppendOfMake reports whether n is of the form append(x , make([]T, y)...).
// isAppendOfMake assumes n has already been typechecked.
func isAppendOfMake(n ir.Node) bool {
if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting {
return false
}
if n.Typecheck() == 0 {
base.Fatalf("missing typecheck: %+v", n)
}
if n.Op() != ir.OAPPEND {
return false
}
call := n.(*ir.CallExpr)
if !call.IsDDD || len(call.Args) != 2 || call.Args[1].Op() != ir.OMAKESLICE {
return false
}
mk := call.Args[1].(*ir.MakeExpr)
if mk.Cap != nil {
return false
}
// y must be either an integer constant or the largest possible positive value
// of variable y needs to fit into an uint.
// typecheck made sure that constant arguments to make are not negative and fit into an int.
// The care of overflow of the len argument to make will be handled by an explicit check of int(len) < 0 during runtime.
y := mk.Len
if !ir.IsConst(y, constant.Int) && y.Type().Size() > types.Types[types.TUINT].Size() {
return false
}
return true
}
// extendSlice rewrites append(l1, make([]T, l2)...) to
// init {
// if l2 >= 0 { // Empty if block here for more meaningful node.SetLikely(true)
// } else {
// panicmakeslicelen()
// }
// s := l1
// n := len(s) + l2
// // Compare n and s as uint so growslice can panic on overflow of len(s) + l2.
// // cap is a positive int and n can become negative when len(s) + l2
// // overflows int. Interpreting n when negative as uint makes it larger
// // than cap(s). growslice will check the int n arg and panic if n is
// // negative. This prevents the overflow from being undetected.
// if uint(n) > uint(cap(s)) {
// s = growslice(T, s, n)
// }
// s = s[:n]
// lptr := &l1[0]
// sptr := &s[0]
// if lptr == sptr || !T.HasPointers() {
// // growslice did not clear the whole underlying array (or did not get called)
// hp := &s[len(l1)]
// hn := l2 * sizeof(T)
// memclr(hp, hn)
// }
// }
// s
func extendSlice(n *ir.CallExpr, init *ir.Nodes) ir.Node {
// isAppendOfMake made sure all possible positive values of l2 fit into an uint.
// The case of l2 overflow when converting from e.g. uint to int is handled by an explicit
// check of l2 < 0 at runtime which is generated below.
l2 := typecheck.Conv(n.Args[1].(*ir.MakeExpr).Len, types.Types[types.TINT])
l2 = typecheck.Expr(l2)
n.Args[1] = l2 // walkAppendArgs expects l2 in n.List.Second().
walkAppendArgs(n, init)
l1 := n.Args[0]
l2 = n.Args[1] // re-read l2, as it may have been updated by walkAppendArgs
var nodes []ir.Node
// if l2 >= 0 (likely happens), do nothing
nifneg := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OGE, l2, ir.NewInt(0)), nil, nil)
nifneg.Likely = true
// else panicmakeslicelen()
nifneg.Else = []ir.Node{mkcall("panicmakeslicelen", nil, init)}
nodes = append(nodes, nifneg)
// s := l1
s := typecheck.Temp(l1.Type())
nodes = append(nodes, ir.NewAssignStmt(base.Pos, s, l1))
elemtype := s.Type().Elem()
// n := len(s) + l2
nn := typecheck.Temp(types.Types[types.TINT])
nodes = append(nodes, ir.NewAssignStmt(base.Pos, nn, ir.NewBinaryExpr(base.Pos, ir.OADD, ir.NewUnaryExpr(base.Pos, ir.OLEN, s), l2)))
// if uint(n) > uint(cap(s))
nuint := typecheck.Conv(nn, types.Types[types.TUINT])
capuint := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OCAP, s), types.Types[types.TUINT])
nif := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OGT, nuint, capuint), nil, nil)
// instantiate growslice(typ *type, old []any, newcap int) []any
fn := typecheck.LookupRuntime("growslice")
fn = typecheck.SubstArgTypes(fn, elemtype, elemtype)
// s = growslice(T, s, n)
nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, s, mkcall1(fn, s.Type(), nif.PtrInit(), reflectdata.TypePtr(elemtype), s, nn))}
nodes = append(nodes, nif)
// s = s[:n]
nt := ir.NewSliceExpr(base.Pos, ir.OSLICE, s, nil, nn, nil)
nt.SetBounded(true)
nodes = append(nodes, ir.NewAssignStmt(base.Pos, s, nt))
// lptr := &l1[0]
l1ptr := typecheck.Temp(l1.Type().Elem().PtrTo())
tmp := ir.NewUnaryExpr(base.Pos, ir.OSPTR, l1)
nodes = append(nodes, ir.NewAssignStmt(base.Pos, l1ptr, tmp))
// sptr := &s[0]
sptr := typecheck.Temp(elemtype.PtrTo())
tmp = ir.NewUnaryExpr(base.Pos, ir.OSPTR, s)
nodes = append(nodes, ir.NewAssignStmt(base.Pos, sptr, tmp))
// hp := &s[len(l1)]
ix := ir.NewIndexExpr(base.Pos, s, ir.NewUnaryExpr(base.Pos, ir.OLEN, l1))
ix.SetBounded(true)
hp := typecheck.ConvNop(typecheck.NodAddr(ix), types.Types[types.TUNSAFEPTR])
// hn := l2 * sizeof(elem(s))
hn := typecheck.Conv(ir.NewBinaryExpr(base.Pos, ir.OMUL, l2, ir.NewInt(elemtype.Width)), types.Types[types.TUINTPTR])
clrname := "memclrNoHeapPointers"
hasPointers := elemtype.HasPointers()
if hasPointers {
clrname = "memclrHasPointers"
ir.CurFunc.SetWBPos(n.Pos())
}
var clr ir.Nodes
clrfn := mkcall(clrname, nil, &clr, hp, hn)
clr.Append(clrfn)
if hasPointers {
// if l1ptr == sptr
nifclr := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OEQ, l1ptr, sptr), nil, nil)
nifclr.Body = clr
nodes = append(nodes, nifclr)
} else {
nodes = append(nodes, clr...)
}
typecheck.Stmts(nodes)
walkStmtList(nodes)
init.Append(nodes...)
return s
}