go/src/cmd/compile/internal/noder/irgen.go
Dan Scales a70eb2c9f2 cmd/compile: get instantiated generic types working with interfaces
Get instantiatiated generic types working with interfaces, including
typechecking assignments to interfaces and instantiating all the methods
properly. To get it all working, this change includes:

 - Add support for substituting in interfaces in subster.typ()

 - Fill in the info for the methods for all instantiated generic types,
   so those methods will be available for later typechecking (by the old
   typechecker) when assigning an instantiated generic type to an
   interface. We also want those methods available so we have the list
   when we want to instantiate all methods of an instantiated type. We
   have both for instantiated types encountered during the initial noder
   phase, and for instantiated types created during stenciling of a
   function/method.

 - When we first create a fully-instantiated generic type (whether
   during initial noder2 pass or while instantiating a method/function),
   add it to a list so that all of its methods will also be
   instantiated. This is needed so that an instantiated type can be
   assigned to an interface.

 - Properly substitute type names in the names of instantiated methods.

 - New accessor methods for types.Type.RParam.

 - To deal with generic types which are empty structs (or just don't use
   their type params anywhere), we want to set HasTParam if a named type
   has any type params that are not fully instantiated, even if the
   type param is not used in the type.

 - In subst.typ() and elsewhere, always set sym.Def for a new forwarding
   type we are creating, so we always create a single unique type for
   each generic type instantiation. This handles recursion within a
   type, and also recursive relationships across many types or methods.
   We remove the seen[] hashtable, which was serving the same purpose,
   but for subst.typ() only. We now handle all kinds of recursive types.

 - We don't seem to need to force types.CheckSize() on
   created/substituted generic types anymore, so commented out for now.

 - Add an RParams accessor to types2.Signature, and also a new
   exported types2.AsSignature() function.

Change-Id: If6c5dd98427b20bfe9de3379cc16f83df9c9b632
Reviewed-on: https://go-review.googlesource.com/c/go/+/298449
Run-TryBot: Dan Scales <danscales@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Trust: Dan Scales <danscales@google.com>
Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-09 16:37:52 +00:00

212 lines
6.1 KiB
Go

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"fmt"
"os"
"cmd/compile/internal/base"
"cmd/compile/internal/dwarfgen"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
// check2 type checks a Go package using types2, and then generates IR
// using the results.
func check2(noders []*noder) {
if base.SyntaxErrors() != 0 {
base.ErrorExit()
}
// setup and syntax error reporting
var m posMap
files := make([]*syntax.File, len(noders))
for i, p := range noders {
m.join(&p.posMap)
files[i] = p.file
}
// typechecking
conf := types2.Config{
GoVersion: base.Flag.Lang,
InferFromConstraints: true,
IgnoreLabels: true, // parser already checked via syntax.CheckBranches mode
CompilerErrorMessages: true, // use error strings matching existing compiler errors
Error: func(err error) {
terr := err.(types2.Error)
if len(terr.Msg) > 0 && terr.Msg[0] == '\t' {
// types2 reports error clarifications via separate
// error messages which are indented with a tab.
// Ignore them to satisfy tools and tests that expect
// only one error in such cases.
// TODO(gri) Need to adjust error reporting in types2.
return
}
base.ErrorfAt(m.makeXPos(terr.Pos), "%s", terr.Msg)
},
Importer: &gcimports{
packages: make(map[string]*types2.Package),
},
Sizes: &gcSizes{},
}
info := types2.Info{
Types: make(map[syntax.Expr]types2.TypeAndValue),
Defs: make(map[*syntax.Name]types2.Object),
Uses: make(map[*syntax.Name]types2.Object),
Selections: make(map[*syntax.SelectorExpr]*types2.Selection),
Implicits: make(map[syntax.Node]types2.Object),
Scopes: make(map[syntax.Node]*types2.Scope),
Inferred: make(map[syntax.Expr]types2.Inferred),
// expand as needed
}
pkg, err := conf.Check(base.Ctxt.Pkgpath, files, &info)
files = nil
base.ExitIfErrors()
if err != nil {
base.FatalfAt(src.NoXPos, "conf.Check error: %v", err)
}
if base.Flag.G < 2 {
os.Exit(0)
}
g := irgen{
target: typecheck.Target,
self: pkg,
info: &info,
posMap: m,
objs: make(map[types2.Object]*ir.Name),
typs: make(map[types2.Type]*types.Type),
}
g.generate(noders)
if base.Flag.G < 3 {
os.Exit(0)
}
}
type irgen struct {
target *ir.Package
self *types2.Package
info *types2.Info
posMap
objs map[types2.Object]*ir.Name
typs map[types2.Type]*types.Type
marker dwarfgen.ScopeMarker
// Fully-instantiated generic types whose methods should be instantiated
instTypeList []*types.Type
}
func (g *irgen) generate(noders []*noder) {
types.LocalPkg.Name = g.self.Name()
typecheck.TypecheckAllowed = true
// Prevent size calculations until we set the underlying type
// for all package-block defined types.
types.DeferCheckSize()
// At this point, types2 has already handled name resolution and
// type checking. We just need to map from its object and type
// representations to those currently used by the rest of the
// compiler. This happens mostly in 3 passes.
// 1. Process all import declarations. We use the compiler's own
// importer for this, rather than types2's gcimporter-derived one,
// to handle extensions and inline function bodies correctly.
//
// Also, we need to do this in a separate pass, because mappings are
// instantiated on demand. If we interleaved processing import
// declarations with other declarations, it's likely we'd end up
// wanting to map an object/type from another source file, but not
// yet have the import data it relies on.
declLists := make([][]syntax.Decl, len(noders))
Outer:
for i, p := range noders {
g.pragmaFlags(p.file.Pragma, ir.GoBuildPragma)
for j, decl := range p.file.DeclList {
switch decl := decl.(type) {
case *syntax.ImportDecl:
g.importDecl(p, decl)
default:
declLists[i] = p.file.DeclList[j:]
continue Outer // no more ImportDecls
}
}
}
types.LocalPkg.Height = myheight
// 2. Process all package-block type declarations. As with imports,
// we need to make sure all types are properly instantiated before
// trying to map any expressions that utilize them. In particular,
// we need to make sure type pragmas are already known (see comment
// in irgen.typeDecl).
//
// We could perhaps instead defer processing of package-block
// variable initializers and function bodies, like noder does, but
// special-casing just package-block type declarations minimizes the
// differences between processing package-block and function-scoped
// declarations.
for _, declList := range declLists {
for _, decl := range declList {
switch decl := decl.(type) {
case *syntax.TypeDecl:
g.typeDecl((*ir.Nodes)(&g.target.Decls), decl)
}
}
}
types.ResumeCheckSize()
// 3. Process all remaining declarations.
for _, declList := range declLists {
g.target.Decls = append(g.target.Decls, g.decls(declList)...)
}
if base.Flag.W > 1 {
for _, n := range g.target.Decls {
s := fmt.Sprintf("\nafter noder2 %v", n)
ir.Dump(s, n)
}
}
typecheck.DeclareUniverse()
for _, p := range noders {
// Process linkname and cgo pragmas.
p.processPragmas()
// Double check for any type-checking inconsistencies. This can be
// removed once we're confident in IR generation results.
syntax.Walk(p.file, func(n syntax.Node) bool {
g.validate(n)
return false
})
}
// Create any needed stencils of generic functions
g.stencil()
// For now, remove all generic functions from g.target.Decl, since they
// have been used for stenciling, but don't compile. TODO: We will
// eventually export any exportable generic functions.
j := 0
for i, decl := range g.target.Decls {
if decl.Op() != ir.ODCLFUNC || !decl.Type().HasTParam() {
g.target.Decls[j] = g.target.Decls[i]
j++
}
}
g.target.Decls = g.target.Decls[:j]
}
func (g *irgen) unhandled(what string, p poser) {
base.FatalfAt(g.pos(p), "unhandled %s: %T", what, p)
panic("unreachable")
}