go/src/simd/genfiles.go
David Chase af6475df73 [dev.simd] simd: add testing hooks for size-changing conversions
and adds some tests of size-changing conversions.

IMO the template naming conventions in genfiles
are getting grubby, and I plan to change them in
an immediately following CL.

Change-Id: I4a72e8a8c9e9806fab60570dff4c87a754e427c5
Reviewed-on: https://go-review.googlesource.com/c/go/+/697456
Commit-Queue: David Chase <drchase@google.com>
Reviewed-by: Junyang Shao <shaojunyang@google.com>
TryBot-Bypass: David Chase <drchase@google.com>
2025-08-20 15:10:27 -07:00

850 lines
25 KiB
Go

// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build ignore
package main
// this generates type-instantiated boilerplate code for
// slice operations and tests
import (
"bufio"
"bytes"
"flag"
"fmt"
"go/format"
"io"
"os"
"strings"
"text/template"
)
type resultTypeFunc func(t string, w, c int) (ot string, ow int, oc int)
// shapes describes a combination of vector widths and various element types
type shapes struct {
vecs []int // Vector bit width for this shape.
ints []int // Int element bit width(s) for this shape
uints []int // Unsigned int element bit width(s) for this shape
floats []int // Float element bit width(s) for this shape
output resultTypeFunc
}
// shapeAndTemplate is a template and the set of shapes on which it will be expanded
type shapeAndTemplate struct {
s *shapes
t *template.Template
}
func (sat shapeAndTemplate) target(outType string, width int) shapeAndTemplate {
newSat := sat
newShape := *sat.s
newShape.output = func(t string, w, c int) (ot string, ow int, oc int) {
return outType, width, c
}
newSat.s = &newShape
return newSat
}
func (sat shapeAndTemplate) shrinkTo(outType string, by int) shapeAndTemplate {
newSat := sat
newShape := *sat.s
newShape.output = func(t string, w, c int) (ot string, ow int, oc int) {
return outType, w / by, c * by
}
newSat.s = &newShape
return newSat
}
var allShapes = &shapes{
vecs: []int{128, 256, 512},
ints: []int{8, 16, 32, 64},
uints: []int{8, 16, 32, 64},
floats: []int{32, 64},
}
var avx512Shapes = &shapes{
vecs: []int{512},
ints: []int{8, 16, 32, 64},
uints: []int{8, 16, 32, 64},
floats: []int{32, 64},
}
var avx2Shapes = &shapes{
vecs: []int{128, 256},
ints: []int{8, 16, 32, 64},
uints: []int{8, 16, 32, 64},
floats: []int{32, 64},
}
var avx2MaskedLoadShapes = &shapes{
vecs: []int{128, 256},
ints: []int{32, 64},
uints: []int{32, 64},
floats: []int{32, 64},
}
var avx2SmallLoadPunShapes = &shapes{
// ints are done by hand, these are type-punned to int.
vecs: []int{128, 256},
uints: []int{8, 16},
}
var unaryFlaky = &shapes{ // for tests that support flaky equality
vecs: []int{128, 256, 512},
floats: []int{32, 64},
}
var ternaryFlaky = &shapes{ // for tests that support flaky equality
vecs: []int{128, 256, 512},
floats: []int{32},
}
var avx2SignedComparisons = &shapes{
vecs: []int{128, 256},
ints: []int{8, 16, 32, 64},
}
var avx2UnsignedComparisons = &shapes{
vecs: []int{128, 256},
uints: []int{8, 16, 32, 64},
}
type templateData struct {
Vec string // the type of the vector, e.g. Float32x4
AOrAn string // for documentation, the article "a" or "an"
Width int // the bit width of the element type, e.g. 32
Vwidth int // the width of the vector type, e.g. 128
Count int // the number of elements, e.g. 4
WxC string // the width-by-type string, e.g., "32x4"
BxC string // as if bytes, in the proper count, e.g., "8x16" (W==8)
Base string // the capitalized Base Type of the vector, e.g., "Float"
Type string // the element type, e.g. "float32"
OxFF string // a mask for the lowest 'count' bits
Ovec string
Otype string
OType string
Ocount int
}
func (t templateData) As128BitVec() string {
return fmt.Sprintf("%s%dx%d", t.Base, t.Width, 128/t.Width)
}
func oneTemplate(t *template.Template, baseType string, width, count int, out io.Writer, rtf resultTypeFunc) {
b := width * count
if b < 128 || b > 512 {
return
}
ot, ow, oc := baseType, width, count
if rtf != nil {
ot, ow, oc = rtf(ot, ow, oc)
if ow*oc > 512 || ow*oc < 128 || ow < 8 || ow > 64 {
return
}
// TODO someday we will support conversions to 16-bit floats
if ot == "float" && ow < 32 {
return
}
}
ovType := fmt.Sprintf("%s%dx%d", strings.ToUpper(ot[:1])+ot[1:], ow, oc)
oeType := fmt.Sprintf("%s%d", ot, ow)
oEType := fmt.Sprintf("%s%d", strings.ToUpper(ot[:1])+ot[1:], ow)
wxc := fmt.Sprintf("%dx%d", width, count)
BaseType := strings.ToUpper(baseType[:1]) + baseType[1:]
vType := fmt.Sprintf("%s%s", BaseType, wxc)
eType := fmt.Sprintf("%s%d", baseType, width)
bxc := fmt.Sprintf("%dx%d", 8, count*(width/8))
aOrAn := "a"
if strings.Contains("aeiou", baseType[:1]) {
aOrAn = "an"
}
oxFF := fmt.Sprintf("0x%x", uint64((1<<count)-1))
t.Execute(out, templateData{
Vec: vType,
AOrAn: aOrAn,
Width: width,
Vwidth: b,
Count: count,
WxC: wxc,
BxC: bxc,
Base: BaseType,
Type: eType,
OxFF: oxFF,
Ovec: ovType,
Otype: oeType,
Ocount: oc,
OType: oEType,
})
}
// forTemplates expands the template sat.t for each shape
// in sat.s, writing to out.
func (sat shapeAndTemplate) forTemplates(out io.Writer) {
t, s := sat.t, sat.s
vecs := s.vecs
ints := s.ints
uints := s.uints
floats := s.floats
for _, v := range vecs {
for _, w := range ints {
c := v / w
oneTemplate(t, "int", w, c, out, sat.s.output)
}
for _, w := range uints {
c := v / w
oneTemplate(t, "uint", w, c, out, sat.s.output)
}
for _, w := range floats {
c := v / w
oneTemplate(t, "float", w, c, out, sat.s.output)
}
}
}
func prologue(s string, out io.Writer) {
fmt.Fprintf(out,
`// Code generated by '%s'; DO NOT EDIT.
//go:build goexperiment.simd
package simd
`, s)
}
func unsafePrologue(s string, out io.Writer) {
fmt.Fprintf(out,
`// Code generated by '%s'; DO NOT EDIT.
//go:build goexperiment.simd
package simd
import "unsafe"
`, s)
}
func testPrologue(t, s string, out io.Writer) {
fmt.Fprintf(out,
`// Code generated by '%s'; DO NOT EDIT.
//go:build goexperiment.simd
// This file contains functions testing %s.
// Each function in this file is specialized for a
// particular simd type <BaseType><Width>x<Count>.
package simd_test
import (
"simd"
"testing"
)
`, s, t)
}
func curryTestPrologue(t string) func(s string, out io.Writer) {
return func(s string, out io.Writer) {
testPrologue(t, s, out)
}
}
func templateOf(name, temp string) shapeAndTemplate {
return shapeAndTemplate{s: allShapes,
t: template.Must(template.New(name).Parse(temp))}
}
func shapedTemplateOf(s *shapes, name, temp string) shapeAndTemplate {
return shapeAndTemplate{s: s,
t: template.Must(template.New(name).Parse(temp))}
}
var sliceTemplate = templateOf("slice", `
// Load{{.Vec}}Slice loads {{.AOrAn}} {{.Vec}} from a slice of at least {{.Count}} {{.Type}}s
func Load{{.Vec}}Slice(s []{{.Type}}) {{.Vec}} {
return Load{{.Vec}}((*[{{.Count}}]{{.Type}})(s))
}
// StoreSlice stores x into a slice of at least {{.Count}} {{.Type}}s
func (x {{.Vec}}) StoreSlice(s []{{.Type}}) {
x.Store((*[{{.Count}}]{{.Type}})(s))
}
`)
var unaryTemplate = templateOf("unary_helpers", `
// test{{.Vec}}Unary tests the simd unary method f against the expected behavior generated by want
func test{{.Vec}}Unary(t *testing.T, f func(_ simd.{{.Vec}}) simd.{{.Vec}}, want func(_ []{{.Type}}) []{{.Type}}) {
n := {{.Count}}
t.Helper()
forSlice(t, {{.Type}}s, n, func(x []{{.Type}}) bool {
t.Helper()
a := simd.Load{{.Vec}}Slice(x)
g := make([]{{.Type}}, n)
f(a).StoreSlice(g)
w := want(x)
return checkSlicesLogInput(t, g, w, 0.0, func() {t.Helper(); t.Logf("x=%v", x)})
})
}
`)
var unaryFlakyTemplate = shapedTemplateOf(unaryFlaky, "unary_flaky_helpers", `
// test{{.Vec}}UnaryFlaky tests the simd unary method f against the expected behavior generated by want,
// but using a flakiness parameter because we haven't exactly figured out how simd floating point works
func test{{.Vec}}UnaryFlaky(t *testing.T, f func(x simd.{{.Vec}}) simd.{{.Vec}}, want func(x []{{.Type}}) []{{.Type}}, flakiness float64) {
n := {{.Count}}
t.Helper()
forSlice(t, {{.Type}}s, n, func(x []{{.Type}}) bool {
t.Helper()
a := simd.Load{{.Vec}}Slice(x)
g := make([]{{.Type}}, n)
f(a).StoreSlice(g)
w := want(x)
return checkSlicesLogInput(t, g, w, flakiness, func() {t.Helper(); t.Logf("x=%v", x)})
})
}
`)
var convertTemplate = templateOf("convert_helpers", `
// test{{.Vec}}ConvertTo{{.OType}} tests the simd conversion method f against the expected behavior generated by want
// This is for count-preserving conversions, so if there is a change in size, then there is a change in vector width.
func test{{.Vec}}ConvertTo{{.OType}}(t *testing.T, f func(x simd.{{.Vec}}) simd.{{.Ovec}}, want func(x []{{.Type}}) []{{.Otype}}) {
n := {{.Count}}
t.Helper()
forSlice(t, {{.Type}}s, n, func(x []{{.Type}}) bool {
t.Helper()
a := simd.Load{{.Vec}}Slice(x)
g := make([]{{.Otype}}, n)
f(a).StoreSlice(g)
w := want(x)
return checkSlicesLogInput(t, g, w, 0.0, func() {t.Helper(); t.Logf("x=%v", x)})
})
}
`)
var unaryToInt32 = convertTemplate.target("int", 32)
var unaryToUint32 = convertTemplate.target("uint", 32)
var unaryToUint16 = convertTemplate.target("uint", 16)
var binaryTemplate = templateOf("binary_helpers", `
// test{{.Vec}}Binary tests the simd binary method f against the expected behavior generated by want
func test{{.Vec}}Binary(t *testing.T, f func(_, _ simd.{{.Vec}}) simd.{{.Vec}}, want func(_, _ []{{.Type}}) []{{.Type}}) {
n := {{.Count}}
t.Helper()
forSlicePair(t, {{.Type}}s, n, func(x, y []{{.Type}}) bool {
t.Helper()
a := simd.Load{{.Vec}}Slice(x)
b := simd.Load{{.Vec}}Slice(y)
g := make([]{{.Type}}, n)
f(a, b).StoreSlice(g)
w := want(x, y)
return checkSlicesLogInput(t, g, w, 0.0, func() {t.Helper(); t.Logf("x=%v", x); t.Logf("y=%v", y); })
})
}
`)
var ternaryTemplate = templateOf("ternary_helpers", `
// test{{.Vec}}Ternary tests the simd ternary method f against the expected behavior generated by want
func test{{.Vec}}Ternary(t *testing.T, f func(_, _, _ simd.{{.Vec}}) simd.{{.Vec}}, want func(_, _, _ []{{.Type}}) []{{.Type}}) {
n := {{.Count}}
t.Helper()
forSliceTriple(t, {{.Type}}s, n, func(x, y, z []{{.Type}}) bool {
t.Helper()
a := simd.Load{{.Vec}}Slice(x)
b := simd.Load{{.Vec}}Slice(y)
c := simd.Load{{.Vec}}Slice(z)
g := make([]{{.Type}}, n)
f(a, b, c).StoreSlice(g)
w := want(x, y, z)
return checkSlicesLogInput(t, g, w, 0.0, func() {t.Helper(); t.Logf("x=%v", x); t.Logf("y=%v", y); t.Logf("z=%v", z); })
})
}
`)
var ternaryFlakyTemplate = shapedTemplateOf(ternaryFlaky, "ternary_helpers", `
// test{{.Vec}}TernaryFlaky tests the simd ternary method f against the expected behavior generated by want,
// but using a flakiness parameter because we haven't exactly figured out how simd floating point works
func test{{.Vec}}TernaryFlaky(t *testing.T, f func(x, y, z simd.{{.Vec}}) simd.{{.Vec}}, want func(x, y, z []{{.Type}}) []{{.Type}}, flakiness float64) {
n := {{.Count}}
t.Helper()
forSliceTriple(t, {{.Type}}s, n, func(x, y, z []{{.Type}}) bool {
t.Helper()
a := simd.Load{{.Vec}}Slice(x)
b := simd.Load{{.Vec}}Slice(y)
c := simd.Load{{.Vec}}Slice(z)
g := make([]{{.Type}}, n)
f(a, b, c).StoreSlice(g)
w := want(x, y, z)
return checkSlicesLogInput(t, g, w, flakiness, func() {t.Helper(); t.Logf("x=%v", x); t.Logf("y=%v", y); t.Logf("z=%v", z); })
})
}
`)
var compareTemplate = templateOf("compare_helpers", `
// test{{.Vec}}Compare tests the simd comparison method f against the expected behavior generated by want
func test{{.Vec}}Compare(t *testing.T, f func(_, _ simd.{{.Vec}}) simd.Mask{{.WxC}}, want func(_, _ []{{.Type}}) []int64) {
n := {{.Count}}
t.Helper()
forSlicePair(t, {{.Type}}s, n, func(x, y []{{.Type}}) bool {
t.Helper()
a := simd.Load{{.Vec}}Slice(x)
b := simd.Load{{.Vec}}Slice(y)
g := make([]int{{.Width}}, n)
f(a, b).AsInt{{.WxC}}().StoreSlice(g)
w := want(x, y)
return checkSlicesLogInput(t, s64(g), w, 0.0, func() {t.Helper(); t.Logf("x=%v", x); t.Logf("y=%v", y); })
})
}
`)
// TODO this has not been tested yet.
var compareMaskedTemplate = templateOf("comparemasked_helpers", `
// test{{.Vec}}CompareMasked tests the simd masked comparison method f against the expected behavior generated by want
// The mask is applied to the output of want; anything not in the mask, is zeroed.
func test{{.Vec}}CompareMasked(t *testing.T,
f func(_, _ simd.{{.Vec}}, m simd.Mask{{.WxC}}) simd.Mask{{.WxC}},
want func(_, _ []{{.Type}}) []int64) {
n := {{.Count}}
t.Helper()
forSlicePairMasked(t, {{.Type}}s, n, func(x, y []{{.Type}}, m []bool) bool {
t.Helper()
a := simd.Load{{.Vec}}Slice(x)
b := simd.Load{{.Vec}}Slice(y)
k := simd.LoadInt{{.WxC}}Slice(toVect[int{{.Width}}](m)).ToMask()
g := make([]int{{.Width}}, n)
f(a, b, k).AsInt{{.WxC}}().StoreSlice(g)
w := want(x, y)
for i := range m {
if !m[i] {
w[i] = 0
}
}
return checkSlicesLogInput(t, s64(g), w, 0.0, func() {t.Helper(); t.Logf("x=%v", x); t.Logf("y=%v", y); t.Logf("m=%v", m); })
})
}
`)
var avx512MaskedLoadSlicePartTemplate = shapedTemplateOf(avx512Shapes, "avx 512 load slice part", `
// Load{{.Vec}}SlicePart loads a {{.Vec}} from the slice s.
// If s has fewer than {{.Count}} elements, the remaining elements of the vector are filled with zeroes.
// If s has {{.Count}} or more elements, the function is equivalent to Load{{.Vec}}Slice.
func Load{{.Vec}}SlicePart(s []{{.Type}}) {{.Vec}} {
l := len(s)
if l >= {{.Count}} {
return Load{{.Vec}}Slice(s)
}
if l == 0 {
var x {{.Vec}}
return x
}
mask := Mask{{.WxC}}FromBits({{.OxFF}} >> ({{.Count}} - l))
return LoadMasked{{.Vec}}(pa{{.Vec}}(s), mask)
}
// StoreSlicePart stores the {{.Count}} elements of x into the slice s.
// It stores as many elements as will fit in s.
// If s has {{.Count}} or more elements, the method is equivalent to x.StoreSlice.
func (x {{.Vec}}) StoreSlicePart(s []{{.Type}}) {
l := len(s)
if l >= {{.Count}} {
x.StoreSlice(s)
return
}
if l == 0 {
return
}
mask := Mask{{.WxC}}FromBits({{.OxFF}} >> ({{.Count}} - l))
x.StoreMasked(pa{{.Vec}}(s), mask)
}
`)
var avx2MaskedLoadSlicePartTemplate = shapedTemplateOf(avx2MaskedLoadShapes, "avx 2 load slice part", `
// Load{{.Vec}}SlicePart loads a {{.Vec}} from the slice s.
// If s has fewer than {{.Count}} elements, the remaining elements of the vector are filled with zeroes.
// If s has {{.Count}} or more elements, the function is equivalent to Load{{.Vec}}Slice.
func Load{{.Vec}}SlicePart(s []{{.Type}}) {{.Vec}} {
l := len(s)
if l >= {{.Count}} {
return Load{{.Vec}}Slice(s)
}
if l == 0 {
var x {{.Vec}}
return x
}
mask := vecMask{{.Width}}[len(vecMask{{.Width}})/2-l:]
return LoadMasked{{.Vec}}(pa{{.Vec}}(s), LoadInt{{.WxC}}Slice(mask).asMask())
}
// StoreSlicePart stores the {{.Count}} elements of x into the slice s.
// It stores as many elements as will fit in s.
// If s has {{.Count}} or more elements, the method is equivalent to x.StoreSlice.
func (x {{.Vec}}) StoreSlicePart(s []{{.Type}}) {
l := len(s)
if l >= {{.Count}} {
x.StoreSlice(s)
return
}
if l == 0 {
return
}
mask := vecMask{{.Width}}[len(vecMask{{.Width}})/2-l:]
x.StoreMasked(pa{{.Vec}}(s), LoadInt{{.WxC}}Slice(mask).asMask())
}
`)
var avx2SmallLoadSlicePartTemplate = shapedTemplateOf(avx2SmallLoadPunShapes, "avx 2 small load slice part", `
// Load{{.Vec}}SlicePart loads a {{.Vec}} from the slice s.
// If s has fewer than {{.Count}} elements, the remaining elements of the vector are filled with zeroes.
// If s has {{.Count}} or more elements, the function is equivalent to Load{{.Vec}}Slice.
func Load{{.Vec}}SlicePart(s []{{.Type}}) {{.Vec}} {
if len(s) == 0 {
var zero {{.Vec}}
return zero
}
t := unsafe.Slice((*int{{.Width}})(unsafe.Pointer(&s[0])), len(s))
return LoadInt{{.WxC}}SlicePart(t).As{{.Vec}}()
}
// StoreSlicePart stores the {{.Count}} elements of x into the slice s.
// It stores as many elements as will fit in s.
// If s has {{.Count}} or more elements, the method is equivalent to x.StoreSlice.
func (x {{.Vec}}) StoreSlicePart(s []{{.Type}}) {
if len(s) == 0 {
return
}
t := unsafe.Slice((*int{{.Width}})(unsafe.Pointer(&s[0])), len(s))
x.AsInt{{.WxC}}().StoreSlicePart(t)
}
`)
func (t templateData) CPUfeature() string {
switch t.Vwidth {
case 128:
return "AVX"
case 256:
return "AVX2"
case 512:
return "AVX512"
}
panic(fmt.Errorf("unexpected vector width %d", t.Vwidth))
}
var avx2SignedComparisonsTemplate = shapedTemplateOf(avx2SignedComparisons, "avx2 signed comparisons", `
// Less returns a mask whose elements indicate whether x < y
//
// Emulated, CPU Feature {{.CPUfeature}}
func (x {{.Vec}}) Less(y {{.Vec}}) Mask{{.WxC}} {
return y.Greater(x)
}
// GreaterEqual returns a mask whose elements indicate whether x >= y
//
// Emulated, CPU Feature {{.CPUfeature}}
func (x {{.Vec}}) GreaterEqual(y {{.Vec}}) Mask{{.WxC}} {
ones := x.Equal(x).AsInt{{.WxC}}()
return y.Greater(x).AsInt{{.WxC}}().Xor(ones).asMask()
}
// LessEqual returns a mask whose elements indicate whether x <= y
//
// Emulated, CPU Feature {{.CPUfeature}}
func (x {{.Vec}}) LessEqual(y {{.Vec}}) Mask{{.WxC}} {
ones := x.Equal(x).AsInt{{.WxC}}()
return x.Greater(y).AsInt{{.WxC}}().Xor(ones).asMask()
}
// NotEqual returns a mask whose elements indicate whether x != y
//
// Emulated, CPU Feature {{.CPUfeature}}
func (x {{.Vec}}) NotEqual(y {{.Vec}}) Mask{{.WxC}} {
ones := x.Equal(x).AsInt{{.WxC}}()
return x.Equal(y).AsInt{{.WxC}}().Xor(ones).asMask()
}
`)
// CPUfeatureAVX2if8 return AVX2 if the element width is 8,
// otherwise, it returns CPUfeature. This is for the cpufeature
// of unsigned comparison emulation, which uses shifts for all
// the sizes > 8 (shifts are AVX) but must use broadcast (AVX2)
// for bytes.
func (t templateData) CPUfeatureAVX2if8() string {
if t.Width == 8 {
return "AVX2"
}
return t.CPUfeature()
}
var avx2UnsignedComparisonsTemplate = shapedTemplateOf(avx2UnsignedComparisons, "avx2 unsigned comparisons", `
// Greater returns a mask whose elements indicate whether x > y
//
// Emulated, CPU Feature {{.CPUfeatureAVX2if8}}
func (x {{.Vec}}) Greater(y {{.Vec}}) Mask{{.WxC}} {
a, b := x.AsInt{{.WxC}}(), y.AsInt{{.WxC}}()
{{- if eq .Width 8}}
signs := BroadcastInt{{.WxC}}(-1 << ({{.Width}}-1))
{{- else}}
ones := x.Equal(x).AsInt{{.WxC}}()
signs := ones.ShiftAllLeft({{.Width}}-1)
{{- end }}
return a.Xor(signs).Greater(b.Xor(signs))
}
// Less returns a mask whose elements indicate whether x < y
//
// Emulated, CPU Feature {{.CPUfeatureAVX2if8}}
func (x {{.Vec}}) Less(y {{.Vec}}) Mask{{.WxC}} {
a, b := x.AsInt{{.WxC}}(), y.AsInt{{.WxC}}()
{{- if eq .Width 8}}
signs := BroadcastInt{{.WxC}}(-1 << ({{.Width}}-1))
{{- else}}
ones := x.Equal(x).AsInt{{.WxC}}()
signs := ones.ShiftAllLeft({{.Width}}-1)
{{- end }}
return b.Xor(signs).Greater(a.Xor(signs))
}
// GreaterEqual returns a mask whose elements indicate whether x >= y
//
// Emulated, CPU Feature {{.CPUfeatureAVX2if8}}
func (x {{.Vec}}) GreaterEqual(y {{.Vec}}) Mask{{.WxC}} {
a, b := x.AsInt{{.WxC}}(), y.AsInt{{.WxC}}()
ones := x.Equal(x).AsInt{{.WxC}}()
{{- if eq .Width 8}}
signs := BroadcastInt{{.WxC}}(-1 << ({{.Width}}-1))
{{- else}}
signs := ones.ShiftAllLeft({{.Width}}-1)
{{- end }}
return b.Xor(signs).Greater(a.Xor(signs)).AsInt{{.WxC}}().Xor(ones).asMask()
}
// LessEqual returns a mask whose elements indicate whether x <= y
//
// Emulated, CPU Feature {{.CPUfeatureAVX2if8}}
func (x {{.Vec}}) LessEqual(y {{.Vec}}) Mask{{.WxC}} {
a, b := x.AsInt{{.WxC}}(), y.AsInt{{.WxC}}()
ones := x.Equal(x).AsInt{{.WxC}}()
{{- if eq .Width 8}}
signs := BroadcastInt{{.WxC}}(-1 << ({{.Width}}-1))
{{- else}}
signs := ones.ShiftAllLeft({{.Width}}-1)
{{- end }}
return a.Xor(signs).Greater(b.Xor(signs)).AsInt{{.WxC}}().Xor(ones).asMask()
}
// NotEqual returns a mask whose elements indicate whether x != y
//
// Emulated, CPU Feature {{.CPUfeature}}
func (x {{.Vec}}) NotEqual(y {{.Vec}}) Mask{{.WxC}} {
a, b := x.AsInt{{.WxC}}(), y.AsInt{{.WxC}}()
ones := x.Equal(x).AsInt{{.WxC}}()
return a.Equal(b).AsInt{{.WxC}}().Xor(ones).asMask()
}
`)
var unsafePATemplate = templateOf("unsafe PA helper", `
// pa{{.Vec}} returns a type-unsafe pointer to array that can
// only be used with partial load/store operations that only
// access the known-safe portions of the array.
func pa{{.Vec}}(s []{{.Type}}) *[{{.Count}}]{{.Type}} {
return (*[{{.Count}}]{{.Type}})(unsafe.Pointer(&s[0]))
}
`)
var avx2MaskedTemplate = shapedTemplateOf(avx2Shapes, "avx2 .Masked methods", `
// Masked returns x but with elements zeroed where mask is false.
func (x {{.Vec}}) Masked(mask Mask{{.WxC}}) {{.Vec}} {
im := mask.AsInt{{.WxC}}()
{{- if eq .Base "Int" }}
return im.And(x)
{{- else}}
return x.AsInt{{.WxC}}().And(im).As{{.Vec}}()
{{- end -}}
}
// Merge returns x but with elements set to y where mask is false.
func (x {{.Vec}}) Merge(y {{.Vec}}, mask Mask{{.WxC}}) {{.Vec}} {
{{- if eq .BxC .WxC -}}
im := mask.AsInt{{.BxC}}()
{{- else}}
im := mask.AsInt{{.WxC}}().AsInt{{.BxC}}()
{{- end -}}
{{- if and (eq .Base "Int") (eq .BxC .WxC) }}
return y.blend(x, im)
{{- else}}
ix := x.AsInt{{.BxC}}()
iy := y.AsInt{{.BxC}}()
return iy.blend(ix, im).As{{.Vec}}()
{{- end -}}
}
`)
// TODO perhaps write these in ways that work better on AVX512
var avx512MaskedTemplate = shapedTemplateOf(avx512Shapes, "avx512 .Masked methods", `
// Masked returns x but with elements zeroed where mask is false.
func (x {{.Vec}}) Masked(mask Mask{{.WxC}}) {{.Vec}} {
im := mask.AsInt{{.WxC}}()
{{- if eq .Base "Int" }}
return im.And(x)
{{- else}}
return x.AsInt{{.WxC}}().And(im).As{{.Vec}}()
{{- end -}}
}
// Merge returns x but with elements set to y where m is false.
func (x {{.Vec}}) Merge(y {{.Vec}}, mask Mask{{.WxC}}) {{.Vec}} {
{{- if eq .Base "Int" }}
return y.blendMasked(x, mask)
{{- else}}
ix := x.AsInt{{.WxC}}()
iy := y.AsInt{{.WxC}}()
return iy.blendMasked(ix, mask).As{{.Vec}}()
{{- end -}}
}
`)
func (t templateData) CPUfeatureBC() string {
switch t.Vwidth {
case 128:
return "AVX2"
case 256:
return "AVX2"
case 512:
if t.Width <= 16 {
return "AVX512BW"
}
return "AVX512F"
}
panic(fmt.Errorf("unexpected vector width %d", t.Vwidth))
}
var broadcastTemplate = templateOf("Broadcast functions", `
// Broadcast{{.Vec}} returns a vector with the input
// x assigned to all elements of the output.
//
// Emulated, CPU Feature {{.CPUfeatureBC}}
func Broadcast{{.Vec}}(x {{.Type}}) {{.Vec}} {
var z {{.As128BitVec }}
return z.SetElem(0, x).Broadcast{{.Vwidth}}()
}
`)
var maskCvtTemplate = templateOf("Mask conversions", `
// ToMask converts from {{.Base}}{{.WxC}} to Mask{{.WxC}}, mask element is set to true when the corresponding vector element is non-zero.
func (from {{.Base}}{{.WxC}}) ToMask() (to Mask{{.WxC}}) {
return from.NotEqual({{.Base}}{{.WxC}}{})
}
`)
func main() {
sl := flag.String("sl", "slice_gen_amd64.go", "file name for slice operations")
cm := flag.String("cm", "compare_gen_amd64.go", "file name for comparison operations")
mm := flag.String("mm", "maskmerge_gen_amd64.go", "file name for mask/merge operations")
op := flag.String("op", "other_gen_amd64.go", "file name for other operations")
ush := flag.String("ush", "unsafe_helpers.go", "file name for unsafe helpers")
bh := flag.String("bh", "binary_helpers_test.go", "file name for binary test helpers")
uh := flag.String("uh", "unary_helpers_test.go", "file name for unary test helpers")
th := flag.String("th", "ternary_helpers_test.go", "file name for ternary test helpers")
ch := flag.String("ch", "compare_helpers_test.go", "file name for compare test helpers")
cmh := flag.String("cmh", "comparemasked_helpers_test.go", "file name for compare-masked test helpers")
flag.Parse()
if *sl != "" {
one(*sl, unsafePrologue,
sliceTemplate,
avx512MaskedLoadSlicePartTemplate,
avx2MaskedLoadSlicePartTemplate,
avx2SmallLoadSlicePartTemplate,
)
}
if *cm != "" {
one(*cm, prologue,
avx2SignedComparisonsTemplate,
avx2UnsignedComparisonsTemplate,
)
}
if *mm != "" {
one(*mm, prologue,
avx2MaskedTemplate,
avx512MaskedTemplate,
)
}
if *op != "" {
one(*op, prologue,
broadcastTemplate,
maskCvtTemplate,
)
}
if *ush != "" {
one(*ush, unsafePrologue, unsafePATemplate)
}
if *uh != "" {
one(*uh, curryTestPrologue("unary simd methods"), unaryTemplate, unaryToInt32, unaryToUint32, unaryToUint16, unaryFlakyTemplate)
}
if *bh != "" {
one(*bh, curryTestPrologue("binary simd methods"), binaryTemplate)
}
if *th != "" {
one(*th, curryTestPrologue("ternary simd methods"), ternaryTemplate, ternaryFlakyTemplate)
}
if *ch != "" {
one(*ch, curryTestPrologue("simd methods that compare two operands"), compareTemplate)
}
if *cmh != "" {
one(*cmh, curryTestPrologue("simd methods that compare two operands under a mask"), compareMaskedTemplate)
}
}
// numberLines takes a slice of bytes, and returns a string where each line
// is numbered, starting from 1.
func numberLines(data []byte) string {
var buf bytes.Buffer
r := bytes.NewReader(data)
s := bufio.NewScanner(r)
for i := 1; s.Scan(); i++ {
fmt.Fprintf(&buf, "%d: %s\n", i, s.Text())
}
return buf.String()
}
func one(filename string, prologue func(s string, out io.Writer), sats ...shapeAndTemplate) {
if filename == "" {
return
}
ofile := os.Stdout
if filename != "-" {
var err error
ofile, err = os.Create(filename)
if err != nil {
fmt.Fprintf(os.Stderr, "Could not create the output file %s for the generated code, %v", filename, err)
os.Exit(1)
}
}
out := new(bytes.Buffer)
prologue("go run genfiles.go", out)
for _, sat := range sats {
sat.forTemplates(out)
}
b, err := format.Source(out.Bytes())
if err != nil {
fmt.Fprintf(os.Stderr, "There was a problem formatting the generated code for %s, %v\n", filename, err)
fmt.Fprintf(os.Stderr, "%s\n", numberLines(out.Bytes()))
fmt.Fprintf(os.Stderr, "There was a problem formatting the generated code for %s, %v\n", filename, err)
os.Exit(1)
} else {
ofile.Write(b)
ofile.Close()
}
}