go/src/cmd/compile/internal/ssa/export_test.go
Cherry Zhang 9ebf3d5100 cmd/compile: move write barrier insertion to SSA
When the compiler insert write barriers, the frontend makes
conservative decisions at an early stage. This sometimes have
false positives because of the lack of information, for example,
writes on stack. SSA's writebarrier pass identifies writes on
stack and eliminates write barriers for them.

This CL moves write barrier insertion into SSA. The frontend no
longer makes decisions about write barriers, and simply does
normal assignments and emits normal Store ops when building SSA.
SSA writebarrier pass inserts write barrier for Stores when needed.
There, it has better information about the store because Phi and
Copy propagation are done at that time.

This CL only changes StoreWB to Store in gc/ssa.go. A followup CL
simplifies SSA building code.

Updates #17583.

Change-Id: I4592d9bc0067503befc169c50b4e6f4765673bec
Reviewed-on: https://go-review.googlesource.com/36839
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-03-16 14:24:21 +00:00

123 lines
4.8 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/internal/obj"
"cmd/internal/obj/s390x"
"cmd/internal/obj/x86"
"cmd/internal/src"
"testing"
)
var CheckFunc = checkFunc
var Opt = opt
var Deadcode = deadcode
var Copyelim = copyelim
var TestCtxt = obj.Linknew(&x86.Linkamd64)
func testConfig(t testing.TB) *Config {
return NewConfig("amd64", DummyFrontend{t}, TestCtxt, true)
}
func testConfigS390X(t testing.TB) *Config {
return NewConfig("s390x", DummyFrontend{t}, obj.Linknew(&s390x.Links390x), true)
}
// DummyFrontend is a test-only frontend.
// It assumes 64 bit integers and pointers.
type DummyFrontend struct {
t testing.TB
}
type DummyAuto struct {
t Type
s string
}
func (d *DummyAuto) Typ() Type {
return d.t
}
func (d *DummyAuto) String() string {
return d.s
}
func (DummyFrontend) StringData(s string) interface{} {
return nil
}
func (DummyFrontend) Auto(t Type) GCNode {
return &DummyAuto{t: t, s: "aDummyAuto"}
}
func (d DummyFrontend) SplitString(s LocalSlot) (LocalSlot, LocalSlot) {
return LocalSlot{s.N, d.TypeBytePtr(), s.Off}, LocalSlot{s.N, d.TypeInt(), s.Off + 8}
}
func (d DummyFrontend) SplitInterface(s LocalSlot) (LocalSlot, LocalSlot) {
return LocalSlot{s.N, d.TypeBytePtr(), s.Off}, LocalSlot{s.N, d.TypeBytePtr(), s.Off + 8}
}
func (d DummyFrontend) SplitSlice(s LocalSlot) (LocalSlot, LocalSlot, LocalSlot) {
return LocalSlot{s.N, s.Type.ElemType().PtrTo(), s.Off},
LocalSlot{s.N, d.TypeInt(), s.Off + 8},
LocalSlot{s.N, d.TypeInt(), s.Off + 16}
}
func (d DummyFrontend) SplitComplex(s LocalSlot) (LocalSlot, LocalSlot) {
if s.Type.Size() == 16 {
return LocalSlot{s.N, d.TypeFloat64(), s.Off}, LocalSlot{s.N, d.TypeFloat64(), s.Off + 8}
}
return LocalSlot{s.N, d.TypeFloat32(), s.Off}, LocalSlot{s.N, d.TypeFloat32(), s.Off + 4}
}
func (d DummyFrontend) SplitInt64(s LocalSlot) (LocalSlot, LocalSlot) {
if s.Type.IsSigned() {
return LocalSlot{s.N, d.TypeInt32(), s.Off + 4}, LocalSlot{s.N, d.TypeUInt32(), s.Off}
}
return LocalSlot{s.N, d.TypeUInt32(), s.Off + 4}, LocalSlot{s.N, d.TypeUInt32(), s.Off}
}
func (d DummyFrontend) SplitStruct(s LocalSlot, i int) LocalSlot {
return LocalSlot{s.N, s.Type.FieldType(i), s.Off + s.Type.FieldOff(i)}
}
func (d DummyFrontend) SplitArray(s LocalSlot) LocalSlot {
return LocalSlot{s.N, s.Type.ElemType(), s.Off}
}
func (DummyFrontend) Line(_ src.XPos) string {
return "unknown.go:0"
}
func (DummyFrontend) AllocFrame(f *Func) {
}
func (DummyFrontend) Syslook(s string) *obj.LSym {
return obj.Linklookup(TestCtxt, s, 0)
}
func (DummyFrontend) UseWriteBarrier() bool {
return true // only writebarrier_test cares
}
func (d DummyFrontend) Logf(msg string, args ...interface{}) { d.t.Logf(msg, args...) }
func (d DummyFrontend) Log() bool { return true }
func (d DummyFrontend) Fatalf(_ src.XPos, msg string, args ...interface{}) { d.t.Fatalf(msg, args...) }
func (d DummyFrontend) Warnl(_ src.XPos, msg string, args ...interface{}) { d.t.Logf(msg, args...) }
func (d DummyFrontend) Debug_checknil() bool { return false }
func (d DummyFrontend) Debug_wb() bool { return false }
func (d DummyFrontend) TypeBool() Type { return TypeBool }
func (d DummyFrontend) TypeInt8() Type { return TypeInt8 }
func (d DummyFrontend) TypeInt16() Type { return TypeInt16 }
func (d DummyFrontend) TypeInt32() Type { return TypeInt32 }
func (d DummyFrontend) TypeInt64() Type { return TypeInt64 }
func (d DummyFrontend) TypeUInt8() Type { return TypeUInt8 }
func (d DummyFrontend) TypeUInt16() Type { return TypeUInt16 }
func (d DummyFrontend) TypeUInt32() Type { return TypeUInt32 }
func (d DummyFrontend) TypeUInt64() Type { return TypeUInt64 }
func (d DummyFrontend) TypeFloat32() Type { return TypeFloat32 }
func (d DummyFrontend) TypeFloat64() Type { return TypeFloat64 }
func (d DummyFrontend) TypeInt() Type { return TypeInt64 }
func (d DummyFrontend) TypeUintptr() Type { return TypeUInt64 }
func (d DummyFrontend) TypeString() Type { panic("unimplemented") }
func (d DummyFrontend) TypeBytePtr() Type { return TypeBytePtr }
func (d DummyFrontend) DerefItab(sym *obj.LSym, off int64) *obj.LSym { return nil }
func (d DummyFrontend) CanSSA(t Type) bool {
// There are no un-SSAable types in dummy land.
return true
}