mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
Delve and viewcore use DWARF type DIEs to display and explore the runtime value of interface variables. This has always been slightly problematic since the runtime type of an interface variable might only be reachable through interfaces and thus be missing from debug_info (see issue #46670). Prior to commitf4de2ecfthis was not a severe problem since a struct literal caused the allocation of a struct into an autotemp variable, which was then used by dwarfgen to make sure that the DIE for that type would be generated. Afterf4de2ecfsuch autotemps are no longer being generated and go1.25.0 ends up having many more instances of interfaces with unreadable runtime type (https://github.com/go-delve/delve/issues/4080). This commit fixes this problem by scanning the relocation of the function symbol and adding to the function's DIE symbol references to all types used by the function to create interfaces. Fixes go-delve/delve#4080 Updates #46670 Change-Id: I3e9db1c0d1662905373239816a72604ac533b09e Reviewed-on: https://go-review.googlesource.com/c/go/+/696955 Reviewed-by: Michael Pratt <mpratt@google.com> LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com> Auto-Submit: Michael Pratt <mpratt@google.com> Reviewed-by: Keith Randall <khr@google.com> Reviewed-by: Than McIntosh <thanm@golang.org> Reviewed-by: Florian Lehner <lehner.florian86@gmail.com>
672 lines
21 KiB
Go
672 lines
21 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package dwarfgen
|
|
|
|
import (
|
|
"bytes"
|
|
"flag"
|
|
"fmt"
|
|
"internal/buildcfg"
|
|
"slices"
|
|
"sort"
|
|
"strings"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/reflectdata"
|
|
"cmd/compile/internal/ssa"
|
|
"cmd/compile/internal/ssagen"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/dwarf"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/objabi"
|
|
"cmd/internal/src"
|
|
)
|
|
|
|
func Info(ctxt *obj.Link, fnsym *obj.LSym, infosym *obj.LSym, curfn obj.Func) (scopes []dwarf.Scope, inlcalls dwarf.InlCalls) {
|
|
fn := curfn.(*ir.Func)
|
|
|
|
if fn.Nname != nil {
|
|
expect := fn.Linksym()
|
|
if fnsym.ABI() == obj.ABI0 {
|
|
expect = fn.LinksymABI(obj.ABI0)
|
|
}
|
|
if fnsym != expect {
|
|
base.Fatalf("unexpected fnsym: %v != %v", fnsym, expect)
|
|
}
|
|
}
|
|
|
|
// Back when there were two different *Funcs for a function, this code
|
|
// was not consistent about whether a particular *Node being processed
|
|
// was an ODCLFUNC or ONAME node. Partly this is because inlined function
|
|
// bodies have no ODCLFUNC node, which was it's own inconsistency.
|
|
// In any event, the handling of the two different nodes for DWARF purposes
|
|
// was subtly different, likely in unintended ways. CL 272253 merged the
|
|
// two nodes' Func fields, so that code sees the same *Func whether it is
|
|
// holding the ODCLFUNC or the ONAME. This resulted in changes in the
|
|
// DWARF output. To preserve the existing DWARF output and leave an
|
|
// intentional change for a future CL, this code does the following when
|
|
// fn.Op == ONAME:
|
|
//
|
|
// 1. Disallow use of createComplexVars in createDwarfVars.
|
|
// It was not possible to reach that code for an ONAME before,
|
|
// because the DebugInfo was set only on the ODCLFUNC Func.
|
|
// Calling into it in the ONAME case causes an index out of bounds panic.
|
|
//
|
|
// 2. Do not populate apdecls. fn.Func.Dcl was in the ODCLFUNC Func,
|
|
// not the ONAME Func. Populating apdecls for the ONAME case results
|
|
// in selected being populated after createSimpleVars is called in
|
|
// createDwarfVars, and then that causes the loop to skip all the entries
|
|
// in dcl, meaning that the RecordAutoType calls don't happen.
|
|
//
|
|
// These two adjustments keep toolstash -cmp working for now.
|
|
// Deciding the right answer is, as they say, future work.
|
|
//
|
|
// We can tell the difference between the old ODCLFUNC and ONAME
|
|
// cases by looking at the infosym.Name. If it's empty, DebugInfo is
|
|
// being called from (*obj.Link).populateDWARF, which used to use
|
|
// the ODCLFUNC. If it's non-empty (the name will end in $abstract),
|
|
// DebugInfo is being called from (*obj.Link).DwarfAbstractFunc,
|
|
// which used to use the ONAME form.
|
|
isODCLFUNC := infosym.Name == ""
|
|
|
|
var apdecls []*ir.Name
|
|
// Populate decls for fn.
|
|
if isODCLFUNC {
|
|
for _, n := range fn.Dcl {
|
|
if n.Op() != ir.ONAME { // might be OTYPE or OLITERAL
|
|
continue
|
|
}
|
|
switch n.Class {
|
|
case ir.PAUTO:
|
|
if !n.Used() {
|
|
// Text == nil -> generating abstract function
|
|
if fnsym.Func().Text != nil {
|
|
base.Fatalf("debuginfo unused node (AllocFrame should truncate fn.Func.Dcl)")
|
|
}
|
|
continue
|
|
}
|
|
case ir.PPARAM, ir.PPARAMOUT:
|
|
default:
|
|
continue
|
|
}
|
|
if !ssa.IsVarWantedForDebug(n) {
|
|
continue
|
|
}
|
|
apdecls = append(apdecls, n)
|
|
if n.Type().Kind() == types.TSSA {
|
|
// Can happen for TypeInt128 types. This only happens for
|
|
// spill locations, so not a huge deal.
|
|
continue
|
|
}
|
|
fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type()))
|
|
}
|
|
}
|
|
|
|
var closureVars map[*ir.Name]int64
|
|
if fn.Needctxt() {
|
|
closureVars = make(map[*ir.Name]int64)
|
|
csiter := typecheck.NewClosureStructIter(fn.ClosureVars)
|
|
for {
|
|
n, _, offset := csiter.Next()
|
|
if n == nil {
|
|
break
|
|
}
|
|
closureVars[n] = offset
|
|
if n.Heapaddr != nil {
|
|
closureVars[n.Heapaddr] = offset
|
|
}
|
|
}
|
|
}
|
|
|
|
decls, dwarfVars := createDwarfVars(fnsym, isODCLFUNC, fn, apdecls, closureVars)
|
|
|
|
// For each type referenced by the functions auto vars but not
|
|
// already referenced by a dwarf var, attach an R_USETYPE relocation to
|
|
// the function symbol to insure that the type included in DWARF
|
|
// processing during linking.
|
|
// Do the same with R_USEIFACE relocations from the function symbol for the
|
|
// same reason.
|
|
// All these R_USETYPE relocations are only looked at if the function
|
|
// survives deadcode elimination in the linker.
|
|
typesyms := []*obj.LSym{}
|
|
for t := range fnsym.Func().Autot {
|
|
typesyms = append(typesyms, t)
|
|
}
|
|
for i := range fnsym.R {
|
|
if fnsym.R[i].Type == objabi.R_USEIFACE && !strings.HasPrefix(fnsym.R[i].Sym.Name, "go:itab.") {
|
|
// Types referenced through itab will be referenced from somewhere else
|
|
typesyms = append(typesyms, fnsym.R[i].Sym)
|
|
}
|
|
}
|
|
slices.SortFunc(typesyms, func(a, b *obj.LSym) int {
|
|
return strings.Compare(a.Name, b.Name)
|
|
})
|
|
var lastsym *obj.LSym
|
|
for _, sym := range typesyms {
|
|
if sym == lastsym {
|
|
continue
|
|
}
|
|
lastsym = sym
|
|
infosym.AddRel(ctxt, obj.Reloc{Type: objabi.R_USETYPE, Sym: sym})
|
|
}
|
|
fnsym.Func().Autot = nil
|
|
|
|
var varScopes []ir.ScopeID
|
|
for _, decl := range decls {
|
|
pos := declPos(decl)
|
|
varScopes = append(varScopes, findScope(fn.Marks, pos))
|
|
}
|
|
|
|
scopes = assembleScopes(fnsym, fn, dwarfVars, varScopes)
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
inlcalls = assembleInlines(fnsym, dwarfVars)
|
|
}
|
|
return scopes, inlcalls
|
|
}
|
|
|
|
func declPos(decl *ir.Name) src.XPos {
|
|
return decl.Canonical().Pos()
|
|
}
|
|
|
|
// createDwarfVars process fn, returning a list of DWARF variables and the
|
|
// Nodes they represent.
|
|
func createDwarfVars(fnsym *obj.LSym, complexOK bool, fn *ir.Func, apDecls []*ir.Name, closureVars map[*ir.Name]int64) ([]*ir.Name, []*dwarf.Var) {
|
|
// Collect a raw list of DWARF vars.
|
|
var vars []*dwarf.Var
|
|
var decls []*ir.Name
|
|
var selected ir.NameSet
|
|
|
|
if base.Ctxt.Flag_locationlists && base.Ctxt.Flag_optimize && fn.DebugInfo != nil && complexOK {
|
|
decls, vars, selected = createComplexVars(fnsym, fn, closureVars)
|
|
} else if fn.ABI == obj.ABIInternal && base.Flag.N != 0 && complexOK {
|
|
decls, vars, selected = createABIVars(fnsym, fn, apDecls, closureVars)
|
|
} else {
|
|
decls, vars, selected = createSimpleVars(fnsym, apDecls, closureVars)
|
|
}
|
|
if fn.DebugInfo != nil {
|
|
// Recover zero sized variables eliminated by the stackframe pass
|
|
for _, n := range fn.DebugInfo.(*ssa.FuncDebug).OptDcl {
|
|
if n.Class != ir.PAUTO {
|
|
continue
|
|
}
|
|
types.CalcSize(n.Type())
|
|
if n.Type().Size() == 0 {
|
|
decls = append(decls, n)
|
|
vars = append(vars, createSimpleVar(fnsym, n, closureVars))
|
|
vars[len(vars)-1].StackOffset = 0
|
|
fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type()))
|
|
}
|
|
}
|
|
}
|
|
|
|
dcl := apDecls
|
|
if fnsym.WasInlined() {
|
|
dcl = preInliningDcls(fnsym)
|
|
} else {
|
|
// The backend's stackframe pass prunes away entries from the
|
|
// fn's Dcl list, including PARAMOUT nodes that correspond to
|
|
// output params passed in registers. Add back in these
|
|
// entries here so that we can process them properly during
|
|
// DWARF-gen. See issue 48573 for more details.
|
|
debugInfo := fn.DebugInfo.(*ssa.FuncDebug)
|
|
for _, n := range debugInfo.RegOutputParams {
|
|
if !ssa.IsVarWantedForDebug(n) {
|
|
continue
|
|
}
|
|
if n.Class != ir.PPARAMOUT || !n.IsOutputParamInRegisters() {
|
|
base.Fatalf("invalid ir.Name on debugInfo.RegOutputParams list")
|
|
}
|
|
dcl = append(dcl, n)
|
|
}
|
|
}
|
|
|
|
// If optimization is enabled, the list above will typically be
|
|
// missing some of the original pre-optimization variables in the
|
|
// function (they may have been promoted to registers, folded into
|
|
// constants, dead-coded away, etc). Input arguments not eligible
|
|
// for SSA optimization are also missing. Here we add back in entries
|
|
// for selected missing vars. Note that the recipe below creates a
|
|
// conservative location. The idea here is that we want to
|
|
// communicate to the user that "yes, there is a variable named X
|
|
// in this function, but no, I don't have enough information to
|
|
// reliably report its contents."
|
|
// For non-SSA-able arguments, however, the correct information
|
|
// is known -- they have a single home on the stack.
|
|
for _, n := range dcl {
|
|
if selected.Has(n) {
|
|
continue
|
|
}
|
|
c := n.Sym().Name[0]
|
|
if c == '.' || n.Type().IsUntyped() {
|
|
continue
|
|
}
|
|
if n.Class == ir.PPARAM && !ssa.CanSSA(n.Type()) {
|
|
// SSA-able args get location lists, and may move in and
|
|
// out of registers, so those are handled elsewhere.
|
|
// Autos and named output params seem to get handled
|
|
// with VARDEF, which creates location lists.
|
|
// Args not of SSA-able type are treated here; they
|
|
// are homed on the stack in a single place for the
|
|
// entire call.
|
|
vars = append(vars, createSimpleVar(fnsym, n, closureVars))
|
|
decls = append(decls, n)
|
|
continue
|
|
}
|
|
typename := dwarf.InfoPrefix + types.TypeSymName(n.Type())
|
|
decls = append(decls, n)
|
|
tag := dwarf.DW_TAG_variable
|
|
isReturnValue := (n.Class == ir.PPARAMOUT)
|
|
if n.Class == ir.PPARAM || n.Class == ir.PPARAMOUT {
|
|
tag = dwarf.DW_TAG_formal_parameter
|
|
}
|
|
inlIndex := 0
|
|
if base.Flag.GenDwarfInl > 1 {
|
|
if n.InlFormal() || n.InlLocal() {
|
|
inlIndex = posInlIndex(n.Pos()) + 1
|
|
if n.InlFormal() {
|
|
tag = dwarf.DW_TAG_formal_parameter
|
|
}
|
|
}
|
|
}
|
|
declpos := base.Ctxt.InnermostPos(n.Pos())
|
|
dvar := &dwarf.Var{
|
|
Name: n.Sym().Name,
|
|
IsReturnValue: isReturnValue,
|
|
Tag: tag,
|
|
WithLoclist: true,
|
|
StackOffset: int32(n.FrameOffset()),
|
|
Type: base.Ctxt.Lookup(typename),
|
|
DeclFile: declpos.RelFilename(),
|
|
DeclLine: declpos.RelLine(),
|
|
DeclCol: declpos.RelCol(),
|
|
InlIndex: int32(inlIndex),
|
|
ChildIndex: -1,
|
|
DictIndex: n.DictIndex,
|
|
ClosureOffset: closureOffset(n, closureVars),
|
|
}
|
|
if n.Esc() == ir.EscHeap {
|
|
if n.Heapaddr == nil {
|
|
base.Fatalf("invalid heap allocated var without Heapaddr")
|
|
}
|
|
debug := fn.DebugInfo.(*ssa.FuncDebug)
|
|
list := createHeapDerefLocationList(n, debug.EntryID)
|
|
dvar.PutLocationList = func(listSym, startPC dwarf.Sym) {
|
|
debug.PutLocationList(list, base.Ctxt, listSym.(*obj.LSym), startPC.(*obj.LSym))
|
|
}
|
|
}
|
|
vars = append(vars, dvar)
|
|
// Record go type to ensure that it gets emitted by the linker.
|
|
fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type()))
|
|
}
|
|
|
|
// Sort decls and vars.
|
|
sortDeclsAndVars(fn, decls, vars)
|
|
|
|
return decls, vars
|
|
}
|
|
|
|
// sortDeclsAndVars sorts the decl and dwarf var lists according to
|
|
// parameter declaration order, so as to insure that when a subprogram
|
|
// DIE is emitted, its parameter children appear in declaration order.
|
|
// Prior to the advent of the register ABI, sorting by frame offset
|
|
// would achieve this; with the register we now need to go back to the
|
|
// original function signature.
|
|
func sortDeclsAndVars(fn *ir.Func, decls []*ir.Name, vars []*dwarf.Var) {
|
|
paramOrder := make(map[*ir.Name]int)
|
|
idx := 1
|
|
for _, f := range fn.Type().RecvParamsResults() {
|
|
if n, ok := f.Nname.(*ir.Name); ok {
|
|
paramOrder[n] = idx
|
|
idx++
|
|
}
|
|
}
|
|
sort.Stable(varsAndDecls{decls, vars, paramOrder})
|
|
}
|
|
|
|
type varsAndDecls struct {
|
|
decls []*ir.Name
|
|
vars []*dwarf.Var
|
|
paramOrder map[*ir.Name]int
|
|
}
|
|
|
|
func (v varsAndDecls) Len() int {
|
|
return len(v.decls)
|
|
}
|
|
|
|
func (v varsAndDecls) Less(i, j int) bool {
|
|
nameLT := func(ni, nj *ir.Name) bool {
|
|
oi, foundi := v.paramOrder[ni]
|
|
oj, foundj := v.paramOrder[nj]
|
|
if foundi {
|
|
if foundj {
|
|
return oi < oj
|
|
} else {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
return nameLT(v.decls[i], v.decls[j])
|
|
}
|
|
|
|
func (v varsAndDecls) Swap(i, j int) {
|
|
v.vars[i], v.vars[j] = v.vars[j], v.vars[i]
|
|
v.decls[i], v.decls[j] = v.decls[j], v.decls[i]
|
|
}
|
|
|
|
// Given a function that was inlined at some point during the
|
|
// compilation, return a sorted list of nodes corresponding to the
|
|
// autos/locals in that function prior to inlining. If this is a
|
|
// function that is not local to the package being compiled, then the
|
|
// names of the variables may have been "versioned" to avoid conflicts
|
|
// with local vars; disregard this versioning when sorting.
|
|
func preInliningDcls(fnsym *obj.LSym) []*ir.Name {
|
|
fn := base.Ctxt.DwFixups.GetPrecursorFunc(fnsym).(*ir.Func)
|
|
var rdcl []*ir.Name
|
|
for _, n := range fn.Inl.Dcl {
|
|
c := n.Sym().Name[0]
|
|
// Avoid reporting "_" parameters, since if there are more than
|
|
// one, it can result in a collision later on, as in #23179.
|
|
if n.Sym().Name == "_" || c == '.' || n.Type().IsUntyped() {
|
|
continue
|
|
}
|
|
rdcl = append(rdcl, n)
|
|
}
|
|
return rdcl
|
|
}
|
|
|
|
// createSimpleVars creates a DWARF entry for every variable declared in the
|
|
// function, claiming that they are permanently on the stack.
|
|
func createSimpleVars(fnsym *obj.LSym, apDecls []*ir.Name, closureVars map[*ir.Name]int64) ([]*ir.Name, []*dwarf.Var, ir.NameSet) {
|
|
var vars []*dwarf.Var
|
|
var decls []*ir.Name
|
|
var selected ir.NameSet
|
|
for _, n := range apDecls {
|
|
if ir.IsAutoTmp(n) {
|
|
continue
|
|
}
|
|
|
|
decls = append(decls, n)
|
|
vars = append(vars, createSimpleVar(fnsym, n, closureVars))
|
|
selected.Add(n)
|
|
}
|
|
return decls, vars, selected
|
|
}
|
|
|
|
func createSimpleVar(fnsym *obj.LSym, n *ir.Name, closureVars map[*ir.Name]int64) *dwarf.Var {
|
|
var tag int
|
|
var offs int64
|
|
|
|
localAutoOffset := func() int64 {
|
|
offs = n.FrameOffset()
|
|
if base.Ctxt.Arch.FixedFrameSize == 0 {
|
|
offs -= int64(types.PtrSize)
|
|
}
|
|
if buildcfg.FramePointerEnabled {
|
|
offs -= int64(types.PtrSize)
|
|
}
|
|
return offs
|
|
}
|
|
|
|
switch n.Class {
|
|
case ir.PAUTO:
|
|
offs = localAutoOffset()
|
|
tag = dwarf.DW_TAG_variable
|
|
case ir.PPARAM, ir.PPARAMOUT:
|
|
tag = dwarf.DW_TAG_formal_parameter
|
|
if n.IsOutputParamInRegisters() {
|
|
offs = localAutoOffset()
|
|
} else {
|
|
offs = n.FrameOffset() + base.Ctxt.Arch.FixedFrameSize
|
|
}
|
|
|
|
default:
|
|
base.Fatalf("createSimpleVar unexpected class %v for node %v", n.Class, n)
|
|
}
|
|
|
|
typename := dwarf.InfoPrefix + types.TypeSymName(n.Type())
|
|
delete(fnsym.Func().Autot, reflectdata.TypeLinksym(n.Type()))
|
|
inlIndex := 0
|
|
if base.Flag.GenDwarfInl > 1 {
|
|
if n.InlFormal() || n.InlLocal() {
|
|
inlIndex = posInlIndex(n.Pos()) + 1
|
|
if n.InlFormal() {
|
|
tag = dwarf.DW_TAG_formal_parameter
|
|
}
|
|
}
|
|
}
|
|
declpos := base.Ctxt.InnermostPos(declPos(n))
|
|
return &dwarf.Var{
|
|
Name: n.Sym().Name,
|
|
IsReturnValue: n.Class == ir.PPARAMOUT,
|
|
IsInlFormal: n.InlFormal(),
|
|
Tag: tag,
|
|
StackOffset: int32(offs),
|
|
Type: base.Ctxt.Lookup(typename),
|
|
DeclFile: declpos.RelFilename(),
|
|
DeclLine: declpos.RelLine(),
|
|
DeclCol: declpos.RelCol(),
|
|
InlIndex: int32(inlIndex),
|
|
ChildIndex: -1,
|
|
DictIndex: n.DictIndex,
|
|
ClosureOffset: closureOffset(n, closureVars),
|
|
}
|
|
}
|
|
|
|
// createABIVars creates DWARF variables for functions in which the
|
|
// register ABI is enabled but optimization is turned off. It uses a
|
|
// hybrid approach in which register-resident input params are
|
|
// captured with location lists, and all other vars use the "simple"
|
|
// strategy.
|
|
func createABIVars(fnsym *obj.LSym, fn *ir.Func, apDecls []*ir.Name, closureVars map[*ir.Name]int64) ([]*ir.Name, []*dwarf.Var, ir.NameSet) {
|
|
|
|
// Invoke createComplexVars to generate dwarf vars for input parameters
|
|
// that are register-allocated according to the ABI rules.
|
|
decls, vars, selected := createComplexVars(fnsym, fn, closureVars)
|
|
|
|
// Now fill in the remainder of the variables: input parameters
|
|
// that are not register-resident, output parameters, and local
|
|
// variables.
|
|
for _, n := range apDecls {
|
|
if ir.IsAutoTmp(n) {
|
|
continue
|
|
}
|
|
if _, ok := selected[n]; ok {
|
|
// already handled
|
|
continue
|
|
}
|
|
|
|
decls = append(decls, n)
|
|
vars = append(vars, createSimpleVar(fnsym, n, closureVars))
|
|
selected.Add(n)
|
|
}
|
|
|
|
return decls, vars, selected
|
|
}
|
|
|
|
// createComplexVars creates recomposed DWARF vars with location lists,
|
|
// suitable for describing optimized code.
|
|
func createComplexVars(fnsym *obj.LSym, fn *ir.Func, closureVars map[*ir.Name]int64) ([]*ir.Name, []*dwarf.Var, ir.NameSet) {
|
|
debugInfo := fn.DebugInfo.(*ssa.FuncDebug)
|
|
|
|
// Produce a DWARF variable entry for each user variable.
|
|
var decls []*ir.Name
|
|
var vars []*dwarf.Var
|
|
var ssaVars ir.NameSet
|
|
|
|
for varID, dvar := range debugInfo.Vars {
|
|
n := dvar
|
|
ssaVars.Add(n)
|
|
for _, slot := range debugInfo.VarSlots[varID] {
|
|
ssaVars.Add(debugInfo.Slots[slot].N)
|
|
}
|
|
|
|
if dvar := createComplexVar(fnsym, fn, ssa.VarID(varID), closureVars); dvar != nil {
|
|
decls = append(decls, n)
|
|
vars = append(vars, dvar)
|
|
}
|
|
}
|
|
|
|
return decls, vars, ssaVars
|
|
}
|
|
|
|
// createComplexVar builds a single DWARF variable entry and location list.
|
|
func createComplexVar(fnsym *obj.LSym, fn *ir.Func, varID ssa.VarID, closureVars map[*ir.Name]int64) *dwarf.Var {
|
|
debug := fn.DebugInfo.(*ssa.FuncDebug)
|
|
n := debug.Vars[varID]
|
|
|
|
var tag int
|
|
switch n.Class {
|
|
case ir.PAUTO:
|
|
tag = dwarf.DW_TAG_variable
|
|
case ir.PPARAM, ir.PPARAMOUT:
|
|
tag = dwarf.DW_TAG_formal_parameter
|
|
default:
|
|
return nil
|
|
}
|
|
|
|
gotype := reflectdata.TypeLinksym(n.Type())
|
|
delete(fnsym.Func().Autot, gotype)
|
|
typename := dwarf.InfoPrefix + gotype.Name[len("type:"):]
|
|
inlIndex := 0
|
|
if base.Flag.GenDwarfInl > 1 {
|
|
if n.InlFormal() || n.InlLocal() {
|
|
inlIndex = posInlIndex(n.Pos()) + 1
|
|
if n.InlFormal() {
|
|
tag = dwarf.DW_TAG_formal_parameter
|
|
}
|
|
}
|
|
}
|
|
declpos := base.Ctxt.InnermostPos(n.Pos())
|
|
dvar := &dwarf.Var{
|
|
Name: n.Sym().Name,
|
|
IsReturnValue: n.Class == ir.PPARAMOUT,
|
|
IsInlFormal: n.InlFormal(),
|
|
Tag: tag,
|
|
WithLoclist: true,
|
|
Type: base.Ctxt.Lookup(typename),
|
|
// The stack offset is used as a sorting key, so for decomposed
|
|
// variables just give it the first one. It's not used otherwise.
|
|
// This won't work well if the first slot hasn't been assigned a stack
|
|
// location, but it's not obvious how to do better.
|
|
StackOffset: ssagen.StackOffset(debug.Slots[debug.VarSlots[varID][0]]),
|
|
DeclFile: declpos.RelFilename(),
|
|
DeclLine: declpos.RelLine(),
|
|
DeclCol: declpos.RelCol(),
|
|
InlIndex: int32(inlIndex),
|
|
ChildIndex: -1,
|
|
DictIndex: n.DictIndex,
|
|
ClosureOffset: closureOffset(n, closureVars),
|
|
}
|
|
list := debug.LocationLists[varID]
|
|
if len(list) != 0 {
|
|
dvar.PutLocationList = func(listSym, startPC dwarf.Sym) {
|
|
debug.PutLocationList(list, base.Ctxt, listSym.(*obj.LSym), startPC.(*obj.LSym))
|
|
}
|
|
}
|
|
return dvar
|
|
}
|
|
|
|
// createHeapDerefLocationList creates a location list for a heap-escaped variable
|
|
// that describes "dereference pointer at stack offset"
|
|
func createHeapDerefLocationList(n *ir.Name, entryID ssa.ID) []byte {
|
|
// Get the stack offset where the heap pointer is stored
|
|
heapPtrOffset := n.Heapaddr.FrameOffset()
|
|
if base.Ctxt.Arch.FixedFrameSize == 0 {
|
|
heapPtrOffset -= int64(types.PtrSize)
|
|
}
|
|
if buildcfg.FramePointerEnabled {
|
|
heapPtrOffset -= int64(types.PtrSize)
|
|
}
|
|
|
|
// Create a location expression: DW_OP_fbreg <offset> DW_OP_deref
|
|
var locExpr []byte
|
|
var sizeIdx int
|
|
locExpr, sizeIdx = ssa.SetupLocList(base.Ctxt, entryID, locExpr, ssa.BlockStart.ID, ssa.FuncEnd.ID)
|
|
locExpr = append(locExpr, dwarf.DW_OP_fbreg)
|
|
locExpr = dwarf.AppendSleb128(locExpr, heapPtrOffset)
|
|
locExpr = append(locExpr, dwarf.DW_OP_deref)
|
|
base.Ctxt.Arch.ByteOrder.PutUint16(locExpr[sizeIdx:], uint16(len(locExpr)-sizeIdx-2))
|
|
return locExpr
|
|
}
|
|
|
|
// RecordFlags records the specified command-line flags to be placed
|
|
// in the DWARF info.
|
|
func RecordFlags(flags ...string) {
|
|
if base.Ctxt.Pkgpath == "" {
|
|
base.Fatalf("missing pkgpath")
|
|
}
|
|
|
|
type BoolFlag interface {
|
|
IsBoolFlag() bool
|
|
}
|
|
type CountFlag interface {
|
|
IsCountFlag() bool
|
|
}
|
|
var cmd bytes.Buffer
|
|
for _, name := range flags {
|
|
f := flag.Lookup(name)
|
|
if f == nil {
|
|
continue
|
|
}
|
|
getter := f.Value.(flag.Getter)
|
|
if getter.String() == f.DefValue {
|
|
// Flag has default value, so omit it.
|
|
continue
|
|
}
|
|
if bf, ok := f.Value.(BoolFlag); ok && bf.IsBoolFlag() {
|
|
val, ok := getter.Get().(bool)
|
|
if ok && val {
|
|
fmt.Fprintf(&cmd, " -%s", f.Name)
|
|
continue
|
|
}
|
|
}
|
|
if cf, ok := f.Value.(CountFlag); ok && cf.IsCountFlag() {
|
|
val, ok := getter.Get().(int)
|
|
if ok && val == 1 {
|
|
fmt.Fprintf(&cmd, " -%s", f.Name)
|
|
continue
|
|
}
|
|
}
|
|
fmt.Fprintf(&cmd, " -%s=%v", f.Name, getter.Get())
|
|
}
|
|
|
|
// Adds flag to producer string signaling whether regabi is turned on or
|
|
// off.
|
|
// Once regabi is turned on across the board and the relative GOEXPERIMENT
|
|
// knobs no longer exist this code should be removed.
|
|
if buildcfg.Experiment.RegabiArgs {
|
|
cmd.Write([]byte(" regabi"))
|
|
}
|
|
|
|
if cmd.Len() == 0 {
|
|
return
|
|
}
|
|
s := base.Ctxt.Lookup(dwarf.CUInfoPrefix + "producer." + base.Ctxt.Pkgpath)
|
|
s.Type = objabi.SDWARFCUINFO
|
|
// Sometimes (for example when building tests) we can link
|
|
// together two package main archives. So allow dups.
|
|
s.Set(obj.AttrDuplicateOK, true)
|
|
base.Ctxt.Data = append(base.Ctxt.Data, s)
|
|
s.P = cmd.Bytes()[1:]
|
|
}
|
|
|
|
// RecordPackageName records the name of the package being
|
|
// compiled, so that the linker can save it in the compile unit's DIE.
|
|
func RecordPackageName() {
|
|
s := base.Ctxt.Lookup(dwarf.CUInfoPrefix + "packagename." + base.Ctxt.Pkgpath)
|
|
s.Type = objabi.SDWARFCUINFO
|
|
// Sometimes (for example when building tests) we can link
|
|
// together two package main archives. So allow dups.
|
|
s.Set(obj.AttrDuplicateOK, true)
|
|
base.Ctxt.Data = append(base.Ctxt.Data, s)
|
|
s.P = []byte(types.LocalPkg.Name)
|
|
}
|
|
|
|
func closureOffset(n *ir.Name, closureVars map[*ir.Name]int64) int64 {
|
|
return closureVars[n]
|
|
}
|